id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
1,504 |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class D {
static StringTokenizer st;
static BufferedReader in;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
long L = nextLong();
long R = nextLong();
if (L==R) {
System.out.println(0);
return;
}
String s1 = Long.toBinaryString(L), s2 = Long.toBinaryString(R);
while (s1.length() != s2.length())
s1 = "0"+s1;
for (int i = 0; i < s1.length(); i++) {
if (s1.charAt(i) != s2.charAt(i)) {
int pow = s1.length()-i;
System.out.println((long)Math.pow(2, pow)-1);
return;
}
}
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class D {
static StringTokenizer st;
static BufferedReader in;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
long L = nextLong();
long R = nextLong();
if (L==R) {
System.out.println(0);
return;
}
String s1 = Long.toBinaryString(L), s2 = Long.toBinaryString(R);
while (s1.length() != s2.length())
s1 = "0"+s1;
for (int i = 0; i < s1.length(); i++) {
if (s1.charAt(i) != s2.charAt(i)) {
int pow = s1.length()-i;
System.out.println((long)Math.pow(2, pow)-1);
return;
}
}
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class D {
static StringTokenizer st;
static BufferedReader in;
public static void main(String[] args) throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
long L = nextLong();
long R = nextLong();
if (L==R) {
System.out.println(0);
return;
}
String s1 = Long.toBinaryString(L), s2 = Long.toBinaryString(R);
while (s1.length() != s2.length())
s1 = "0"+s1;
for (int i = 0; i < s1.length(); i++) {
if (s1.charAt(i) != s2.charAt(i)) {
int pow = s1.length()-i;
System.out.println((long)Math.pow(2, pow)-1);
return;
}
}
pw.close();
}
private static int nextInt() throws IOException{
return Integer.parseInt(next());
}
private static long nextLong() throws IOException{
return Long.parseLong(next());
}
private static double nextDouble() throws IOException{
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 662 | 1,502 |
287 |
import java.util.*;
import java.io.*;
public class C{
static PrintWriter out;
static InputReader in;
public static void main(String args[]){
out = new PrintWriter(System.out);
in = new InputReader();
new C();
out.flush(); out.close();
}
C(){
int a = solve();
out.print(a == 0 ? "tokitsukaze" : a == 1 ? "quailty" : "once again");
}
int n, k;
char ch[]; int a[], c0 = 0, c1 = 0;
TreeSet<Integer> ts[] = new TreeSet[2];
boolean check(){
int min = 0, max = n;
if(!ts[0].isEmpty()){
min = ts[0].first(); max = ts[0].last();
if(max - min + 1 > k)return true;
}
if(!ts[1].isEmpty()){
min = ts[1].first(); max = ts[1].last();
if(max - min + 1 > k)return true;
}
return false;
}
int solve(){
n = in.nextInt(); k = in.nextInt();
ch = in.next().trim().toCharArray(); a = new int[n];
for(int i = 0; i < n; i++)c1 += a[i] = ch[i] - '0';
c0 = n - c1;
for(int i = 0; i < k; i++){
if(a[i] == 0)c0--; else c1--;
}
if(c0 == 0 || c1 == 0)return 0;
for(int i = k; i < n; i++){
if(a[i] == 0)c0--; else c1--;
if(a[i - k] == 0)c0++; else c1++;
if(c0 == 0 || c1 == 0)return 0;
}
for(int i = 0; i < 2; i++)ts[i] = new TreeSet<>();
for(int i = 0; i < n; i++){
ts[a[i]].add(i);
}
for(int i = 0; i < k; i++){
ts[a[i]].remove(i);
}
if(check())return 2;
for(int i = k; i < n; i++){
ts[a[i]].remove(i); ts[a[i - k]].add(i - k);
if(check())return 2;
}
return 1;
}
public static class InputReader{
BufferedReader br;
StringTokenizer st;
InputReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt(){
return Integer.parseInt(next());
}
public long nextLong(){
return Long.parseLong(next());
}
public double nextDouble(){
return Double.parseDouble(next());
}
public String next(){
while(st == null || !st.hasMoreTokens()){
try{
st = new StringTokenizer(br.readLine());
}catch(IOException e){}
}
return st.nextToken();
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
static PrintWriter out;
static InputReader in;
public static void main(String args[]){
out = new PrintWriter(System.out);
in = new InputReader();
new C();
out.flush(); out.close();
}
C(){
int a = solve();
out.print(a == 0 ? "tokitsukaze" : a == 1 ? "quailty" : "once again");
}
int n, k;
char ch[]; int a[], c0 = 0, c1 = 0;
TreeSet<Integer> ts[] = new TreeSet[2];
boolean check(){
int min = 0, max = n;
if(!ts[0].isEmpty()){
min = ts[0].first(); max = ts[0].last();
if(max - min + 1 > k)return true;
}
if(!ts[1].isEmpty()){
min = ts[1].first(); max = ts[1].last();
if(max - min + 1 > k)return true;
}
return false;
}
int solve(){
n = in.nextInt(); k = in.nextInt();
ch = in.next().trim().toCharArray(); a = new int[n];
for(int i = 0; i < n; i++)c1 += a[i] = ch[i] - '0';
c0 = n - c1;
for(int i = 0; i < k; i++){
if(a[i] == 0)c0--; else c1--;
}
if(c0 == 0 || c1 == 0)return 0;
for(int i = k; i < n; i++){
if(a[i] == 0)c0--; else c1--;
if(a[i - k] == 0)c0++; else c1++;
if(c0 == 0 || c1 == 0)return 0;
}
for(int i = 0; i < 2; i++)ts[i] = new TreeSet<>();
for(int i = 0; i < n; i++){
ts[a[i]].add(i);
}
for(int i = 0; i < k; i++){
ts[a[i]].remove(i);
}
if(check())return 2;
for(int i = k; i < n; i++){
ts[a[i]].remove(i); ts[a[i - k]].add(i - k);
if(check())return 2;
}
return 1;
}
public static class InputReader{
BufferedReader br;
StringTokenizer st;
InputReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt(){
return Integer.parseInt(next());
}
public long nextLong(){
return Long.parseLong(next());
}
public double nextDouble(){
return Double.parseDouble(next());
}
public String next(){
while(st == null || !st.hasMoreTokens()){
try{
st = new StringTokenizer(br.readLine());
}catch(IOException e){}
}
return st.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
static PrintWriter out;
static InputReader in;
public static void main(String args[]){
out = new PrintWriter(System.out);
in = new InputReader();
new C();
out.flush(); out.close();
}
C(){
int a = solve();
out.print(a == 0 ? "tokitsukaze" : a == 1 ? "quailty" : "once again");
}
int n, k;
char ch[]; int a[], c0 = 0, c1 = 0;
TreeSet<Integer> ts[] = new TreeSet[2];
boolean check(){
int min = 0, max = n;
if(!ts[0].isEmpty()){
min = ts[0].first(); max = ts[0].last();
if(max - min + 1 > k)return true;
}
if(!ts[1].isEmpty()){
min = ts[1].first(); max = ts[1].last();
if(max - min + 1 > k)return true;
}
return false;
}
int solve(){
n = in.nextInt(); k = in.nextInt();
ch = in.next().trim().toCharArray(); a = new int[n];
for(int i = 0; i < n; i++)c1 += a[i] = ch[i] - '0';
c0 = n - c1;
for(int i = 0; i < k; i++){
if(a[i] == 0)c0--; else c1--;
}
if(c0 == 0 || c1 == 0)return 0;
for(int i = k; i < n; i++){
if(a[i] == 0)c0--; else c1--;
if(a[i - k] == 0)c0++; else c1++;
if(c0 == 0 || c1 == 0)return 0;
}
for(int i = 0; i < 2; i++)ts[i] = new TreeSet<>();
for(int i = 0; i < n; i++){
ts[a[i]].add(i);
}
for(int i = 0; i < k; i++){
ts[a[i]].remove(i);
}
if(check())return 2;
for(int i = k; i < n; i++){
ts[a[i]].remove(i); ts[a[i - k]].add(i - k);
if(check())return 2;
}
return 1;
}
public static class InputReader{
BufferedReader br;
StringTokenizer st;
InputReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
public int nextInt(){
return Integer.parseInt(next());
}
public long nextLong(){
return Long.parseLong(next());
}
public double nextDouble(){
return Double.parseDouble(next());
}
public String next(){
while(st == null || !st.hasMoreTokens()){
try{
st = new StringTokenizer(br.readLine());
}catch(IOException e){}
}
return st.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,022 | 287 |
1,458 |
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author AlexFetisov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextInt();
long x = in.nextInt();
long y = in.nextInt();
long c = in.nextInt();
if (c == 1) {
out.println(0);
return;
}
long left = 1, right = 2 * n, middle, res = -1;
long val = getNumberOfCells(x, y, n, 2);
while (left <= right) {
middle = (left + right) / 2;
long numberOfCells = getNumberOfCells(x, y, n, middle);
if (numberOfCells < c) {
left = middle + 1;
} else {
res = middle;
right = middle - 1;
}
}
out.println(res);
}
private long getNumberOfCells(long x, long y, long n, long middle) {
long res = 0;
res += calc(x, y, middle + 1);
res += calc(n - x + 1, y, middle + 1);
res += calc(x, n - y + 1, middle + 1);
res += calc(n - x + 1, n - y + 1, middle + 1);
res -= calcX(x, n, middle);
res -= calcX(y, n, middle);
--res;
return res;
}
private long calcX(long x, long n, long size) {
long left = x - size;
long right = x + size;
left = Math.max(left, 1);
right = Math.min(right, n);
if (left <= right) {
return right - left + 1;
}
return 0;
}
private long calc(long x, long y, long size) {
if (size <= Math.min(x, y)) {
return (1 + size) * size / 2;
}
if (size >= x + y - 1) {
return x * y;
}
if (size > Math.max(x, y)) {
return x * y - calc(x, y, x + y - 1 - size);
}
long min = Math.min(x, y);
long res = (1 + min) * min / 2;
long rest = size - min;
res += rest * min;
return res;
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String nextString() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author AlexFetisov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextInt();
long x = in.nextInt();
long y = in.nextInt();
long c = in.nextInt();
if (c == 1) {
out.println(0);
return;
}
long left = 1, right = 2 * n, middle, res = -1;
long val = getNumberOfCells(x, y, n, 2);
while (left <= right) {
middle = (left + right) / 2;
long numberOfCells = getNumberOfCells(x, y, n, middle);
if (numberOfCells < c) {
left = middle + 1;
} else {
res = middle;
right = middle - 1;
}
}
out.println(res);
}
private long getNumberOfCells(long x, long y, long n, long middle) {
long res = 0;
res += calc(x, y, middle + 1);
res += calc(n - x + 1, y, middle + 1);
res += calc(x, n - y + 1, middle + 1);
res += calc(n - x + 1, n - y + 1, middle + 1);
res -= calcX(x, n, middle);
res -= calcX(y, n, middle);
--res;
return res;
}
private long calcX(long x, long n, long size) {
long left = x - size;
long right = x + size;
left = Math.max(left, 1);
right = Math.min(right, n);
if (left <= right) {
return right - left + 1;
}
return 0;
}
private long calc(long x, long y, long size) {
if (size <= Math.min(x, y)) {
return (1 + size) * size / 2;
}
if (size >= x + y - 1) {
return x * y;
}
if (size > Math.max(x, y)) {
return x * y - calc(x, y, x + y - 1 - size);
}
long min = Math.min(x, y);
long res = (1 + min) * min / 2;
long rest = size - min;
res += rest * min;
return res;
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String nextString() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author AlexFetisov
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long n = in.nextInt();
long x = in.nextInt();
long y = in.nextInt();
long c = in.nextInt();
if (c == 1) {
out.println(0);
return;
}
long left = 1, right = 2 * n, middle, res = -1;
long val = getNumberOfCells(x, y, n, 2);
while (left <= right) {
middle = (left + right) / 2;
long numberOfCells = getNumberOfCells(x, y, n, middle);
if (numberOfCells < c) {
left = middle + 1;
} else {
res = middle;
right = middle - 1;
}
}
out.println(res);
}
private long getNumberOfCells(long x, long y, long n, long middle) {
long res = 0;
res += calc(x, y, middle + 1);
res += calc(n - x + 1, y, middle + 1);
res += calc(x, n - y + 1, middle + 1);
res += calc(n - x + 1, n - y + 1, middle + 1);
res -= calcX(x, n, middle);
res -= calcX(y, n, middle);
--res;
return res;
}
private long calcX(long x, long n, long size) {
long left = x - size;
long right = x + size;
left = Math.max(left, 1);
right = Math.min(right, n);
if (left <= right) {
return right - left + 1;
}
return 0;
}
private long calc(long x, long y, long size) {
if (size <= Math.min(x, y)) {
return (1 + size) * size / 2;
}
if (size >= x + y - 1) {
return x * y;
}
if (size > Math.max(x, y)) {
return x * y - calc(x, y, x + y - 1 - size);
}
long min = Math.min(x, y);
long res = (1 + min) * min / 2;
long rest = size - min;
res += rest * min;
return res;
}
}
class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String nextString() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,133 | 1,456 |
1,286 |
import java.util.*;
public class prob
{
public static long ans(long x, long y, long p)
{
long r = 1;
x = x % p;
while (y > 0)
{
if((y & 1)==1)
r = (r * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return r;
}
public static void main (String[] args) throws java.lang.Exception
{
Scanner scan = new Scanner(System.in);
long x = scan.nextLong();
long k = scan.nextLong();
long v = 1000000007L;
if(x>0){
long p = ((2*x)-1)%v;
long a = ans(2L,k,v);
long b = (p*a)%v;
System.out.println((b+1)%v);
}
else{
System.out.println(0);
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class prob
{
public static long ans(long x, long y, long p)
{
long r = 1;
x = x % p;
while (y > 0)
{
if((y & 1)==1)
r = (r * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return r;
}
public static void main (String[] args) throws java.lang.Exception
{
Scanner scan = new Scanner(System.in);
long x = scan.nextLong();
long k = scan.nextLong();
long v = 1000000007L;
if(x>0){
long p = ((2*x)-1)%v;
long a = ans(2L,k,v);
long b = (p*a)%v;
System.out.println((b+1)%v);
}
else{
System.out.println(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class prob
{
public static long ans(long x, long y, long p)
{
long r = 1;
x = x % p;
while (y > 0)
{
if((y & 1)==1)
r = (r * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return r;
}
public static void main (String[] args) throws java.lang.Exception
{
Scanner scan = new Scanner(System.in);
long x = scan.nextLong();
long k = scan.nextLong();
long v = 1000000007L;
if(x>0){
long p = ((2*x)-1)%v;
long a = ans(2L,k,v);
long b = (p*a)%v;
System.out.println((b+1)%v);
}
else{
System.out.println(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 559 | 1,284 |
3,951 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int proximoNum() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear escanear = new Escanear();
int proximoInt = escanear.proximoNum();
double proximoDouble = escanear.proximoNum();
long[] aux = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = escanear.proximoNum();
if (val.equals(1) || i.equals(j)) {
aux[i] |= 1L << j;
}
}
}
int esquerda = proximoInt/2;
int direita = proximoInt - esquerda;
int[] depois = new int[1 << esquerda];
int maiorMascara = 1 << esquerda;
for(int mascara = 1; mascara <maiorMascara; mascara++) {
int mascaraAtual = mascara;
for(int j = 0; j < esquerda; j++) {
if (((1 << j) & mascara) > 0) {
mascaraAtual &= aux[j + direita] >> direita;
depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
}
}
if (mascara == mascaraAtual) {
depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
}
}
int auxiliar = 0;
int mascaraMaxima = 1 << direita;
for(int mascara = 0; mascara < mascaraMaxima; mascara++) {
int mascaraCorrente = mascara;
int mascaraValor = maiorMascara -1;
for(int j = 0; j < direita; j++) {
if (((1 << j) & mascara) > 0) {
mascaraCorrente &= (aux[j] & (mascaraMaxima-1));
mascaraValor &= aux[j] >> direita;
}
}
if (mascaraCorrente != mascara) continue;
auxiliar = Math.max(auxiliar, Integer.bitCount(mascara) + depois[mascaraValor]);
}
proximoDouble/=auxiliar;
saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2);
saida.flush();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int proximoNum() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear escanear = new Escanear();
int proximoInt = escanear.proximoNum();
double proximoDouble = escanear.proximoNum();
long[] aux = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = escanear.proximoNum();
if (val.equals(1) || i.equals(j)) {
aux[i] |= 1L << j;
}
}
}
int esquerda = proximoInt/2;
int direita = proximoInt - esquerda;
int[] depois = new int[1 << esquerda];
int maiorMascara = 1 << esquerda;
for(int mascara = 1; mascara <maiorMascara; mascara++) {
int mascaraAtual = mascara;
for(int j = 0; j < esquerda; j++) {
if (((1 << j) & mascara) > 0) {
mascaraAtual &= aux[j + direita] >> direita;
depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
}
}
if (mascara == mascaraAtual) {
depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
}
}
int auxiliar = 0;
int mascaraMaxima = 1 << direita;
for(int mascara = 0; mascara < mascaraMaxima; mascara++) {
int mascaraCorrente = mascara;
int mascaraValor = maiorMascara -1;
for(int j = 0; j < direita; j++) {
if (((1 << j) & mascara) > 0) {
mascaraCorrente &= (aux[j] & (mascaraMaxima-1));
mascaraValor &= aux[j] >> direita;
}
}
if (mascaraCorrente != mascara) continue;
auxiliar = Math.max(auxiliar, Integer.bitCount(mascara) + depois[mascaraValor]);
}
proximoDouble/=auxiliar;
saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.IOException;
import java.util.StringTokenizer;
/*
* @author Tnascimento
*/
public class MaeDosDragoes {
public static PrintWriter saida = new PrintWriter(System.out, false);
public static class Escanear {
BufferedReader reader;
StringTokenizer tokenizer;
public Escanear() {
this(new InputStreamReader(System.in));
}
public Escanear(Reader in) {
reader = new BufferedReader(in);
}
String proximo() {
if (tokenizer == null || !tokenizer.hasMoreElements()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return tokenizer.nextToken();
}
int proximoNum() {
return Integer.parseInt(proximo());
}
}
public static void main(String[] args) {
Escanear escanear = new Escanear();
int proximoInt = escanear.proximoNum();
double proximoDouble = escanear.proximoNum();
long[] aux = new long[proximoInt];
for(Integer i = 0; i < proximoInt; i++) {
for(Integer j =0; j < proximoInt; j++) {
Integer val = escanear.proximoNum();
if (val.equals(1) || i.equals(j)) {
aux[i] |= 1L << j;
}
}
}
int esquerda = proximoInt/2;
int direita = proximoInt - esquerda;
int[] depois = new int[1 << esquerda];
int maiorMascara = 1 << esquerda;
for(int mascara = 1; mascara <maiorMascara; mascara++) {
int mascaraAtual = mascara;
for(int j = 0; j < esquerda; j++) {
if (((1 << j) & mascara) > 0) {
mascaraAtual &= aux[j + direita] >> direita;
depois[mascara] = Math.max(depois[mascara], depois[mascara ^ (1 << j)]);
}
}
if (mascara == mascaraAtual) {
depois[mascara] = Math.max(depois[mascara],Integer.bitCount(mascara));
}
}
int auxiliar = 0;
int mascaraMaxima = 1 << direita;
for(int mascara = 0; mascara < mascaraMaxima; mascara++) {
int mascaraCorrente = mascara;
int mascaraValor = maiorMascara -1;
for(int j = 0; j < direita; j++) {
if (((1 << j) & mascara) > 0) {
mascaraCorrente &= (aux[j] & (mascaraMaxima-1));
mascaraValor &= aux[j] >> direita;
}
}
if (mascaraCorrente != mascara) continue;
auxiliar = Math.max(auxiliar, Integer.bitCount(mascara) + depois[mascaraValor]);
}
proximoDouble/=auxiliar;
saida.println(proximoDouble * proximoDouble * (auxiliar * (auxiliar-1))/2);
saida.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,041 | 3,940 |
877 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class B {
private void solve() throws IOException {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
int[] f = new int[100000 + 2];
int min = Integer.MAX_VALUE;
int cur = 0;
int start = 0;
int from = -1, to = -1;
for (int i = 0; i < n; i++) {
f[a[i]]++;
if (f[a[i]] == 1) cur++;
if (cur == k) {
while (f[a[start]] > 1) {
f[a[start]]--;
start++;
}
if (i - start + 1 < min) {
min = i - start + 1;
from = start;
to = i;
}
}
}
pl(from == -1 ? "-1 -1" : ((1 + from) + " " + (1 + to)));
}
public static void main(String[] args) {
new B().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
void p(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.flush();
writer.print(objects[i]);
writer.flush();
}
}
void pl(Object... objects) {
p(objects);
writer.flush();
writer.println();
writer.flush();
}
int cc;
void pf() {
writer.printf("Case #%d: ", ++cc);
writer.flush();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class B {
private void solve() throws IOException {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
int[] f = new int[100000 + 2];
int min = Integer.MAX_VALUE;
int cur = 0;
int start = 0;
int from = -1, to = -1;
for (int i = 0; i < n; i++) {
f[a[i]]++;
if (f[a[i]] == 1) cur++;
if (cur == k) {
while (f[a[start]] > 1) {
f[a[start]]--;
start++;
}
if (i - start + 1 < min) {
min = i - start + 1;
from = start;
to = i;
}
}
}
pl(from == -1 ? "-1 -1" : ((1 + from) + " " + (1 + to)));
}
public static void main(String[] args) {
new B().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
void p(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.flush();
writer.print(objects[i]);
writer.flush();
}
}
void pl(Object... objects) {
p(objects);
writer.flush();
writer.println();
writer.flush();
}
int cc;
void pf() {
writer.printf("Case #%d: ", ++cc);
writer.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class B {
private void solve() throws IOException {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
int[] f = new int[100000 + 2];
int min = Integer.MAX_VALUE;
int cur = 0;
int start = 0;
int from = -1, to = -1;
for (int i = 0; i < n; i++) {
f[a[i]]++;
if (f[a[i]] == 1) cur++;
if (cur == k) {
while (f[a[start]] > 1) {
f[a[start]]--;
start++;
}
if (i - start + 1 < min) {
min = i - start + 1;
from = start;
to = i;
}
}
}
pl(from == -1 ? "-1 -1" : ((1 + from) + " " + (1 + to)));
}
public static void main(String[] args) {
new B().run();
}
BufferedReader reader;
StringTokenizer tokenizer;
PrintWriter writer;
public void run() {
try {
reader = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
writer = new PrintWriter(System.out);
solve();
reader.close();
writer.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
BigInteger nextBigInteger() throws IOException {
return new BigInteger(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
void p(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.flush();
writer.print(objects[i]);
writer.flush();
}
}
void pl(Object... objects) {
p(objects);
writer.flush();
writer.println();
writer.flush();
}
int cc;
void pf() {
writer.printf("Case #%d: ", ++cc);
writer.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 939 | 876 |
950 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main
{
public static void main(String[] args)
{
FastReader fr =new FastReader();
PrintWriter op =new PrintWriter(System.out);
long n =fr.nextLong() ,k =fr.nextLong() ,d =(long)Math.sqrt(9l+8l*(n+k)) ;
d -= 3l ; d /=2l ;op.println(n-d) ;
op.flush(); op.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br =new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st==null || (!st.hasMoreElements()))
{
try
{
st =new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str ="";
try
{
str =br.readLine();
}
catch(IOException e)
{
e.printStackTrace();
}
return str;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next()) ;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main
{
public static void main(String[] args)
{
FastReader fr =new FastReader();
PrintWriter op =new PrintWriter(System.out);
long n =fr.nextLong() ,k =fr.nextLong() ,d =(long)Math.sqrt(9l+8l*(n+k)) ;
d -= 3l ; d /=2l ;op.println(n-d) ;
op.flush(); op.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br =new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st==null || (!st.hasMoreElements()))
{
try
{
st =new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str ="";
try
{
str =br.readLine();
}
catch(IOException e)
{
e.printStackTrace();
}
return str;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next()) ;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main
{
public static void main(String[] args)
{
FastReader fr =new FastReader();
PrintWriter op =new PrintWriter(System.out);
long n =fr.nextLong() ,k =fr.nextLong() ,d =(long)Math.sqrt(9l+8l*(n+k)) ;
d -= 3l ; d /=2l ;op.println(n-d) ;
op.flush(); op.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br =new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st==null || (!st.hasMoreElements()))
{
try
{
st =new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str ="";
try
{
str =br.readLine();
}
catch(IOException e)
{
e.printStackTrace();
}
return str;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next()) ;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 630 | 949 |
831 |
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
int n, k;
boolean[] prime;
int[] primes;
void sieve() {
prime = new boolean[n + 1];
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
int cnt = 0;
for (int i = 2; i <= n; ++i)
if (prime[i]) {
++cnt;
for (int j = i + i; j <= n; j += i)
prime[j] = false;
}
primes = new int[cnt];
cnt = 0;
for (int i = 0; i <= n; ++i)
if (prime[i])
primes[cnt++] = i;
}
void solve() throws IOException {
n = ni();
k = ni();
sieve();
int cnt = 0;
for (int i = 2; i <= n; ++i) {
if (!prime[i])
continue;
boolean ok = false;
for (int j = 0; j < primes.length - 1; ++j)
if (primes[j] + primes[j + 1] + 1 == i) {
ok = true;
break;
}
if (ok)
++cnt;
}
if (cnt >= k)
out.println("YES");
else
out.println("NO");
}
public Solution() throws IOException {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
String ns() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int ni() throws IOException {
return Integer.valueOf(ns());
}
long nl() throws IOException {
return Long.valueOf(ns());
}
double nd() throws IOException {
return Double.valueOf(ns());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
int n, k;
boolean[] prime;
int[] primes;
void sieve() {
prime = new boolean[n + 1];
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
int cnt = 0;
for (int i = 2; i <= n; ++i)
if (prime[i]) {
++cnt;
for (int j = i + i; j <= n; j += i)
prime[j] = false;
}
primes = new int[cnt];
cnt = 0;
for (int i = 0; i <= n; ++i)
if (prime[i])
primes[cnt++] = i;
}
void solve() throws IOException {
n = ni();
k = ni();
sieve();
int cnt = 0;
for (int i = 2; i <= n; ++i) {
if (!prime[i])
continue;
boolean ok = false;
for (int j = 0; j < primes.length - 1; ++j)
if (primes[j] + primes[j + 1] + 1 == i) {
ok = true;
break;
}
if (ok)
++cnt;
}
if (cnt >= k)
out.println("YES");
else
out.println("NO");
}
public Solution() throws IOException {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
String ns() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int ni() throws IOException {
return Integer.valueOf(ns());
}
long nl() throws IOException {
return Long.valueOf(ns());
}
double nd() throws IOException {
return Double.valueOf(ns());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
int n, k;
boolean[] prime;
int[] primes;
void sieve() {
prime = new boolean[n + 1];
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
int cnt = 0;
for (int i = 2; i <= n; ++i)
if (prime[i]) {
++cnt;
for (int j = i + i; j <= n; j += i)
prime[j] = false;
}
primes = new int[cnt];
cnt = 0;
for (int i = 0; i <= n; ++i)
if (prime[i])
primes[cnt++] = i;
}
void solve() throws IOException {
n = ni();
k = ni();
sieve();
int cnt = 0;
for (int i = 2; i <= n; ++i) {
if (!prime[i])
continue;
boolean ok = false;
for (int j = 0; j < primes.length - 1; ++j)
if (primes[j] + primes[j + 1] + 1 == i) {
ok = true;
break;
}
if (ok)
++cnt;
}
if (cnt >= k)
out.println("YES");
else
out.println("NO");
}
public Solution() throws IOException {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
String ns() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int ni() throws IOException {
return Integer.valueOf(ns());
}
long nl() throws IOException {
return Long.valueOf(ns());
}
double nd() throws IOException {
return Double.valueOf(ns());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 809 | 830 |
96 |
import java.util.Scanner;
public class TaxiDriversAndLyft2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long n = scanner.nextLong();
long m = scanner.nextLong();
long[] people = new long[(int) (n+m)];
int[] taxiDrivers = new int[(int) (n+m)];
for(int i = 0;i< (n+m); i++) {
people[i] = scanner.nextLong();
}
for(int i = 0;i< (n+m); i++) {
taxiDrivers[i] = scanner.nextInt();
}
int lastTaxiDriverIndex = -1;
long[] riderCountArray = new long[(int) (m)];
long[] a1 = new long[(int)n];
long[] b1 = new long[(int)m];
int j=0, k=0;
for(int i = 0;i< (n+m); i++) {
if(taxiDrivers[i] == 0) {
a1[j] = people[i];
j++;
}
else {
b1[k] = people[i];
k++;
}
}
int l = 0, q=0;
for(int i=0;i<j;i++) {
while ((l<m-1 && m>1) && Math.abs(a1[i] - b1[l]) > Math.abs(a1[i] - b1[l+1])) {
l++;
}
riderCountArray[l]++;
}
for(int i = 0;i< (m); i++) {
System.out.print(riderCountArray[i]+" ");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class TaxiDriversAndLyft2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long n = scanner.nextLong();
long m = scanner.nextLong();
long[] people = new long[(int) (n+m)];
int[] taxiDrivers = new int[(int) (n+m)];
for(int i = 0;i< (n+m); i++) {
people[i] = scanner.nextLong();
}
for(int i = 0;i< (n+m); i++) {
taxiDrivers[i] = scanner.nextInt();
}
int lastTaxiDriverIndex = -1;
long[] riderCountArray = new long[(int) (m)];
long[] a1 = new long[(int)n];
long[] b1 = new long[(int)m];
int j=0, k=0;
for(int i = 0;i< (n+m); i++) {
if(taxiDrivers[i] == 0) {
a1[j] = people[i];
j++;
}
else {
b1[k] = people[i];
k++;
}
}
int l = 0, q=0;
for(int i=0;i<j;i++) {
while ((l<m-1 && m>1) && Math.abs(a1[i] - b1[l]) > Math.abs(a1[i] - b1[l+1])) {
l++;
}
riderCountArray[l]++;
}
for(int i = 0;i< (m); i++) {
System.out.print(riderCountArray[i]+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class TaxiDriversAndLyft2 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
long n = scanner.nextLong();
long m = scanner.nextLong();
long[] people = new long[(int) (n+m)];
int[] taxiDrivers = new int[(int) (n+m)];
for(int i = 0;i< (n+m); i++) {
people[i] = scanner.nextLong();
}
for(int i = 0;i< (n+m); i++) {
taxiDrivers[i] = scanner.nextInt();
}
int lastTaxiDriverIndex = -1;
long[] riderCountArray = new long[(int) (m)];
long[] a1 = new long[(int)n];
long[] b1 = new long[(int)m];
int j=0, k=0;
for(int i = 0;i< (n+m); i++) {
if(taxiDrivers[i] == 0) {
a1[j] = people[i];
j++;
}
else {
b1[k] = people[i];
k++;
}
}
int l = 0, q=0;
for(int i=0;i<j;i++) {
while ((l<m-1 && m>1) && Math.abs(a1[i] - b1[l]) > Math.abs(a1[i] - b1[l+1])) {
l++;
}
riderCountArray[l]++;
}
for(int i = 0;i< (m); i++) {
System.out.print(riderCountArray[i]+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 715 | 96 |
3,649 |
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Problem implements Runnable {
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
/* if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {*/
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
/* } else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
/* }
}*/
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new Problem().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
solve();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int[][] dist;
int n, m;
P v;
ArrayDeque<P> q = new ArrayDeque<>();
private void solve() throws IOException {
n = readInt();
m = readInt();
int k = readInt();
dist = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
dist[i][j] = -1;
for (int i = 0; i < k; i++) {
int x = readInt() - 1, y = readInt() - 1;
dist[x][y] = 0;
q.add(new P(x, y));
}
bfs();
out.println(v.x + 1 + " " + (v.y + 1));
}
public void bfs() {
int[] dx = {0, 1, 0, -1};
int[] dy = {1, 0, -1, 0};
while (!q.isEmpty()) {
v = q.poll();
for (int i = 0; i < 4; i++) {
int nx = v.x + dx[i];
int ny = v.y + dy[i];
if (inside(nx, ny) && dist[nx][ny] == -1) {
q.add(new P(nx, ny));
dist[nx][ny] = dist[v.x][v.y] + 1;
}
}
}
}
public boolean inside(int x, int y) {
if (x < n && y < m && x >= 0 && y >= 0) {
return true;
}
return false;
}
}
class P {
int x, y;
public P(int x, int y) {
this.x = x;
this.y = y;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Problem implements Runnable {
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
/* if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {*/
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
/* } else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
/* }
}*/
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new Problem().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
solve();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int[][] dist;
int n, m;
P v;
ArrayDeque<P> q = new ArrayDeque<>();
private void solve() throws IOException {
n = readInt();
m = readInt();
int k = readInt();
dist = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
dist[i][j] = -1;
for (int i = 0; i < k; i++) {
int x = readInt() - 1, y = readInt() - 1;
dist[x][y] = 0;
q.add(new P(x, y));
}
bfs();
out.println(v.x + 1 + " " + (v.y + 1));
}
public void bfs() {
int[] dx = {0, 1, 0, -1};
int[] dy = {1, 0, -1, 0};
while (!q.isEmpty()) {
v = q.poll();
for (int i = 0; i < 4; i++) {
int nx = v.x + dx[i];
int ny = v.y + dy[i];
if (inside(nx, ny) && dist[nx][ny] == -1) {
q.add(new P(nx, ny));
dist[nx][ny] = dist[v.x][v.y] + 1;
}
}
}
}
public boolean inside(int x, int y) {
if (x < n && y < m && x >= 0 && y >= 0) {
return true;
}
return false;
}
}
class P {
int x, y;
public P(int x, int y) {
this.x = x;
this.y = y;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Problem implements Runnable {
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
/* if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {*/
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
/* } else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
/* }
}*/
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new Problem().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
solve();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int[][] dist;
int n, m;
P v;
ArrayDeque<P> q = new ArrayDeque<>();
private void solve() throws IOException {
n = readInt();
m = readInt();
int k = readInt();
dist = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
dist[i][j] = -1;
for (int i = 0; i < k; i++) {
int x = readInt() - 1, y = readInt() - 1;
dist[x][y] = 0;
q.add(new P(x, y));
}
bfs();
out.println(v.x + 1 + " " + (v.y + 1));
}
public void bfs() {
int[] dx = {0, 1, 0, -1};
int[] dy = {1, 0, -1, 0};
while (!q.isEmpty()) {
v = q.poll();
for (int i = 0; i < 4; i++) {
int nx = v.x + dx[i];
int ny = v.y + dy[i];
if (inside(nx, ny) && dist[nx][ny] == -1) {
q.add(new P(nx, ny));
dist[nx][ny] = dist[v.x][v.y] + 1;
}
}
}
}
public boolean inside(int x, int y) {
if (x < n && y < m && x >= 0 && y >= 0) {
return true;
}
return false;
}
}
class P {
int x, y;
public P(int x, int y) {
this.x = x;
this.y = y;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,197 | 3,641 |
1,158 |
import java.util.*;
import java.io.*;
import java.math.*;
public class Main{
public static boolean check(BigInteger a, BigInteger b){
long n = 0;
String aStr = a.toString();
for (int i=0; i < aStr.length() ;i++ ) {
n += Long.valueOf(aStr.charAt(i)-'0');
}
return a.subtract(BigInteger.valueOf(n)).compareTo(b) >= 0;
}
public static void main(String[] args) {
try(BufferedReader in = new BufferedReader(new InputStreamReader(System.in))){
String[] str = in.readLine().split(" ");
BigInteger n = new BigInteger(str[0]);
BigInteger s = new BigInteger(str[1]);
BigInteger left = BigInteger.ONE;
BigInteger right = new BigInteger(n.toString()).add(BigInteger.TEN);
BigInteger TWO = BigInteger.ONE.add(BigInteger.ONE);
BigInteger t;
while(right.subtract(left).compareTo(BigInteger.ONE)>0){
t = left.add(right.subtract(left).divide(TWO));
if(check(t, s)){
right = t;
}else{
left = t;
}
}
BigInteger result = n.subtract(right).add(BigInteger.ONE);
if (result.compareTo(BigInteger.ZERO)<=0) {
System.out.println(0);
}else{
System.out.println(result);
}
}catch (IOException e) {
e.printStackTrace();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main{
public static boolean check(BigInteger a, BigInteger b){
long n = 0;
String aStr = a.toString();
for (int i=0; i < aStr.length() ;i++ ) {
n += Long.valueOf(aStr.charAt(i)-'0');
}
return a.subtract(BigInteger.valueOf(n)).compareTo(b) >= 0;
}
public static void main(String[] args) {
try(BufferedReader in = new BufferedReader(new InputStreamReader(System.in))){
String[] str = in.readLine().split(" ");
BigInteger n = new BigInteger(str[0]);
BigInteger s = new BigInteger(str[1]);
BigInteger left = BigInteger.ONE;
BigInteger right = new BigInteger(n.toString()).add(BigInteger.TEN);
BigInteger TWO = BigInteger.ONE.add(BigInteger.ONE);
BigInteger t;
while(right.subtract(left).compareTo(BigInteger.ONE)>0){
t = left.add(right.subtract(left).divide(TWO));
if(check(t, s)){
right = t;
}else{
left = t;
}
}
BigInteger result = n.subtract(right).add(BigInteger.ONE);
if (result.compareTo(BigInteger.ZERO)<=0) {
System.out.println(0);
}else{
System.out.println(result);
}
}catch (IOException e) {
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main{
public static boolean check(BigInteger a, BigInteger b){
long n = 0;
String aStr = a.toString();
for (int i=0; i < aStr.length() ;i++ ) {
n += Long.valueOf(aStr.charAt(i)-'0');
}
return a.subtract(BigInteger.valueOf(n)).compareTo(b) >= 0;
}
public static void main(String[] args) {
try(BufferedReader in = new BufferedReader(new InputStreamReader(System.in))){
String[] str = in.readLine().split(" ");
BigInteger n = new BigInteger(str[0]);
BigInteger s = new BigInteger(str[1]);
BigInteger left = BigInteger.ONE;
BigInteger right = new BigInteger(n.toString()).add(BigInteger.TEN);
BigInteger TWO = BigInteger.ONE.add(BigInteger.ONE);
BigInteger t;
while(right.subtract(left).compareTo(BigInteger.ONE)>0){
t = left.add(right.subtract(left).divide(TWO));
if(check(t, s)){
right = t;
}else{
left = t;
}
}
BigInteger result = n.subtract(right).add(BigInteger.ONE);
if (result.compareTo(BigInteger.ZERO)<=0) {
System.out.println(0);
}else{
System.out.println(result);
}
}catch (IOException e) {
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 624 | 1,157 |
2,047 |
import java.util.*;
import java.io.*;
public class A {
public static void main(String[] args) {
Scanner s = new Scanner(new InputStreamReader(System.in));
int n = s.nextInt();
if (n == 1) {
System.out.println("NO");
System.exit(0);
}
int[] nums = new int[n];
for (int i = 0; i < n; i++) {
nums[i] = s.nextInt();
}
Arrays.sort(nums);
int x = 1;
while (x < n && nums[x] == nums[x - 1])
x++;
if (x == n) {
System.out.println("NO");
System.exit(0);
} else {
System.out.println(nums[x]);
System.exit(0);
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A {
public static void main(String[] args) {
Scanner s = new Scanner(new InputStreamReader(System.in));
int n = s.nextInt();
if (n == 1) {
System.out.println("NO");
System.exit(0);
}
int[] nums = new int[n];
for (int i = 0; i < n; i++) {
nums[i] = s.nextInt();
}
Arrays.sort(nums);
int x = 1;
while (x < n && nums[x] == nums[x - 1])
x++;
if (x == n) {
System.out.println("NO");
System.exit(0);
} else {
System.out.println(nums[x]);
System.exit(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A {
public static void main(String[] args) {
Scanner s = new Scanner(new InputStreamReader(System.in));
int n = s.nextInt();
if (n == 1) {
System.out.println("NO");
System.exit(0);
}
int[] nums = new int[n];
for (int i = 0; i < n; i++) {
nums[i] = s.nextInt();
}
Arrays.sort(nums);
int x = 1;
while (x < n && nums[x] == nums[x - 1])
x++;
if (x == n) {
System.out.println("NO");
System.exit(0);
} else {
System.out.println(nums[x]);
System.exit(0);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 506 | 2,043 |
3,330 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class GeorgeAndInterestingGraph {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
int N = sc.nextInt();
int M = sc.nextInt();
int[] edgeFrom = new int[M];
int[] edgeTo = new int[M];
for (int i = 0; i < M; i++) {
edgeFrom[i] = sc.nextInt();
edgeTo[i] = sc.nextInt();
}
int best = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
boolean[][] mat = makeAdjMat(N, edgeFrom, edgeTo);
best = Math.min(best, count(mat, M, i));
}
System.out.println(best);
}
public static int count(boolean[][] mat, int M, int center) {
int N = mat.length;
int centerCount = (mat[center][center]) ? 1 : 0;
for (int i = 0; i < N; i++) {
if (i != center) {
if (mat[i][center]) {
centerCount++;
}
if (mat[center][i]) {
centerCount++;
}
}
mat[i][center] = false;
mat[center][i] = false;
}
int other = M - centerCount;
int matches = bipartiteMatching(mat);
return (2 * N - 1 - centerCount + other - matches + N - 1 - matches);
}
public static boolean[][] makeAdjMat(int N, int[] edgeFrom, int[] edgeTo) {
boolean[][] mat = new boolean[N][N];
for (int i = 0; i < edgeFrom.length; i++) {
int from = edgeFrom[i] - 1;
int to = edgeTo[i] - 1;
mat[from][to] = true;
}
return mat;
}
/**
* Returns true if a matching for vertex 'u' is possible.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static boolean bipartiteMatchingHelper(boolean[][] bpGraph, int u, boolean[] seen, int[] matchR) {
int N = bpGraph[0].length;
for (int v = 0; v < N; v++) {
if (bpGraph[u][v] && !seen[v]) {
seen[v] = true;
if (matchR[v] < 0 || bipartiteMatchingHelper(bpGraph, matchR[v], seen, matchR)) {
matchR[v] = u;
return true;
}
}
}
return false;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchIJ, int[] matchJI) {
int ans = bipartiteMatching(bpGraph, matchJI);
for (int i = 0; i < matchJI.length; i++) {
matchIJ[i] = -1;
}
for (int j = 0; j < matchJI.length; j++) {
int i = matchJI[j];
if (i >= 0) {
matchIJ[i] = j;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchJI) {
int M = bpGraph.length;
int N = bpGraph[0].length;
for (int i = 0; i < N; i++) {
matchJI[i] = -1;
}
int ans = 0;
for (int u = 0; u < M; u++) {
boolean[] seen = new boolean[N];
if (bipartiteMatchingHelper(bpGraph, u, seen, matchJI)) {
ans++;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Overload of the bipartiteMatching function without output parameters.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph) {
int N = bpGraph[0].length;
int[] matchJI = new int[N];
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
*/
public static int bipartiteMatching(int[][] intGraph) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchIJ, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchIJ, matchJI);
}
/**
* Converts an integer adjacency matrix of 1's and 0's to a boolean adjacency matrix.
* Useful with bipartiteMatching, which takes adjancency matrix of boolean[][] as input (instead of int[][]).
*/
public static boolean[][] intToBooleanAdjMat(int[][] mat) {
int M = mat.length;
int N = mat[0].length;
boolean[][] bMat = new boolean[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
bMat[i][j] = (mat[i][j] != 0);
}
}
return bMat;
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try { str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class GeorgeAndInterestingGraph {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
int N = sc.nextInt();
int M = sc.nextInt();
int[] edgeFrom = new int[M];
int[] edgeTo = new int[M];
for (int i = 0; i < M; i++) {
edgeFrom[i] = sc.nextInt();
edgeTo[i] = sc.nextInt();
}
int best = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
boolean[][] mat = makeAdjMat(N, edgeFrom, edgeTo);
best = Math.min(best, count(mat, M, i));
}
System.out.println(best);
}
public static int count(boolean[][] mat, int M, int center) {
int N = mat.length;
int centerCount = (mat[center][center]) ? 1 : 0;
for (int i = 0; i < N; i++) {
if (i != center) {
if (mat[i][center]) {
centerCount++;
}
if (mat[center][i]) {
centerCount++;
}
}
mat[i][center] = false;
mat[center][i] = false;
}
int other = M - centerCount;
int matches = bipartiteMatching(mat);
return (2 * N - 1 - centerCount + other - matches + N - 1 - matches);
}
public static boolean[][] makeAdjMat(int N, int[] edgeFrom, int[] edgeTo) {
boolean[][] mat = new boolean[N][N];
for (int i = 0; i < edgeFrom.length; i++) {
int from = edgeFrom[i] - 1;
int to = edgeTo[i] - 1;
mat[from][to] = true;
}
return mat;
}
/**
* Returns true if a matching for vertex 'u' is possible.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static boolean bipartiteMatchingHelper(boolean[][] bpGraph, int u, boolean[] seen, int[] matchR) {
int N = bpGraph[0].length;
for (int v = 0; v < N; v++) {
if (bpGraph[u][v] && !seen[v]) {
seen[v] = true;
if (matchR[v] < 0 || bipartiteMatchingHelper(bpGraph, matchR[v], seen, matchR)) {
matchR[v] = u;
return true;
}
}
}
return false;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchIJ, int[] matchJI) {
int ans = bipartiteMatching(bpGraph, matchJI);
for (int i = 0; i < matchJI.length; i++) {
matchIJ[i] = -1;
}
for (int j = 0; j < matchJI.length; j++) {
int i = matchJI[j];
if (i >= 0) {
matchIJ[i] = j;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchJI) {
int M = bpGraph.length;
int N = bpGraph[0].length;
for (int i = 0; i < N; i++) {
matchJI[i] = -1;
}
int ans = 0;
for (int u = 0; u < M; u++) {
boolean[] seen = new boolean[N];
if (bipartiteMatchingHelper(bpGraph, u, seen, matchJI)) {
ans++;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Overload of the bipartiteMatching function without output parameters.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph) {
int N = bpGraph[0].length;
int[] matchJI = new int[N];
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
*/
public static int bipartiteMatching(int[][] intGraph) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchIJ, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchIJ, matchJI);
}
/**
* Converts an integer adjacency matrix of 1's and 0's to a boolean adjacency matrix.
* Useful with bipartiteMatching, which takes adjancency matrix of boolean[][] as input (instead of int[][]).
*/
public static boolean[][] intToBooleanAdjMat(int[][] mat) {
int M = mat.length;
int N = mat[0].length;
boolean[][] bMat = new boolean[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
bMat[i][j] = (mat[i][j] != 0);
}
}
return bMat;
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try { str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.StringTokenizer;
public class GeorgeAndInterestingGraph {
public static void main(String[] args) {
MyScanner sc = new MyScanner();
int N = sc.nextInt();
int M = sc.nextInt();
int[] edgeFrom = new int[M];
int[] edgeTo = new int[M];
for (int i = 0; i < M; i++) {
edgeFrom[i] = sc.nextInt();
edgeTo[i] = sc.nextInt();
}
int best = Integer.MAX_VALUE;
for (int i = 0; i < N; i++) {
boolean[][] mat = makeAdjMat(N, edgeFrom, edgeTo);
best = Math.min(best, count(mat, M, i));
}
System.out.println(best);
}
public static int count(boolean[][] mat, int M, int center) {
int N = mat.length;
int centerCount = (mat[center][center]) ? 1 : 0;
for (int i = 0; i < N; i++) {
if (i != center) {
if (mat[i][center]) {
centerCount++;
}
if (mat[center][i]) {
centerCount++;
}
}
mat[i][center] = false;
mat[center][i] = false;
}
int other = M - centerCount;
int matches = bipartiteMatching(mat);
return (2 * N - 1 - centerCount + other - matches + N - 1 - matches);
}
public static boolean[][] makeAdjMat(int N, int[] edgeFrom, int[] edgeTo) {
boolean[][] mat = new boolean[N][N];
for (int i = 0; i < edgeFrom.length; i++) {
int from = edgeFrom[i] - 1;
int to = edgeTo[i] - 1;
mat[from][to] = true;
}
return mat;
}
/**
* Returns true if a matching for vertex 'u' is possible.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static boolean bipartiteMatchingHelper(boolean[][] bpGraph, int u, boolean[] seen, int[] matchR) {
int N = bpGraph[0].length;
for (int v = 0; v < N; v++) {
if (bpGraph[u][v] && !seen[v]) {
seen[v] = true;
if (matchR[v] < 0 || bipartiteMatchingHelper(bpGraph, matchR[v], seen, matchR)) {
matchR[v] = u;
return true;
}
}
}
return false;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchIJ, int[] matchJI) {
int ans = bipartiteMatching(bpGraph, matchJI);
for (int i = 0; i < matchJI.length; i++) {
matchIJ[i] = -1;
}
for (int j = 0; j < matchJI.length; j++) {
int i = matchJI[j];
if (i >= 0) {
matchIJ[i] = j;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Note: bpGraph[i][j] = true if there is an edge from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph, int[] matchJI) {
int M = bpGraph.length;
int N = bpGraph[0].length;
for (int i = 0; i < N; i++) {
matchJI[i] = -1;
}
int ans = 0;
for (int u = 0; u < M; u++) {
boolean[] seen = new boolean[N];
if (bipartiteMatchingHelper(bpGraph, u, seen, matchJI)) {
ans++;
}
}
return ans;
}
/**
* Returns the maximum bipartite matching from an an adjacency matrix.
* Overload of the bipartiteMatching function without output parameters.
* See here for more info: http://www.geeksforgeeks.org/maximum-bipartite-matching/
*/
public static int bipartiteMatching(boolean[][] bpGraph) {
int N = bpGraph[0].length;
int[] matchJI = new int[N];
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
*/
public static int bipartiteMatching(int[][] intGraph) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchJI);
}
/**
* Overload of the bipartiteMatching function taking an adjacency matrix of int[][] instead of boolean[][].
* Note: matchIJ (array of length M) is an output variable containing the matchings, such that matchIJ[i] = j means that there is a match from i to j.
* Note: matchJI (array of length N) is an output variable containing the matchings, such that matchJI[j] = i means that there is a match from i to j.
*/
public static int bipartiteMatching(int[][] intGraph, int[] matchIJ, int[] matchJI) {
boolean[][] bpGraph = intToBooleanAdjMat(intGraph);
return bipartiteMatching(bpGraph, matchIJ, matchJI);
}
/**
* Converts an integer adjacency matrix of 1's and 0's to a boolean adjacency matrix.
* Useful with bipartiteMatching, which takes adjancency matrix of boolean[][] as input (instead of int[][]).
*/
public static boolean[][] intToBooleanAdjMat(int[][] mat) {
int M = mat.length;
int N = mat[0].length;
boolean[][] bMat = new boolean[M][N];
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
bMat[i][j] = (mat[i][j] != 0);
}
}
return bMat;
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
String nextLine() {
String str = "";
try { str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,289 | 3,324 |
2,819 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author John Martin
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ASubtractions solver = new ASubtractions();
solver.solve(1, in, out);
out.close();
}
static class ASubtractions {
public void solve(int testNumber, InputReader c, OutputWriter w) {
int tc = c.readInt();
while (tc-- > 0) {
int a = c.readInt(), b = c.readInt();
int op = 0;
while (a != b) {
if (a > b) {
int tm = b;
b = a;
a = tm;
}
int left = b - a;
int rem = (left - 1) / a + 1;
b -= rem * a;
op += rem;
}
op++;
w.printLine(op);
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author John Martin
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ASubtractions solver = new ASubtractions();
solver.solve(1, in, out);
out.close();
}
static class ASubtractions {
public void solve(int testNumber, InputReader c, OutputWriter w) {
int tc = c.readInt();
while (tc-- > 0) {
int a = c.readInt(), b = c.readInt();
int op = 0;
while (a != b) {
if (a > b) {
int tm = b;
b = a;
a = tm;
}
int left = b - a;
int rem = (left - 1) / a + 1;
b -= rem * a;
op += rem;
}
op++;
w.printLine(op);
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author John Martin
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ASubtractions solver = new ASubtractions();
solver.solve(1, in, out);
out.close();
}
static class ASubtractions {
public void solve(int testNumber, InputReader c, OutputWriter w) {
int tc = c.readInt();
while (tc-- > 0) {
int a = c.readInt(), b = c.readInt();
int op = 0;
while (a != b) {
if (a > b) {
int tm = b;
b = a;
a = tm;
}
int left = b - a;
int rem = (left - 1) / a + 1;
b -= rem * a;
op += rem;
}
op++;
w.printLine(op);
}
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,134 | 2,813 |
407 |
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class B implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new B(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException {
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException {
int[] array = new int[size];
for (int index = 0; index < size; ++index){
try {
array[index] = readInt();
} catch (Exception e) {
System.err.println(index);
return null;
}
}
return array;
}
int[] readSortedIntArray(int size) throws IOException {
Integer[] array = new Integer[size];
for (int index = 0; index < size; ++index) {
array[index] = readInt();
}
Arrays.sort(array);
int[] sortedArray = new int[size];
for (int index = 0; index < size; ++index) {
sortedArray[index] = array[index];
}
return sortedArray;
}
int[] readIntArrayWithDecrease(int size) throws IOException {
int[] array = readIntArray(size);
for (int i = 0; i < size; ++i) {
array[i]--;
}
return array;
}
///////////////////////////////////////////////////////////////////
int[][] readIntMatrix(int rowsCount, int columnsCount) throws IOException {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArray(columnsCount);
}
return matrix;
}
int[][] readIntMatrixWithDecrease(int rowsCount, int columnsCount) throws IOException {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArrayWithDecrease(columnsCount);
}
return matrix;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
////////////////////////////////////////////////////////////////////
BigInteger readBigInteger() throws IOException {
return new BigInteger(readString());
}
BigDecimal readBigDecimal() throws IOException {
return new BigDecimal(readString());
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
int x = readInt();
int y = readInt();
return new Point(x, y);
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
List<Integer>[] readGraph(int vertexNumber, int edgeNumber)
throws IOException{
@SuppressWarnings("unchecked")
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
static class IntIndexPair {
static Comparator<IntIndexPair> increaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return value1 - value2;
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
static Comparator<IntIndexPair> decreaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return -(value1 - value2);
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
int value, index;
public IntIndexPair(int value, int index) {
super();
this.value = value;
this.index = index;
}
public int getRealIndex() {
return index + 1;
}
}
IntIndexPair[] readIntIndexArray(int size) throws IOException {
IntIndexPair[] array = new IntIndexPair[size];
for (int index = 0; index < size; ++index) {
array[index] = new IntIndexPair(readInt(), index);
}
return array;
}
/////////////////////////////////////////////////////////////////////
static class OutputWriter extends PrintWriter {
final int DEFAULT_PRECISION = 12;
protected int precision;
protected String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
precision = max(0, precision);
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
static final int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
static final int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
static final boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
static final boolean checkBit(int mask, int bit){
return (mask & (1 << bit)) != 0;
}
/////////////////////////////////////////////////////////////////////
static final long getSum(int[] array) {
long sum = 0;
for (int value: array) {
sum += value;
}
return sum;
}
static final Point getMinMax(int[] array) {
int min = array[0];
int max = array[0];
for (int index = 0, size = array.length; index < size; ++index, ++index) {
int value = array[index];
if (index == size - 1) {
min = min(min, value);
max = max(max, value);
} else {
int otherValue = array[index + 1];
if (value <= otherValue) {
min = min(min, value);
max = max(max, otherValue);
} else {
min = min(min, otherValue);
max = max(max, value);
}
}
}
return new Point(min, max);
}
/////////////////////////////////////////////////////////////////////
void solve() throws IOException {
int n = readInt();
int a = readInt();
int b = readInt();
Map<Integer, Integer> numbers = new HashMap<>();
int[] p = readIntArray(n);
for (int index = 0; index < n; ++index) {
numbers.put(p[index], index);
}
Set<Integer> used = new HashSet<Integer>();
Deque<Integer> q = new ArrayDeque<Integer>();
int[] answers = new int[n];
for (int i = 0; i < n; ++i) {
if (used.contains(p[i])) continue;
int leftSize = 0;
for (int number = p[i], cur = a, next = b;
numbers.containsKey(number) && !used.contains(number);
number = cur - number, cur = (a ^ b ^ cur), next = (a ^ b ^ next)) {
q.addFirst(number);
used.add(number);
++leftSize;
}
for (int number = b - p[i], cur = a, next = b;
numbers.containsKey(number) && !used.contains(number);
number = cur - number, cur = (a ^ b ^ cur), next = (a ^ b ^ next)) {
q.addLast(number);
used.add(number);
}
int curColor = (leftSize & 1);
if ((q.size() & 1) == 1) {
int first = q.peekFirst();
// 0 - a, 1 - b
if (curColor == 0 && (first << 1) == b
||
curColor == 1 && (first << 1) == a) {
q.poll();
curColor ^= 1;
int firstIndex = numbers.get(first);
answers[firstIndex] = curColor;
} else {
int last = q.peekLast();
// 0 - b, 1 - a
if (curColor == 0 && (last << 1) == a
||
curColor == 1 && (first << 1) == b) {
q.poll();
int firstIndex = numbers.get(first);
answers[firstIndex] = curColor;
} else {
out.println("NO");
return;
}
}
}
while (q.size() > 0) {
int first = q.poll();
int second = q.poll();
int firstIndex = numbers.get(first);
int secondIndex = numbers.get(second);
answers[firstIndex] = curColor;
answers[secondIndex] = curColor;
}
}
out.println("YES");
for (int answer : answers) {
out.print(answer + " ");
}
out.println();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class B implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new B(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException {
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException {
int[] array = new int[size];
for (int index = 0; index < size; ++index){
try {
array[index] = readInt();
} catch (Exception e) {
System.err.println(index);
return null;
}
}
return array;
}
int[] readSortedIntArray(int size) throws IOException {
Integer[] array = new Integer[size];
for (int index = 0; index < size; ++index) {
array[index] = readInt();
}
Arrays.sort(array);
int[] sortedArray = new int[size];
for (int index = 0; index < size; ++index) {
sortedArray[index] = array[index];
}
return sortedArray;
}
int[] readIntArrayWithDecrease(int size) throws IOException {
int[] array = readIntArray(size);
for (int i = 0; i < size; ++i) {
array[i]--;
}
return array;
}
///////////////////////////////////////////////////////////////////
int[][] readIntMatrix(int rowsCount, int columnsCount) throws IOException {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArray(columnsCount);
}
return matrix;
}
int[][] readIntMatrixWithDecrease(int rowsCount, int columnsCount) throws IOException {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArrayWithDecrease(columnsCount);
}
return matrix;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
////////////////////////////////////////////////////////////////////
BigInteger readBigInteger() throws IOException {
return new BigInteger(readString());
}
BigDecimal readBigDecimal() throws IOException {
return new BigDecimal(readString());
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
int x = readInt();
int y = readInt();
return new Point(x, y);
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
List<Integer>[] readGraph(int vertexNumber, int edgeNumber)
throws IOException{
@SuppressWarnings("unchecked")
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
static class IntIndexPair {
static Comparator<IntIndexPair> increaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return value1 - value2;
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
static Comparator<IntIndexPair> decreaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return -(value1 - value2);
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
int value, index;
public IntIndexPair(int value, int index) {
super();
this.value = value;
this.index = index;
}
public int getRealIndex() {
return index + 1;
}
}
IntIndexPair[] readIntIndexArray(int size) throws IOException {
IntIndexPair[] array = new IntIndexPair[size];
for (int index = 0; index < size; ++index) {
array[index] = new IntIndexPair(readInt(), index);
}
return array;
}
/////////////////////////////////////////////////////////////////////
static class OutputWriter extends PrintWriter {
final int DEFAULT_PRECISION = 12;
protected int precision;
protected String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
precision = max(0, precision);
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
static final int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
static final int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
static final boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
static final boolean checkBit(int mask, int bit){
return (mask & (1 << bit)) != 0;
}
/////////////////////////////////////////////////////////////////////
static final long getSum(int[] array) {
long sum = 0;
for (int value: array) {
sum += value;
}
return sum;
}
static final Point getMinMax(int[] array) {
int min = array[0];
int max = array[0];
for (int index = 0, size = array.length; index < size; ++index, ++index) {
int value = array[index];
if (index == size - 1) {
min = min(min, value);
max = max(max, value);
} else {
int otherValue = array[index + 1];
if (value <= otherValue) {
min = min(min, value);
max = max(max, otherValue);
} else {
min = min(min, otherValue);
max = max(max, value);
}
}
}
return new Point(min, max);
}
/////////////////////////////////////////////////////////////////////
void solve() throws IOException {
int n = readInt();
int a = readInt();
int b = readInt();
Map<Integer, Integer> numbers = new HashMap<>();
int[] p = readIntArray(n);
for (int index = 0; index < n; ++index) {
numbers.put(p[index], index);
}
Set<Integer> used = new HashSet<Integer>();
Deque<Integer> q = new ArrayDeque<Integer>();
int[] answers = new int[n];
for (int i = 0; i < n; ++i) {
if (used.contains(p[i])) continue;
int leftSize = 0;
for (int number = p[i], cur = a, next = b;
numbers.containsKey(number) && !used.contains(number);
number = cur - number, cur = (a ^ b ^ cur), next = (a ^ b ^ next)) {
q.addFirst(number);
used.add(number);
++leftSize;
}
for (int number = b - p[i], cur = a, next = b;
numbers.containsKey(number) && !used.contains(number);
number = cur - number, cur = (a ^ b ^ cur), next = (a ^ b ^ next)) {
q.addLast(number);
used.add(number);
}
int curColor = (leftSize & 1);
if ((q.size() & 1) == 1) {
int first = q.peekFirst();
// 0 - a, 1 - b
if (curColor == 0 && (first << 1) == b
||
curColor == 1 && (first << 1) == a) {
q.poll();
curColor ^= 1;
int firstIndex = numbers.get(first);
answers[firstIndex] = curColor;
} else {
int last = q.peekLast();
// 0 - b, 1 - a
if (curColor == 0 && (last << 1) == a
||
curColor == 1 && (first << 1) == b) {
q.poll();
int firstIndex = numbers.get(first);
answers[firstIndex] = curColor;
} else {
out.println("NO");
return;
}
}
}
while (q.size() > 0) {
int first = q.poll();
int second = q.poll();
int firstIndex = numbers.get(first);
int secondIndex = numbers.get(second);
answers[firstIndex] = curColor;
answers[secondIndex] = curColor;
}
}
out.println("YES");
for (int answer : answers) {
out.print(answer + " ");
}
out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class B implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new B(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException {
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException {
int[] array = new int[size];
for (int index = 0; index < size; ++index){
try {
array[index] = readInt();
} catch (Exception e) {
System.err.println(index);
return null;
}
}
return array;
}
int[] readSortedIntArray(int size) throws IOException {
Integer[] array = new Integer[size];
for (int index = 0; index < size; ++index) {
array[index] = readInt();
}
Arrays.sort(array);
int[] sortedArray = new int[size];
for (int index = 0; index < size; ++index) {
sortedArray[index] = array[index];
}
return sortedArray;
}
int[] readIntArrayWithDecrease(int size) throws IOException {
int[] array = readIntArray(size);
for (int i = 0; i < size; ++i) {
array[i]--;
}
return array;
}
///////////////////////////////////////////////////////////////////
int[][] readIntMatrix(int rowsCount, int columnsCount) throws IOException {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArray(columnsCount);
}
return matrix;
}
int[][] readIntMatrixWithDecrease(int rowsCount, int columnsCount) throws IOException {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArrayWithDecrease(columnsCount);
}
return matrix;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
////////////////////////////////////////////////////////////////////
BigInteger readBigInteger() throws IOException {
return new BigInteger(readString());
}
BigDecimal readBigDecimal() throws IOException {
return new BigDecimal(readString());
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
int x = readInt();
int y = readInt();
return new Point(x, y);
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
List<Integer>[] readGraph(int vertexNumber, int edgeNumber)
throws IOException{
@SuppressWarnings("unchecked")
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
static class IntIndexPair {
static Comparator<IntIndexPair> increaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return value1 - value2;
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
static Comparator<IntIndexPair> decreaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(IntIndexPair indexPair1, IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return -(value1 - value2);
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
int value, index;
public IntIndexPair(int value, int index) {
super();
this.value = value;
this.index = index;
}
public int getRealIndex() {
return index + 1;
}
}
IntIndexPair[] readIntIndexArray(int size) throws IOException {
IntIndexPair[] array = new IntIndexPair[size];
for (int index = 0; index < size; ++index) {
array[index] = new IntIndexPair(readInt(), index);
}
return array;
}
/////////////////////////////////////////////////////////////////////
static class OutputWriter extends PrintWriter {
final int DEFAULT_PRECISION = 12;
protected int precision;
protected String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
precision = max(0, precision);
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
static final int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
static final int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
static final boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
static final boolean checkBit(int mask, int bit){
return (mask & (1 << bit)) != 0;
}
/////////////////////////////////////////////////////////////////////
static final long getSum(int[] array) {
long sum = 0;
for (int value: array) {
sum += value;
}
return sum;
}
static final Point getMinMax(int[] array) {
int min = array[0];
int max = array[0];
for (int index = 0, size = array.length; index < size; ++index, ++index) {
int value = array[index];
if (index == size - 1) {
min = min(min, value);
max = max(max, value);
} else {
int otherValue = array[index + 1];
if (value <= otherValue) {
min = min(min, value);
max = max(max, otherValue);
} else {
min = min(min, otherValue);
max = max(max, value);
}
}
}
return new Point(min, max);
}
/////////////////////////////////////////////////////////////////////
void solve() throws IOException {
int n = readInt();
int a = readInt();
int b = readInt();
Map<Integer, Integer> numbers = new HashMap<>();
int[] p = readIntArray(n);
for (int index = 0; index < n; ++index) {
numbers.put(p[index], index);
}
Set<Integer> used = new HashSet<Integer>();
Deque<Integer> q = new ArrayDeque<Integer>();
int[] answers = new int[n];
for (int i = 0; i < n; ++i) {
if (used.contains(p[i])) continue;
int leftSize = 0;
for (int number = p[i], cur = a, next = b;
numbers.containsKey(number) && !used.contains(number);
number = cur - number, cur = (a ^ b ^ cur), next = (a ^ b ^ next)) {
q.addFirst(number);
used.add(number);
++leftSize;
}
for (int number = b - p[i], cur = a, next = b;
numbers.containsKey(number) && !used.contains(number);
number = cur - number, cur = (a ^ b ^ cur), next = (a ^ b ^ next)) {
q.addLast(number);
used.add(number);
}
int curColor = (leftSize & 1);
if ((q.size() & 1) == 1) {
int first = q.peekFirst();
// 0 - a, 1 - b
if (curColor == 0 && (first << 1) == b
||
curColor == 1 && (first << 1) == a) {
q.poll();
curColor ^= 1;
int firstIndex = numbers.get(first);
answers[firstIndex] = curColor;
} else {
int last = q.peekLast();
// 0 - b, 1 - a
if (curColor == 0 && (last << 1) == a
||
curColor == 1 && (first << 1) == b) {
q.poll();
int firstIndex = numbers.get(first);
answers[firstIndex] = curColor;
} else {
out.println("NO");
return;
}
}
}
while (q.size() > 0) {
int first = q.poll();
int second = q.poll();
int firstIndex = numbers.get(first);
int secondIndex = numbers.get(second);
answers[firstIndex] = curColor;
answers[secondIndex] = curColor;
}
}
out.println("YES");
for (int answer : answers) {
out.print(answer + " ");
}
out.println();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,354 | 406 |
3,410 |
import java.util.*;
import java.io.*;
import static java.util.Arrays.*;
import static java.lang.Math.*;
import java.math.*;
public class Main {
void run() throws IOException {
String s = token();
HashSet <String> h;
int n = s.length();
int r = 0;
loop: for (int i = 1; i <= n; i++) {
h = new HashSet();
for (int j = 0; j < n - i + 1; j++) {
String t = s.substring(j, j + i);
if (h.contains(t)) {
r = i;
continue loop;
} else {
h.add(t);
}
}
}
System.out.println(r);
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
//final String FILENAME = "dvd";
//in = new BufferedReader(new FileReader(new File(FILENAME + ".in")));
//out = new PrintWriter(new File(FILENAME + ".out"));
in = new BufferedReader(new InputStreamReader(System.in));
//in = new Scanner(System.in);
out = new PrintWriter(System.out);
st = new StringTokenizer(" ");
new Main().run();
out.close();
}
static BufferedReader in;
//static Scanner in;
static PrintWriter out;
static StringTokenizer st;
String token() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nint() throws IOException {
return Integer.parseInt(token());
}
long nlong() throws IOException {
return Long.parseLong(token());
}
double ndouble() throws IOException {
return Double.parseDouble(token());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import static java.util.Arrays.*;
import static java.lang.Math.*;
import java.math.*;
public class Main {
void run() throws IOException {
String s = token();
HashSet <String> h;
int n = s.length();
int r = 0;
loop: for (int i = 1; i <= n; i++) {
h = new HashSet();
for (int j = 0; j < n - i + 1; j++) {
String t = s.substring(j, j + i);
if (h.contains(t)) {
r = i;
continue loop;
} else {
h.add(t);
}
}
}
System.out.println(r);
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
//final String FILENAME = "dvd";
//in = new BufferedReader(new FileReader(new File(FILENAME + ".in")));
//out = new PrintWriter(new File(FILENAME + ".out"));
in = new BufferedReader(new InputStreamReader(System.in));
//in = new Scanner(System.in);
out = new PrintWriter(System.out);
st = new StringTokenizer(" ");
new Main().run();
out.close();
}
static BufferedReader in;
//static Scanner in;
static PrintWriter out;
static StringTokenizer st;
String token() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nint() throws IOException {
return Integer.parseInt(token());
}
long nlong() throws IOException {
return Long.parseLong(token());
}
double ndouble() throws IOException {
return Double.parseDouble(token());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import static java.util.Arrays.*;
import static java.lang.Math.*;
import java.math.*;
public class Main {
void run() throws IOException {
String s = token();
HashSet <String> h;
int n = s.length();
int r = 0;
loop: for (int i = 1; i <= n; i++) {
h = new HashSet();
for (int j = 0; j < n - i + 1; j++) {
String t = s.substring(j, j + i);
if (h.contains(t)) {
r = i;
continue loop;
} else {
h.add(t);
}
}
}
System.out.println(r);
}
public static void main(String[] args) throws IOException {
Locale.setDefault(Locale.US);
//final String FILENAME = "dvd";
//in = new BufferedReader(new FileReader(new File(FILENAME + ".in")));
//out = new PrintWriter(new File(FILENAME + ".out"));
in = new BufferedReader(new InputStreamReader(System.in));
//in = new Scanner(System.in);
out = new PrintWriter(System.out);
st = new StringTokenizer(" ");
new Main().run();
out.close();
}
static BufferedReader in;
//static Scanner in;
static PrintWriter out;
static StringTokenizer st;
String token() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int nint() throws IOException {
return Integer.parseInt(token());
}
long nlong() throws IOException {
return Long.parseLong(token());
}
double ndouble() throws IOException {
return Double.parseDouble(token());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 699 | 3,404 |
659 |
import java.util.Scanner;
public class Contest25_A {
static int[] parity;
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int numberEntries = scan.nextInt();
scan.nextLine();
String[] numbers = scan.nextLine().split(" ");
numbers = parity(numbers);
int evenOdd = evenOdd(parity);
for (int i = 0; i < parity.length; i++) {
if (parity[i] == evenOdd) {
System.out.println(i + 1);
System.exit(0);
}
}
}
public static int evenOdd(int[] parity) {
/*
* Determines what I should be looking for
* Return 0 if even
* Return 1 if odd
*/
int numberOnes = 0;
int numberZeroes = 0;
int one = parity[0];
int two = parity[1];
int three = parity[2];
if (one == 1)
numberOnes++;
else
numberZeroes++;
if (two == 1)
numberOnes++;
else
numberZeroes++;
if (three == 1)
numberOnes++;
else
numberZeroes++;
if (numberOnes >= 2)
return 0;
else
return 1;
}
public static String[] parity(String[] numbers) {
parity = new int[numbers.length];
for (int i = 0; i < numbers.length; i++) {
parity[i] = Integer.parseInt(numbers[i]) % 2;
numbers[i] = Integer.toString(parity[i]);
}
return numbers;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Contest25_A {
static int[] parity;
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int numberEntries = scan.nextInt();
scan.nextLine();
String[] numbers = scan.nextLine().split(" ");
numbers = parity(numbers);
int evenOdd = evenOdd(parity);
for (int i = 0; i < parity.length; i++) {
if (parity[i] == evenOdd) {
System.out.println(i + 1);
System.exit(0);
}
}
}
public static int evenOdd(int[] parity) {
/*
* Determines what I should be looking for
* Return 0 if even
* Return 1 if odd
*/
int numberOnes = 0;
int numberZeroes = 0;
int one = parity[0];
int two = parity[1];
int three = parity[2];
if (one == 1)
numberOnes++;
else
numberZeroes++;
if (two == 1)
numberOnes++;
else
numberZeroes++;
if (three == 1)
numberOnes++;
else
numberZeroes++;
if (numberOnes >= 2)
return 0;
else
return 1;
}
public static String[] parity(String[] numbers) {
parity = new int[numbers.length];
for (int i = 0; i < numbers.length; i++) {
parity[i] = Integer.parseInt(numbers[i]) % 2;
numbers[i] = Integer.toString(parity[i]);
}
return numbers;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Contest25_A {
static int[] parity;
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int numberEntries = scan.nextInt();
scan.nextLine();
String[] numbers = scan.nextLine().split(" ");
numbers = parity(numbers);
int evenOdd = evenOdd(parity);
for (int i = 0; i < parity.length; i++) {
if (parity[i] == evenOdd) {
System.out.println(i + 1);
System.exit(0);
}
}
}
public static int evenOdd(int[] parity) {
/*
* Determines what I should be looking for
* Return 0 if even
* Return 1 if odd
*/
int numberOnes = 0;
int numberZeroes = 0;
int one = parity[0];
int two = parity[1];
int three = parity[2];
if (one == 1)
numberOnes++;
else
numberZeroes++;
if (two == 1)
numberOnes++;
else
numberZeroes++;
if (three == 1)
numberOnes++;
else
numberZeroes++;
if (numberOnes >= 2)
return 0;
else
return 1;
}
public static String[] parity(String[] numbers) {
parity = new int[numbers.length];
for (int i = 0; i < numbers.length; i++) {
parity[i] = Integer.parseInt(numbers[i]) % 2;
numbers[i] = Integer.toString(parity[i]);
}
return numbers;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 715 | 658 |
1,060 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class DigitSeq {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader sc = new FastReader();
OutputStream outputstream = System.out;
PrintWriter out = new PrintWriter(outputstream);
long n = sc.nextLong();
long[] arr = new long[14];
for(int i = 1; i <= 13; i++){
arr[i] = (long)Math.pow(10, i)-(long)Math.pow(10, i-1);
}
long total = 0;
/*for(int i = 1; i <= 13; i++) out.print(arr[i] + " ");
out.println();*/
for(int i = 1; i <= 13; i++){
if(total+(long)i*arr[i]>=n){
long ans = n-total;
long rest = ans;
//System.out.println(rest);
if(ans%i!=0){
ans /= i;
ans++;
} else {
ans /= i;
}
ans += (long)Math.pow(10, i-1)-1;
String str = Long.toString(ans);
int ind = (rest%i==0) ? i-1 : (int)(rest%i)-1;
//System.out.println(ind);
out.println(str.charAt(ind));
break;
}
total = total+(long)i*arr[i];
//System.out.println(total);
}
out.close();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class DigitSeq {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader sc = new FastReader();
OutputStream outputstream = System.out;
PrintWriter out = new PrintWriter(outputstream);
long n = sc.nextLong();
long[] arr = new long[14];
for(int i = 1; i <= 13; i++){
arr[i] = (long)Math.pow(10, i)-(long)Math.pow(10, i-1);
}
long total = 0;
/*for(int i = 1; i <= 13; i++) out.print(arr[i] + " ");
out.println();*/
for(int i = 1; i <= 13; i++){
if(total+(long)i*arr[i]>=n){
long ans = n-total;
long rest = ans;
//System.out.println(rest);
if(ans%i!=0){
ans /= i;
ans++;
} else {
ans /= i;
}
ans += (long)Math.pow(10, i-1)-1;
String str = Long.toString(ans);
int ind = (rest%i==0) ? i-1 : (int)(rest%i)-1;
//System.out.println(ind);
out.println(str.charAt(ind));
break;
}
total = total+(long)i*arr[i];
//System.out.println(total);
}
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class DigitSeq {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader sc = new FastReader();
OutputStream outputstream = System.out;
PrintWriter out = new PrintWriter(outputstream);
long n = sc.nextLong();
long[] arr = new long[14];
for(int i = 1; i <= 13; i++){
arr[i] = (long)Math.pow(10, i)-(long)Math.pow(10, i-1);
}
long total = 0;
/*for(int i = 1; i <= 13; i++) out.print(arr[i] + " ");
out.println();*/
for(int i = 1; i <= 13; i++){
if(total+(long)i*arr[i]>=n){
long ans = n-total;
long rest = ans;
//System.out.println(rest);
if(ans%i!=0){
ans /= i;
ans++;
} else {
ans /= i;
}
ans += (long)Math.pow(10, i-1)-1;
String str = Long.toString(ans);
int ind = (rest%i==0) ? i-1 : (int)(rest%i)-1;
//System.out.println(ind);
out.println(str.charAt(ind));
break;
}
total = total+(long)i*arr[i];
//System.out.println(total);
}
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 937 | 1,059 |
2,914 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class TA {
public void solve(long n) {
long a = 0, b = 0;
if (n % 2 == 0) {
if (n % 4 == 0) {
a = n / 2;
b = n/ 2;
} else {
a = n / 2 - 1;
b = n / 2 + 1;
}
} else {
a = 4;
b = n - a;
while (b > 0 && (b % 3 != 0)) {
a += 2;
b = n - a;
}
}
System.out.println(a + " " + b);
}
public static void main(String[] args) {
FastScanner in = new FastScanner();
new TA().solve(in.nextLong());
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class TA {
public void solve(long n) {
long a = 0, b = 0;
if (n % 2 == 0) {
if (n % 4 == 0) {
a = n / 2;
b = n/ 2;
} else {
a = n / 2 - 1;
b = n / 2 + 1;
}
} else {
a = 4;
b = n - a;
while (b > 0 && (b % 3 != 0)) {
a += 2;
b = n - a;
}
}
System.out.println(a + " " + b);
}
public static void main(String[] args) {
FastScanner in = new FastScanner();
new TA().solve(in.nextLong());
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class TA {
public void solve(long n) {
long a = 0, b = 0;
if (n % 2 == 0) {
if (n % 4 == 0) {
a = n / 2;
b = n/ 2;
} else {
a = n / 2 - 1;
b = n / 2 + 1;
}
} else {
a = 4;
b = n - a;
while (b > 0 && (b % 3 != 0)) {
a += 2;
b = n - a;
}
}
System.out.println(a + " " + b);
}
public static void main(String[] args) {
FastScanner in = new FastScanner();
new TA().solve(in.nextLong());
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String nextToken() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(nextToken());
}
long nextLong() {
return Long.parseLong(nextToken());
}
double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 733 | 2,908 |
3,024 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A implements Runnable {
private void Solution() throws IOException {
int n = nextInt();
if (n % 7 == 0 || n % 4 == 0 || n % 47 == 0 || n % 74 == 0 || n % 747 == 0 || n % 474 == 0 || n % 777 == 0 || n % 444 == 0 || n % 774 == 0 || n % 447 == 0 || n % 744 == 0 || n % 477 == 0)
System.out.println("YES"); else
System.out.println("NO");
}
public static void main(String args[]) {
new A().run();
}
BufferedReader in;
StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
Solution();
in.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(in.readLine());
return tokenizer.nextToken();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A implements Runnable {
private void Solution() throws IOException {
int n = nextInt();
if (n % 7 == 0 || n % 4 == 0 || n % 47 == 0 || n % 74 == 0 || n % 747 == 0 || n % 474 == 0 || n % 777 == 0 || n % 444 == 0 || n % 774 == 0 || n % 447 == 0 || n % 744 == 0 || n % 477 == 0)
System.out.println("YES"); else
System.out.println("NO");
}
public static void main(String args[]) {
new A().run();
}
BufferedReader in;
StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
Solution();
in.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(in.readLine());
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A implements Runnable {
private void Solution() throws IOException {
int n = nextInt();
if (n % 7 == 0 || n % 4 == 0 || n % 47 == 0 || n % 74 == 0 || n % 747 == 0 || n % 474 == 0 || n % 777 == 0 || n % 444 == 0 || n % 774 == 0 || n % 447 == 0 || n % 744 == 0 || n % 477 == 0)
System.out.println("YES"); else
System.out.println("NO");
}
public static void main(String args[]) {
new A().run();
}
BufferedReader in;
StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
Solution();
in.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(nextToken());
}
String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens())
tokenizer = new StringTokenizer(in.readLine());
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 639 | 3,018 |
3,015 |
import java.util.*;
public class Main{
public static void main(String[]args){
Scanner input=new Scanner(System.in);
int x=input.nextInt();
if(x%4==0||x%7==0||x%47==0||x%74==0||x%744==0||x%474==0||x%447==0||x%477==0||x%474==0)
System.out.println("YES");
else
System.out.println("NO");
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main{
public static void main(String[]args){
Scanner input=new Scanner(System.in);
int x=input.nextInt();
if(x%4==0||x%7==0||x%47==0||x%74==0||x%744==0||x%474==0||x%447==0||x%477==0||x%474==0)
System.out.println("YES");
else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main{
public static void main(String[]args){
Scanner input=new Scanner(System.in);
int x=input.nextInt();
if(x%4==0||x%7==0||x%47==0||x%74==0||x%744==0||x%474==0||x%447==0||x%477==0||x%474==0)
System.out.println("YES");
else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 440 | 3,009 |
714 |
import java.util.Scanner;
public class MSpreadSheet {
public int toNum(String x)
{
int result = 0;
int pow = 0;
for (int i = x.length()-1; i >=0; i--)
{
result+=(x.charAt(i)-'A'+1)*Math.pow(26, pow);
pow++;
}
return result;
}
public String toString(int x)
{
if(x<=26) return String.valueOf((char)(x+'A'-1));
String result = "";
while(x!=0)
{
if(x%26==0)
{
result = 'Z' + result;
x = x/26 - 1;
}
else
{
result = (char)((x%26)+'A'-1) + result;
x = x/26;
}
}
return result;
}
public boolean check(String x)
{
if(x.charAt(0)!='R') return false; //first rep
int in = x.indexOf('C');
if(in==-1) return false;
if(Character.isDigit(x.charAt(in-1))&&Character.isDigit(x.charAt(in+1))) return true;
return false;
}
public void solve(String x)
{
String r="";
String c="";
if(check(x))
{
int in = x.indexOf('C');
r = x.substring(1,in);
c = x.substring(in+1);
System.out.println(toString(Integer.parseInt(c))+r);
}
else
{
int i =0;
while(!Character.isDigit(x.charAt(i)))
c+=x.charAt(i++);
while(i<x.length())
r+=x.charAt(i++);
System.out.println("R"+r+"C"+toNum(c));
}
}
public static void main(String[] args) {
MSpreadSheet sh = new MSpreadSheet();
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int i = 0;
while(i<n)
{
sh.solve(s.next());
i++;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class MSpreadSheet {
public int toNum(String x)
{
int result = 0;
int pow = 0;
for (int i = x.length()-1; i >=0; i--)
{
result+=(x.charAt(i)-'A'+1)*Math.pow(26, pow);
pow++;
}
return result;
}
public String toString(int x)
{
if(x<=26) return String.valueOf((char)(x+'A'-1));
String result = "";
while(x!=0)
{
if(x%26==0)
{
result = 'Z' + result;
x = x/26 - 1;
}
else
{
result = (char)((x%26)+'A'-1) + result;
x = x/26;
}
}
return result;
}
public boolean check(String x)
{
if(x.charAt(0)!='R') return false; //first rep
int in = x.indexOf('C');
if(in==-1) return false;
if(Character.isDigit(x.charAt(in-1))&&Character.isDigit(x.charAt(in+1))) return true;
return false;
}
public void solve(String x)
{
String r="";
String c="";
if(check(x))
{
int in = x.indexOf('C');
r = x.substring(1,in);
c = x.substring(in+1);
System.out.println(toString(Integer.parseInt(c))+r);
}
else
{
int i =0;
while(!Character.isDigit(x.charAt(i)))
c+=x.charAt(i++);
while(i<x.length())
r+=x.charAt(i++);
System.out.println("R"+r+"C"+toNum(c));
}
}
public static void main(String[] args) {
MSpreadSheet sh = new MSpreadSheet();
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int i = 0;
while(i<n)
{
sh.solve(s.next());
i++;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class MSpreadSheet {
public int toNum(String x)
{
int result = 0;
int pow = 0;
for (int i = x.length()-1; i >=0; i--)
{
result+=(x.charAt(i)-'A'+1)*Math.pow(26, pow);
pow++;
}
return result;
}
public String toString(int x)
{
if(x<=26) return String.valueOf((char)(x+'A'-1));
String result = "";
while(x!=0)
{
if(x%26==0)
{
result = 'Z' + result;
x = x/26 - 1;
}
else
{
result = (char)((x%26)+'A'-1) + result;
x = x/26;
}
}
return result;
}
public boolean check(String x)
{
if(x.charAt(0)!='R') return false; //first rep
int in = x.indexOf('C');
if(in==-1) return false;
if(Character.isDigit(x.charAt(in-1))&&Character.isDigit(x.charAt(in+1))) return true;
return false;
}
public void solve(String x)
{
String r="";
String c="";
if(check(x))
{
int in = x.indexOf('C');
r = x.substring(1,in);
c = x.substring(in+1);
System.out.println(toString(Integer.parseInt(c))+r);
}
else
{
int i =0;
while(!Character.isDigit(x.charAt(i)))
c+=x.charAt(i++);
while(i<x.length())
r+=x.charAt(i++);
System.out.println("R"+r+"C"+toNum(c));
}
}
public static void main(String[] args) {
MSpreadSheet sh = new MSpreadSheet();
Scanner s = new Scanner(System.in);
int n = s.nextInt();
int i = 0;
while(i<n)
{
sh.solve(s.next());
i++;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 824 | 713 |
3,628 |
import static java.lang.Math.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class Solution implements Runnable {
public static void main(String... strings) throws InterruptedException {
new Thread(new Solution()).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() throws Exception {
if (st == null || !st.hasMoreElements())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
double nextDouble() throws Exception {
return Double.parseDouble(next());
}
long nextLong() throws Exception {
return Long.parseLong(next());
}
@Override
public void run() {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
solve();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
out.close();
}
}
int n, m, k, xor = 0;
boolean[][] used;
HashSet<Long> [] set;
void solve() throws Exception {
n = nextInt();
m = nextInt();
k = nextInt();
used = new boolean[n][m];
set = new HashSet[2];
for(int i = 0; i < 2; set[i++] = new HashSet<Long>());
for(int i = 0; i < k; i++){
int x = nextInt()-1, y = nextInt()-1;
used[x][y] = true;
set[0].add(10000L*x + y);
}
for (;;xor ^= 1){
set[xor^1].clear();
int ansx = -1, ansy = -1;
for (long i : set[xor]){
int x = (int)(i/10000), y = (int)(i%10000);
if (ansx < 0){
ansx = x+1;
ansy = y+1;
}
add(x+1, y);
add(x-1, y);
add(x, y+1);
add(x, y-1);
}
if (set[xor^1].size() == 0){
out.println(ansx + " " + ansy);
break;
}
}
}
public void add(int x, int y){
if (!( x >= 0 && y >= 0 && x < n && y < m && !used[x][y])) return;
set[xor^1].add(10000L*x + y);
used[x][y] = true;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class Solution implements Runnable {
public static void main(String... strings) throws InterruptedException {
new Thread(new Solution()).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() throws Exception {
if (st == null || !st.hasMoreElements())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
double nextDouble() throws Exception {
return Double.parseDouble(next());
}
long nextLong() throws Exception {
return Long.parseLong(next());
}
@Override
public void run() {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
solve();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
out.close();
}
}
int n, m, k, xor = 0;
boolean[][] used;
HashSet<Long> [] set;
void solve() throws Exception {
n = nextInt();
m = nextInt();
k = nextInt();
used = new boolean[n][m];
set = new HashSet[2];
for(int i = 0; i < 2; set[i++] = new HashSet<Long>());
for(int i = 0; i < k; i++){
int x = nextInt()-1, y = nextInt()-1;
used[x][y] = true;
set[0].add(10000L*x + y);
}
for (;;xor ^= 1){
set[xor^1].clear();
int ansx = -1, ansy = -1;
for (long i : set[xor]){
int x = (int)(i/10000), y = (int)(i%10000);
if (ansx < 0){
ansx = x+1;
ansy = y+1;
}
add(x+1, y);
add(x-1, y);
add(x, y+1);
add(x, y-1);
}
if (set[xor^1].size() == 0){
out.println(ansx + " " + ansy);
break;
}
}
}
public void add(int x, int y){
if (!( x >= 0 && y >= 0 && x < n && y < m && !used[x][y])) return;
set[xor^1].add(10000L*x + y);
used[x][y] = true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class Solution implements Runnable {
public static void main(String... strings) throws InterruptedException {
new Thread(new Solution()).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() throws Exception {
if (st == null || !st.hasMoreElements())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
double nextDouble() throws Exception {
return Double.parseDouble(next());
}
long nextLong() throws Exception {
return Long.parseLong(next());
}
@Override
public void run() {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
solve();
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
out.close();
}
}
int n, m, k, xor = 0;
boolean[][] used;
HashSet<Long> [] set;
void solve() throws Exception {
n = nextInt();
m = nextInt();
k = nextInt();
used = new boolean[n][m];
set = new HashSet[2];
for(int i = 0; i < 2; set[i++] = new HashSet<Long>());
for(int i = 0; i < k; i++){
int x = nextInt()-1, y = nextInt()-1;
used[x][y] = true;
set[0].add(10000L*x + y);
}
for (;;xor ^= 1){
set[xor^1].clear();
int ansx = -1, ansy = -1;
for (long i : set[xor]){
int x = (int)(i/10000), y = (int)(i%10000);
if (ansx < 0){
ansx = x+1;
ansy = y+1;
}
add(x+1, y);
add(x-1, y);
add(x, y+1);
add(x, y-1);
}
if (set[xor^1].size() == 0){
out.println(ansx + " " + ansy);
break;
}
}
}
public void add(int x, int y){
if (!( x >= 0 && y >= 0 && x < n && y < m && !used[x][y])) return;
set[xor^1].add(10000L*x + y);
used[x][y] = true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 916 | 3,620 |
1,743 |
import java.io.*;
import java.math.*;
import java.util.*;
public class Village
{
static Scanner in = new Scanner( new BufferedReader( new InputStreamReader( System.in ) ) );
public static void main( String[] args )
{
int n = in.nextInt(), t = 2*in.nextInt(), h[][] = new int[n][2], ans = 2;
for( int i = 0; i < n; i++ )
{
h[i][0] = 2*in.nextInt();
h[i][1] = in.nextInt();
}
Arrays.sort( h, new Comp() );
for( int i = 1; i < n; i++ )
{
int d = (h[i][0]-h[i][1])-(h[i-1][0]+h[i-1][1]);
if( d > t ) ans += 2;
else if( d == t ) ans++;
}
System.out.println( ans );
}
static class Comp implements Comparator<int[]> { public int compare( int[] a, int[] b ) { return a[0]-b[0]; } }
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class Village
{
static Scanner in = new Scanner( new BufferedReader( new InputStreamReader( System.in ) ) );
public static void main( String[] args )
{
int n = in.nextInt(), t = 2*in.nextInt(), h[][] = new int[n][2], ans = 2;
for( int i = 0; i < n; i++ )
{
h[i][0] = 2*in.nextInt();
h[i][1] = in.nextInt();
}
Arrays.sort( h, new Comp() );
for( int i = 1; i < n; i++ )
{
int d = (h[i][0]-h[i][1])-(h[i-1][0]+h[i-1][1]);
if( d > t ) ans += 2;
else if( d == t ) ans++;
}
System.out.println( ans );
}
static class Comp implements Comparator<int[]> { public int compare( int[] a, int[] b ) { return a[0]-b[0]; } }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.*;
import java.util.*;
public class Village
{
static Scanner in = new Scanner( new BufferedReader( new InputStreamReader( System.in ) ) );
public static void main( String[] args )
{
int n = in.nextInt(), t = 2*in.nextInt(), h[][] = new int[n][2], ans = 2;
for( int i = 0; i < n; i++ )
{
h[i][0] = 2*in.nextInt();
h[i][1] = in.nextInt();
}
Arrays.sort( h, new Comp() );
for( int i = 1; i < n; i++ )
{
int d = (h[i][0]-h[i][1])-(h[i-1][0]+h[i-1][1]);
if( d > t ) ans += 2;
else if( d == t ) ans++;
}
System.out.println( ans );
}
static class Comp implements Comparator<int[]> { public int compare( int[] a, int[] b ) { return a[0]-b[0]; } }
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 576 | 1,739 |
2,791 |
import java.util.Scanner;
public class Subtractions {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
int t=s.nextInt();
while(t--!=0){
int a=s.nextInt();
int b=s.nextInt();
int min=Math.min(a, b);
int max=Math.max(a, b);
int ops=0;
while(true){
int quo=max/min;
ops+=quo;
int rem=max%min;
max=Math.max(rem, min);
min=Math.min(min, rem);
if(rem==0) break;
}
System.out.println(ops);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Subtractions {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
int t=s.nextInt();
while(t--!=0){
int a=s.nextInt();
int b=s.nextInt();
int min=Math.min(a, b);
int max=Math.max(a, b);
int ops=0;
while(true){
int quo=max/min;
ops+=quo;
int rem=max%min;
max=Math.max(rem, min);
min=Math.min(min, rem);
if(rem==0) break;
}
System.out.println(ops);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Subtractions {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner s=new Scanner(System.in);
int t=s.nextInt();
while(t--!=0){
int a=s.nextInt();
int b=s.nextInt();
int min=Math.min(a, b);
int max=Math.max(a, b);
int ops=0;
while(true){
int quo=max/min;
ops+=quo;
int rem=max%min;
max=Math.max(rem, min);
min=Math.min(min, rem);
if(rem==0) break;
}
System.out.println(ops);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 480 | 2,785 |
3,840 |
import java.io.*;
import java.util.*;
/*
polyakoff
*/
public class Main {
static FastReader in;
static PrintWriter out;
static Random rand = new Random();
static final int oo = (int) 1e9 + 10;
static final long OO = (long) 1e18 + 10;
static final int MOD = (int) 1e9 + 7;
static void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
Stack<Integer> st = new Stack<>();
for (int i = 0; i < n; i++) {
if (a[i] != 1) {
while (!st.empty() && st.peek() + 1 != a[i])
st.pop();
st.pop();
}
st.push(a[i]);
for (int j = 0; j < st.size(); j++) {
out.print(st.get(j));
if (j < st.size() - 1)
out.print('.');
}
out.println();
}
}
public static void main(String[] args) {
in = new FastReader();
out = new PrintWriter(System.out);
int t = 1;
t = in.nextInt();
while (t-- > 0) {
solve();
}
out.flush();
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
FastReader() {
this(System.in);
}
FastReader(String file) throws FileNotFoundException {
this(new FileInputStream(file));
}
FastReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(nextLine());
}
return st.nextToken();
}
String nextLine() {
String line;
try {
line = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/*
polyakoff
*/
public class Main {
static FastReader in;
static PrintWriter out;
static Random rand = new Random();
static final int oo = (int) 1e9 + 10;
static final long OO = (long) 1e18 + 10;
static final int MOD = (int) 1e9 + 7;
static void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
Stack<Integer> st = new Stack<>();
for (int i = 0; i < n; i++) {
if (a[i] != 1) {
while (!st.empty() && st.peek() + 1 != a[i])
st.pop();
st.pop();
}
st.push(a[i]);
for (int j = 0; j < st.size(); j++) {
out.print(st.get(j));
if (j < st.size() - 1)
out.print('.');
}
out.println();
}
}
public static void main(String[] args) {
in = new FastReader();
out = new PrintWriter(System.out);
int t = 1;
t = in.nextInt();
while (t-- > 0) {
solve();
}
out.flush();
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
FastReader() {
this(System.in);
}
FastReader(String file) throws FileNotFoundException {
this(new FileInputStream(file));
}
FastReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(nextLine());
}
return st.nextToken();
}
String nextLine() {
String line;
try {
line = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/*
polyakoff
*/
public class Main {
static FastReader in;
static PrintWriter out;
static Random rand = new Random();
static final int oo = (int) 1e9 + 10;
static final long OO = (long) 1e18 + 10;
static final int MOD = (int) 1e9 + 7;
static void solve() {
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
Stack<Integer> st = new Stack<>();
for (int i = 0; i < n; i++) {
if (a[i] != 1) {
while (!st.empty() && st.peek() + 1 != a[i])
st.pop();
st.pop();
}
st.push(a[i]);
for (int j = 0; j < st.size(); j++) {
out.print(st.get(j));
if (j < st.size() - 1)
out.print('.');
}
out.println();
}
}
public static void main(String[] args) {
in = new FastReader();
out = new PrintWriter(System.out);
int t = 1;
t = in.nextInt();
while (t-- > 0) {
solve();
}
out.flush();
out.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
FastReader() {
this(System.in);
}
FastReader(String file) throws FileNotFoundException {
this(new FileInputStream(file));
}
FastReader(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String next() {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(nextLine());
}
return st.nextToken();
}
String nextLine() {
String line;
try {
line = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return line;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 832 | 3,830 |
3,011 |
import java.util.*;
public class A122
{
public static void main(String aa[])
{
Scanner ob=new Scanner(System.in);
int n;
n=ob.nextInt();
if(n%4==0||n%7==0||n%44==0||n%47==0||n%444==0||n%447==0||n%474==0||n%477==0||n%744==0||n%747==0||n%774==0||n%777==0)
System.out.println("YES");
else
System.out.println("NO");
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class A122
{
public static void main(String aa[])
{
Scanner ob=new Scanner(System.in);
int n;
n=ob.nextInt();
if(n%4==0||n%7==0||n%44==0||n%47==0||n%444==0||n%447==0||n%474==0||n%477==0||n%744==0||n%747==0||n%774==0||n%777==0)
System.out.println("YES");
else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class A122
{
public static void main(String aa[])
{
Scanner ob=new Scanner(System.in);
int n;
n=ob.nextInt();
if(n%4==0||n%7==0||n%44==0||n%47==0||n%444==0||n%447==0||n%474==0||n%477==0||n%744==0||n%747==0||n%774==0||n%777==0)
System.out.println("YES");
else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 485 | 3,005 |
3,574 |
import java.util.ArrayList;
import java.util.Scanner;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.nio.*;
public class Main {
public static void main(String[] args) throws NumberFormatException, IOException
{
Scanner sc = new Scanner(new File("input.txt"));
int n = sc.nextInt();
int m =sc.nextInt();
sc.nextLine();
int k =sc.nextInt();
int les[][] = new int[n][m];
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
//sc.nextLine();
ArrayList<Integer[]> list = new ArrayList();
sc.nextLine();
for(int i = 0;i<k;i++)
{
Integer[] ii = new Integer[2];
ii[0] = sc.nextInt()-1;
ii[1] = sc.nextInt()-1;
list.add(ii);
}
sc.close();
int maxr = 0;
int maxi = 0;
int maxj = 0;
for(int i = 0;i<n;i++)
{
for(int j = 0;j<m;j++)
{
int minr = 100000;
int mini = 0;
int minj = 0;
for(int f = 0;f<k;f++)
{
Integer[] ii = list.get(f);
int ww = Math.abs(ii[0] - i);
int hh = Math.abs(ii[1] - j);
int r = ww+hh;
if(r<minr)
{
minr = r;
mini=i;
minj=j;
}
}
if(maxr<minr&&minr<100000)
{
maxi = mini;
maxj = minj;
maxr = minr;
}
}
}
out.print((maxi+1)+" "+(maxj+1));
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Scanner;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.nio.*;
public class Main {
public static void main(String[] args) throws NumberFormatException, IOException
{
Scanner sc = new Scanner(new File("input.txt"));
int n = sc.nextInt();
int m =sc.nextInt();
sc.nextLine();
int k =sc.nextInt();
int les[][] = new int[n][m];
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
//sc.nextLine();
ArrayList<Integer[]> list = new ArrayList();
sc.nextLine();
for(int i = 0;i<k;i++)
{
Integer[] ii = new Integer[2];
ii[0] = sc.nextInt()-1;
ii[1] = sc.nextInt()-1;
list.add(ii);
}
sc.close();
int maxr = 0;
int maxi = 0;
int maxj = 0;
for(int i = 0;i<n;i++)
{
for(int j = 0;j<m;j++)
{
int minr = 100000;
int mini = 0;
int minj = 0;
for(int f = 0;f<k;f++)
{
Integer[] ii = list.get(f);
int ww = Math.abs(ii[0] - i);
int hh = Math.abs(ii[1] - j);
int r = ww+hh;
if(r<minr)
{
minr = r;
mini=i;
minj=j;
}
}
if(maxr<minr&&minr<100000)
{
maxi = mini;
maxj = minj;
maxr = minr;
}
}
}
out.print((maxi+1)+" "+(maxj+1));
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Scanner;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.nio.*;
public class Main {
public static void main(String[] args) throws NumberFormatException, IOException
{
Scanner sc = new Scanner(new File("input.txt"));
int n = sc.nextInt();
int m =sc.nextInt();
sc.nextLine();
int k =sc.nextInt();
int les[][] = new int[n][m];
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
//sc.nextLine();
ArrayList<Integer[]> list = new ArrayList();
sc.nextLine();
for(int i = 0;i<k;i++)
{
Integer[] ii = new Integer[2];
ii[0] = sc.nextInt()-1;
ii[1] = sc.nextInt()-1;
list.add(ii);
}
sc.close();
int maxr = 0;
int maxi = 0;
int maxj = 0;
for(int i = 0;i<n;i++)
{
for(int j = 0;j<m;j++)
{
int minr = 100000;
int mini = 0;
int minj = 0;
for(int f = 0;f<k;f++)
{
Integer[] ii = list.get(f);
int ww = Math.abs(ii[0] - i);
int hh = Math.abs(ii[1] - j);
int r = ww+hh;
if(r<minr)
{
minr = r;
mini=i;
minj=j;
}
}
if(maxr<minr&&minr<100000)
{
maxi = mini;
maxj = minj;
maxr = minr;
}
}
}
out.print((maxi+1)+" "+(maxj+1));
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 779 | 3,566 |
2,786 |
import java.util.Scanner;
public class Question267A {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while (t--!=0){
int x=sc.nextInt();
int y=sc.nextInt();
int max=Math.max(x,y);
int min=Math.min(x,y);
int ans=0;
while (min>0 && max>0){
int temp=max;
ans+=temp/min;
max=min;
min=temp%min;
}
System.out.println(ans);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Question267A {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while (t--!=0){
int x=sc.nextInt();
int y=sc.nextInt();
int max=Math.max(x,y);
int min=Math.min(x,y);
int ans=0;
while (min>0 && max>0){
int temp=max;
ans+=temp/min;
max=min;
min=temp%min;
}
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Question267A {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while (t--!=0){
int x=sc.nextInt();
int y=sc.nextInt();
int max=Math.max(x,y);
int min=Math.min(x,y);
int ans=0;
while (min>0 && max>0){
int temp=max;
ans+=temp/min;
max=min;
min=temp%min;
}
System.out.println(ans);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 475 | 2,780 |
2,042 |
import java.util.Arrays;
import java.util.Scanner;
public class A {
public static void main(String[] args) {
new A().run();
}
private void run() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = sc.nextInt();
Arrays.sort(a);
int i = 0;
while (i < n && a[i] == a[0])
i++;
if (i < n)
System.out.println(a[i]);
else
System.out.println("NO");
sc.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
public static void main(String[] args) {
new A().run();
}
private void run() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = sc.nextInt();
Arrays.sort(a);
int i = 0;
while (i < n && a[i] == a[0])
i++;
if (i < n)
System.out.println(a[i]);
else
System.out.println("NO");
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
public static void main(String[] args) {
new A().run();
}
private void run() {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = sc.nextInt();
Arrays.sort(a);
int i = 0;
while (i < n && a[i] == a[0])
i++;
if (i < n)
System.out.println(a[i]);
else
System.out.println("NO");
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 475 | 2,038 |
3,798 |
import java.util.*;
import java.awt.image.BandedSampleModel;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.reflect.Array;
import java.util.Scanner;
public class D{
static void sort(int[] A){
int n = A.length;
Random rnd = new Random();
for(int i=0; i<n; ++i){
int tmp = A[i];
int randomPos = i + rnd.nextInt(n-i);
A[i] = A[randomPos];
A[randomPos] = tmp;
}
Arrays.sort(A);
}
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
//int cases = sc.nextInt();
//for(int i=0;i<cases;i++)
{
int n = sc.nextInt();
int m=sc.nextInt();
int steps=sc.nextInt();
long arr[][][] = new long[n][m][5];
for(int j=0;j<n;j++)
{
for(int k=0;k<m-1;k++)
{
long num=sc.nextLong();
arr[j][k][1]=num;
arr[j][k+1][3]=num;
}
}
for(int j=0;j<n-1;j++)
{
for(int k=0;k<m;k++)
{
long num=sc.nextLong();
arr[j][k][2]=num;
arr[j+1][k][4]=num;
}
}
long temp[][]=new long[n][m];
long ans[][]=new long[n][m];
for(int i=0;i<steps/2;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
long min=Long.MAX_VALUE;
if(k>0)
{
long f=arr[j][k][3]+ans[j][k-1];
min=Math.min(min,f);
}
if(k<m-1)
{
long f=arr[j][k][1]+ans[j][k+1];
min=Math.min(min,f);
}
if(j>0)
{
long f=arr[j][k][4]+ans[j-1][k];
min=Math.min(min,f);
}
if(j<n-1)
{
long f=arr[j][k][2]+ans[j+1][k];
min=Math.min(min,f);
}
temp[j][k]=min;
}
}
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
ans[j][k]=temp[j][k];
}
}
}
StringBuilder p=new StringBuilder();
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
if(steps%2!=0)
{
p.append(-1+" ");
}
else
{
p.append(2*ans[j][k]+" ");}
}
p.append("\n");
}
System.out.println(p);
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.awt.image.BandedSampleModel;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.reflect.Array;
import java.util.Scanner;
public class D{
static void sort(int[] A){
int n = A.length;
Random rnd = new Random();
for(int i=0; i<n; ++i){
int tmp = A[i];
int randomPos = i + rnd.nextInt(n-i);
A[i] = A[randomPos];
A[randomPos] = tmp;
}
Arrays.sort(A);
}
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
//int cases = sc.nextInt();
//for(int i=0;i<cases;i++)
{
int n = sc.nextInt();
int m=sc.nextInt();
int steps=sc.nextInt();
long arr[][][] = new long[n][m][5];
for(int j=0;j<n;j++)
{
for(int k=0;k<m-1;k++)
{
long num=sc.nextLong();
arr[j][k][1]=num;
arr[j][k+1][3]=num;
}
}
for(int j=0;j<n-1;j++)
{
for(int k=0;k<m;k++)
{
long num=sc.nextLong();
arr[j][k][2]=num;
arr[j+1][k][4]=num;
}
}
long temp[][]=new long[n][m];
long ans[][]=new long[n][m];
for(int i=0;i<steps/2;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
long min=Long.MAX_VALUE;
if(k>0)
{
long f=arr[j][k][3]+ans[j][k-1];
min=Math.min(min,f);
}
if(k<m-1)
{
long f=arr[j][k][1]+ans[j][k+1];
min=Math.min(min,f);
}
if(j>0)
{
long f=arr[j][k][4]+ans[j-1][k];
min=Math.min(min,f);
}
if(j<n-1)
{
long f=arr[j][k][2]+ans[j+1][k];
min=Math.min(min,f);
}
temp[j][k]=min;
}
}
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
ans[j][k]=temp[j][k];
}
}
}
StringBuilder p=new StringBuilder();
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
if(steps%2!=0)
{
p.append(-1+" ");
}
else
{
p.append(2*ans[j][k]+" ");}
}
p.append("\n");
}
System.out.println(p);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.awt.image.BandedSampleModel;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.reflect.Array;
import java.util.Scanner;
public class D{
static void sort(int[] A){
int n = A.length;
Random rnd = new Random();
for(int i=0; i<n; ++i){
int tmp = A[i];
int randomPos = i + rnd.nextInt(n-i);
A[i] = A[randomPos];
A[randomPos] = tmp;
}
Arrays.sort(A);
}
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
//int cases = sc.nextInt();
//for(int i=0;i<cases;i++)
{
int n = sc.nextInt();
int m=sc.nextInt();
int steps=sc.nextInt();
long arr[][][] = new long[n][m][5];
for(int j=0;j<n;j++)
{
for(int k=0;k<m-1;k++)
{
long num=sc.nextLong();
arr[j][k][1]=num;
arr[j][k+1][3]=num;
}
}
for(int j=0;j<n-1;j++)
{
for(int k=0;k<m;k++)
{
long num=sc.nextLong();
arr[j][k][2]=num;
arr[j+1][k][4]=num;
}
}
long temp[][]=new long[n][m];
long ans[][]=new long[n][m];
for(int i=0;i<steps/2;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
long min=Long.MAX_VALUE;
if(k>0)
{
long f=arr[j][k][3]+ans[j][k-1];
min=Math.min(min,f);
}
if(k<m-1)
{
long f=arr[j][k][1]+ans[j][k+1];
min=Math.min(min,f);
}
if(j>0)
{
long f=arr[j][k][4]+ans[j-1][k];
min=Math.min(min,f);
}
if(j<n-1)
{
long f=arr[j][k][2]+ans[j+1][k];
min=Math.min(min,f);
}
temp[j][k]=min;
}
}
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
ans[j][k]=temp[j][k];
}
}
}
StringBuilder p=new StringBuilder();
for(int j=0;j<n;j++)
{
for(int k=0;k<m;k++)
{
if(steps%2!=0)
{
p.append(-1+" ");
}
else
{
p.append(2*ans[j][k]+" ");}
}
p.append("\n");
}
System.out.println(p);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 995 | 3,789 |
1,528 |
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import java.io.*;
import java.lang.reflect.*;
import java.util.*;
public class A {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public A () {
int N = sc.nextInt();
int K = sc.nextInt();
Long [] A = sc.nextLongs();
sort(A);
Set<Long> S = new HashSet<Long>();
for (long a : A) {
if (a % K == 0 && S.contains(H(a/K)))
continue;
S.add(H(a));
}
int res = S.size();
exit(res);
}
long P = probablePrime(60, new Random()).longValue();
long Q = probablePrime(60, new Random()).longValue();
long H(long x) {
return P*x + Q;
}
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
public String [] next (int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = sc.next();
return res;
}
public Integer [] nextInt (int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInt();
return res;
}
public Long [] nextLong (int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLong();
return res;
}
public Double [] nextDouble (int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDouble();
return res;
}
public String [][] nextStrings (int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextStrings();
return res;
}
public Integer [][] nextInts (int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInts();
return res;
}
public Long [][] nextLongs (int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLongs();
return res;
}
public Double [][] nextDoubles (int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDoubles();
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print(Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint(Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i), delim);
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p, delim);
} else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new A();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import java.io.*;
import java.lang.reflect.*;
import java.util.*;
public class A {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public A () {
int N = sc.nextInt();
int K = sc.nextInt();
Long [] A = sc.nextLongs();
sort(A);
Set<Long> S = new HashSet<Long>();
for (long a : A) {
if (a % K == 0 && S.contains(H(a/K)))
continue;
S.add(H(a));
}
int res = S.size();
exit(res);
}
long P = probablePrime(60, new Random()).longValue();
long Q = probablePrime(60, new Random()).longValue();
long H(long x) {
return P*x + Q;
}
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
public String [] next (int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = sc.next();
return res;
}
public Integer [] nextInt (int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInt();
return res;
}
public Long [] nextLong (int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLong();
return res;
}
public Double [] nextDouble (int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDouble();
return res;
}
public String [][] nextStrings (int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextStrings();
return res;
}
public Integer [][] nextInts (int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInts();
return res;
}
public Long [][] nextLongs (int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLongs();
return res;
}
public Double [][] nextDoubles (int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDoubles();
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print(Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint(Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i), delim);
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p, delim);
} else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new A();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import java.io.*;
import java.lang.reflect.*;
import java.util.*;
public class A {
final int MOD = (int)1e9 + 7;
final double eps = 1e-12;
final int INF = (int)1e9;
public A () {
int N = sc.nextInt();
int K = sc.nextInt();
Long [] A = sc.nextLongs();
sort(A);
Set<Long> S = new HashSet<Long>();
for (long a : A) {
if (a % K == 0 && S.contains(H(a/K)))
continue;
S.add(H(a));
}
int res = S.size();
exit(res);
}
long P = probablePrime(60, new Random()).longValue();
long Q = probablePrime(60, new Random()).longValue();
long H(long x) {
return P*x + Q;
}
////////////////////////////////////////////////////////////////////////////////////
/* Dear hacker, don't bother reading below this line, unless you want to help me debug my I/O routines :-) */
static MyScanner sc = new MyScanner();
static class MyScanner {
public String next() {
newLine();
return line[index++];
}
public char nextChar() {
return next().charAt(0);
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
line = null;
return readLine();
}
public String [] nextStrings() {
line = null;
return readLine().split(" ");
}
public char [] nextChars() {
return next().toCharArray();
}
public Integer [] nextInts() {
String [] L = nextStrings();
Integer [] res = new Integer [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Integer.parseInt(L[i]);
return res;
}
public Long [] nextLongs() {
String [] L = nextStrings();
Long [] res = new Long [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Long.parseLong(L[i]);
return res;
}
public Double [] nextDoubles() {
String [] L = nextStrings();
Double [] res = new Double [L.length];
for (int i = 0; i < L.length; ++i)
res[i] = Double.parseDouble(L[i]);
return res;
}
public String [] next (int N) {
String [] res = new String [N];
for (int i = 0; i < N; ++i)
res[i] = sc.next();
return res;
}
public Integer [] nextInt (int N) {
Integer [] res = new Integer [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInt();
return res;
}
public Long [] nextLong (int N) {
Long [] res = new Long [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLong();
return res;
}
public Double [] nextDouble (int N) {
Double [] res = new Double [N];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDouble();
return res;
}
public String [][] nextStrings (int N) {
String [][] res = new String [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextStrings();
return res;
}
public Integer [][] nextInts (int N) {
Integer [][] res = new Integer [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextInts();
return res;
}
public Long [][] nextLongs (int N) {
Long [][] res = new Long [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextLongs();
return res;
}
public Double [][] nextDoubles (int N) {
Double [][] res = new Double [N][];
for (int i = 0; i < N; ++i)
res[i] = sc.nextDoubles();
return res;
}
//////////////////////////////////////////////
private boolean eol() {
return index == line.length;
}
private String readLine() {
try {
return r.readLine();
} catch (Exception e) {
throw new Error(e);
}
}
private final BufferedReader r;
MyScanner () {
this(new BufferedReader(new InputStreamReader(System.in)));
}
MyScanner(BufferedReader r) {
try {
this.r = r;
while (!r.ready())
Thread.sleep(1);
start();
} catch (Exception e) {
throw new Error(e);
}
}
private String [] line;
private int index;
private void newLine() {
if (line == null || eol()) {
line = readLine().split(" ");
index = 0;
}
}
}
static void print(Object o, Object... a) {
printDelim(" ", o, a);
}
static void cprint(Object o, Object... a) {
printDelim("", o, a);
}
static void printDelim (String delim, Object o, Object... a) {
pw.println(build(delim, o, a));
}
static void exit (Object o, Object... a) {
print(o, a);
exit();
}
static void exit () {
pw.close();
System.out.flush();
System.err.println("------------------");
System.err.println("Time: " + ((millis() - t) / 1000.0));
System.exit(0);
}
void NO() {
throw new Error("NO!");
}
////////////////////////////////////////////////////////////////////////////////////
static String build(String delim, Object o, Object... a) {
StringBuilder b = new StringBuilder();
append(b, o, delim);
for (Object p : a)
append(b, p, delim);
return b.toString().trim();
}
static void append(StringBuilder b, Object o, String delim) {
if (o.getClass().isArray()) {
int L = Array.getLength(o);
for (int i = 0; i < L; ++i)
append(b, Array.get(o, i), delim);
} else if (o instanceof Iterable<?>) {
for (Object p : (Iterable<?>)o)
append(b, p, delim);
} else
b.append(delim).append(o);
}
////////////////////////////////////////////////////////////////////////////////////
public static void main(String[] args) {
new A();
exit();
}
static void start() {
t = millis();
}
static PrintWriter pw = new PrintWriter(System.out);
static long t;
static long millis() {
return System.currentTimeMillis();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,955 | 1,526 |
1,497 |
/**
* Created with IntelliJ IDEA.
* User: brzezinsky
* Date: 12/16/12
* Time: 7:44 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.util.*;
import java.util.StringTokenizer;
public class E extends Thread {
public E(String inputFileName, String outputFileName) {
try {
if (inputFileName != null) {
this.input = new BufferedReader(new FileReader(inputFileName));
} else {
this.input = new BufferedReader(new InputStreamReader(System.in));
}
if (outputFileName != null) {
this.output = new PrintWriter(outputFileName);
} else {
this.output = new PrintWriter(System.out);
}
this.setPriority(Thread.MAX_PRIORITY);
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
}
}
private void solve() throws Throwable {
long l = nextLong(), r = nextLong();
int []bitL = new int[63];
int []bitR = new int[63];
int szL = doit(l, bitL);
int szR = doit(r, bitR);
int ret = szR;
while (ret >= 0 && bitL[ret] == bitR[ret]) --ret;
if (ret < 0) {
output.println(0);
} else {
output.println((1L << (ret + 1)) - 1);
}
}
static final int doit(long q, int []a) {
int sz = 0;
while (q != 0L) {
a[sz++] = (int)(q &1L);
q >>= 1;
}
return sz;
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.close();
}
}
public static void main(String... args) {
new E(null, null).start();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private String next() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private StringTokenizer tokens;
private BufferedReader input;
private PrintWriter output;
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/**
* Created with IntelliJ IDEA.
* User: brzezinsky
* Date: 12/16/12
* Time: 7:44 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.util.*;
import java.util.StringTokenizer;
public class E extends Thread {
public E(String inputFileName, String outputFileName) {
try {
if (inputFileName != null) {
this.input = new BufferedReader(new FileReader(inputFileName));
} else {
this.input = new BufferedReader(new InputStreamReader(System.in));
}
if (outputFileName != null) {
this.output = new PrintWriter(outputFileName);
} else {
this.output = new PrintWriter(System.out);
}
this.setPriority(Thread.MAX_PRIORITY);
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
}
}
private void solve() throws Throwable {
long l = nextLong(), r = nextLong();
int []bitL = new int[63];
int []bitR = new int[63];
int szL = doit(l, bitL);
int szR = doit(r, bitR);
int ret = szR;
while (ret >= 0 && bitL[ret] == bitR[ret]) --ret;
if (ret < 0) {
output.println(0);
} else {
output.println((1L << (ret + 1)) - 1);
}
}
static final int doit(long q, int []a) {
int sz = 0;
while (q != 0L) {
a[sz++] = (int)(q &1L);
q >>= 1;
}
return sz;
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.close();
}
}
public static void main(String... args) {
new E(null, null).start();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private String next() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private StringTokenizer tokens;
private BufferedReader input;
private PrintWriter output;
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/**
* Created with IntelliJ IDEA.
* User: brzezinsky
* Date: 12/16/12
* Time: 7:44 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.util.*;
import java.util.StringTokenizer;
public class E extends Thread {
public E(String inputFileName, String outputFileName) {
try {
if (inputFileName != null) {
this.input = new BufferedReader(new FileReader(inputFileName));
} else {
this.input = new BufferedReader(new InputStreamReader(System.in));
}
if (outputFileName != null) {
this.output = new PrintWriter(outputFileName);
} else {
this.output = new PrintWriter(System.out);
}
this.setPriority(Thread.MAX_PRIORITY);
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
}
}
private void solve() throws Throwable {
long l = nextLong(), r = nextLong();
int []bitL = new int[63];
int []bitR = new int[63];
int szL = doit(l, bitL);
int szR = doit(r, bitR);
int ret = szR;
while (ret >= 0 && bitL[ret] == bitR[ret]) --ret;
if (ret < 0) {
output.println(0);
} else {
output.println((1L << (ret + 1)) - 1);
}
}
static final int doit(long q, int []a) {
int sz = 0;
while (q != 0L) {
a[sz++] = (int)(q &1L);
q >>= 1;
}
return sz;
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.close();
}
}
public static void main(String... args) {
new E(null, null).start();
}
private int nextInt() throws IOException {
return Integer.parseInt(next());
}
private double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private long nextLong() throws IOException {
return Long.parseLong(next());
}
private String next() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private StringTokenizer tokens;
private BufferedReader input;
private PrintWriter output;
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 895 | 1,495 |
3,899 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main{
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] nextArray(long n) {
long[] a = new long[(int) n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static class FastWriter extends PrintWriter {
FastWriter(){
super(System.out);
}
void println(int[] array) {
for(int i=0; i<array.length; i++) {
print(array[i]+" ");
}
println();
}
void println(long [] array) {
for(int i=0; i<array.length; i++) {
print(array[i]+" ");
}
println();
}
}
static class Interval {
long start,end;
Interval(long start, long end)
{
this.start=start;
this.end=end;
}
}
static int MOD=998244353;
public static void main(String[] args){
FastScanner in = new FastScanner();
FastWriter out = new FastWriter();
Scanner sc=new Scanner(System.in);
int t=in.nextInt();
//int t=1;
while (t-->0){
int n=in.nextInt();
int[] ar=in.nextArray(n);
int[] level=new int[1005];
int j=1;
level[1]=1;
out.println(1);
for (int i = 1; i < n; i++) {
if(ar[i]==1) {
j++;
level[j] = 1;
}else {
while (j>=1){
if(level[j]+1!=ar[i]){
j--;
}else {
break;
}
}
level[j]++;
}
for (int k = 1; k <= j; k++) {
if(k==j){
out.print(level[k]);
}else {
out.print(level[k]+".");
}
}
out.println();
}
}
out.close();
}
static int highestPowerOf2(int n) {
if (n < 1){ return 0; }
int res = 1;
for (int i = 0; i < 8 * Integer.BYTES; i++) {
int curr = 1 << i;
if (curr > n){ break; }
res = curr;
}
return res;
}
static int reduceFraction(int x, int y) {
int d= gcd(x, y);
return x/d+y/d;
}
static boolean subset(int[] ar,int n,int sum){
if(sum==0){
return true;
}
if(n<0||sum<0){
return false;
}
return subset(ar,n-1,sum)||subset(ar,n-1,sum-ar[n]);
}
static boolean isPrime(int n){
if(n<=1) return false;
for(int i = 2;i<=Math.sqrt(n);i++){
if (n % i == 0) return false;
}
return true;
}
static int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
static boolean isPowerOfTwo(int n) {
if(n==0||n==1){return false;}
double v = Math.log(n) / Math.log(2);
return ((int)(Math.ceil(v)) == (int)(Math.floor(v)));
}
static boolean isPerfectSquare(int x){
if (x >= 0) {
int sr = (int)Math.sqrt(x);
return ((sr * sr) == x);
}
return false;
}
static int lower_bound(int[] arr, int x) {
int low_limit = 0, high_limit = arr.length, mid = -1;
while (low_limit < high_limit) {
mid = (low_limit + high_limit) / 2;
if (arr[mid] >= x){
high_limit = mid;
}else{
low_limit = mid + 1;
}
}
return low_limit;
}
static int upper_bound(int[] arr, int x) {
int low_limit = 0, high_limit = arr.length, mid = -1;
while (low_limit < high_limit) {
mid = (low_limit + high_limit) / 2;
if (arr[mid] > x){
high_limit = mid;
}else{
low_limit = mid + 1;
}
}
return low_limit;
}
static int binarySearch(int[] ar,int n,int num){
int low=0,high=n-1;
while (low<=high){
int mid=(low+high)/2;
if(ar[mid]==num){
return mid;
}else if(ar[mid]>num){
high=mid-1;
}else {
low=mid+1;
}
}
return -1;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main{
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] nextArray(long n) {
long[] a = new long[(int) n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static class FastWriter extends PrintWriter {
FastWriter(){
super(System.out);
}
void println(int[] array) {
for(int i=0; i<array.length; i++) {
print(array[i]+" ");
}
println();
}
void println(long [] array) {
for(int i=0; i<array.length; i++) {
print(array[i]+" ");
}
println();
}
}
static class Interval {
long start,end;
Interval(long start, long end)
{
this.start=start;
this.end=end;
}
}
static int MOD=998244353;
public static void main(String[] args){
FastScanner in = new FastScanner();
FastWriter out = new FastWriter();
Scanner sc=new Scanner(System.in);
int t=in.nextInt();
//int t=1;
while (t-->0){
int n=in.nextInt();
int[] ar=in.nextArray(n);
int[] level=new int[1005];
int j=1;
level[1]=1;
out.println(1);
for (int i = 1; i < n; i++) {
if(ar[i]==1) {
j++;
level[j] = 1;
}else {
while (j>=1){
if(level[j]+1!=ar[i]){
j--;
}else {
break;
}
}
level[j]++;
}
for (int k = 1; k <= j; k++) {
if(k==j){
out.print(level[k]);
}else {
out.print(level[k]+".");
}
}
out.println();
}
}
out.close();
}
static int highestPowerOf2(int n) {
if (n < 1){ return 0; }
int res = 1;
for (int i = 0; i < 8 * Integer.BYTES; i++) {
int curr = 1 << i;
if (curr > n){ break; }
res = curr;
}
return res;
}
static int reduceFraction(int x, int y) {
int d= gcd(x, y);
return x/d+y/d;
}
static boolean subset(int[] ar,int n,int sum){
if(sum==0){
return true;
}
if(n<0||sum<0){
return false;
}
return subset(ar,n-1,sum)||subset(ar,n-1,sum-ar[n]);
}
static boolean isPrime(int n){
if(n<=1) return false;
for(int i = 2;i<=Math.sqrt(n);i++){
if (n % i == 0) return false;
}
return true;
}
static int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
static boolean isPowerOfTwo(int n) {
if(n==0||n==1){return false;}
double v = Math.log(n) / Math.log(2);
return ((int)(Math.ceil(v)) == (int)(Math.floor(v)));
}
static boolean isPerfectSquare(int x){
if (x >= 0) {
int sr = (int)Math.sqrt(x);
return ((sr * sr) == x);
}
return false;
}
static int lower_bound(int[] arr, int x) {
int low_limit = 0, high_limit = arr.length, mid = -1;
while (low_limit < high_limit) {
mid = (low_limit + high_limit) / 2;
if (arr[mid] >= x){
high_limit = mid;
}else{
low_limit = mid + 1;
}
}
return low_limit;
}
static int upper_bound(int[] arr, int x) {
int low_limit = 0, high_limit = arr.length, mid = -1;
while (low_limit < high_limit) {
mid = (low_limit + high_limit) / 2;
if (arr[mid] > x){
high_limit = mid;
}else{
low_limit = mid + 1;
}
}
return low_limit;
}
static int binarySearch(int[] ar,int n,int num){
int low=0,high=n-1;
while (low<=high){
int mid=(low+high)/2;
if(ar[mid]==num){
return mid;
}else if(ar[mid]>num){
high=mid-1;
}else {
low=mid+1;
}
}
return -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main{
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] nextArray(long n) {
long[] a = new long[(int) n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static class FastWriter extends PrintWriter {
FastWriter(){
super(System.out);
}
void println(int[] array) {
for(int i=0; i<array.length; i++) {
print(array[i]+" ");
}
println();
}
void println(long [] array) {
for(int i=0; i<array.length; i++) {
print(array[i]+" ");
}
println();
}
}
static class Interval {
long start,end;
Interval(long start, long end)
{
this.start=start;
this.end=end;
}
}
static int MOD=998244353;
public static void main(String[] args){
FastScanner in = new FastScanner();
FastWriter out = new FastWriter();
Scanner sc=new Scanner(System.in);
int t=in.nextInt();
//int t=1;
while (t-->0){
int n=in.nextInt();
int[] ar=in.nextArray(n);
int[] level=new int[1005];
int j=1;
level[1]=1;
out.println(1);
for (int i = 1; i < n; i++) {
if(ar[i]==1) {
j++;
level[j] = 1;
}else {
while (j>=1){
if(level[j]+1!=ar[i]){
j--;
}else {
break;
}
}
level[j]++;
}
for (int k = 1; k <= j; k++) {
if(k==j){
out.print(level[k]);
}else {
out.print(level[k]+".");
}
}
out.println();
}
}
out.close();
}
static int highestPowerOf2(int n) {
if (n < 1){ return 0; }
int res = 1;
for (int i = 0; i < 8 * Integer.BYTES; i++) {
int curr = 1 << i;
if (curr > n){ break; }
res = curr;
}
return res;
}
static int reduceFraction(int x, int y) {
int d= gcd(x, y);
return x/d+y/d;
}
static boolean subset(int[] ar,int n,int sum){
if(sum==0){
return true;
}
if(n<0||sum<0){
return false;
}
return subset(ar,n-1,sum)||subset(ar,n-1,sum-ar[n]);
}
static boolean isPrime(int n){
if(n<=1) return false;
for(int i = 2;i<=Math.sqrt(n);i++){
if (n % i == 0) return false;
}
return true;
}
static int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long gcd(long a, long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
static boolean isPowerOfTwo(int n) {
if(n==0||n==1){return false;}
double v = Math.log(n) / Math.log(2);
return ((int)(Math.ceil(v)) == (int)(Math.floor(v)));
}
static boolean isPerfectSquare(int x){
if (x >= 0) {
int sr = (int)Math.sqrt(x);
return ((sr * sr) == x);
}
return false;
}
static int lower_bound(int[] arr, int x) {
int low_limit = 0, high_limit = arr.length, mid = -1;
while (low_limit < high_limit) {
mid = (low_limit + high_limit) / 2;
if (arr[mid] >= x){
high_limit = mid;
}else{
low_limit = mid + 1;
}
}
return low_limit;
}
static int upper_bound(int[] arr, int x) {
int low_limit = 0, high_limit = arr.length, mid = -1;
while (low_limit < high_limit) {
mid = (low_limit + high_limit) / 2;
if (arr[mid] > x){
high_limit = mid;
}else{
low_limit = mid + 1;
}
}
return low_limit;
}
static int binarySearch(int[] ar,int n,int num){
int low=0,high=n-1;
while (low<=high){
int mid=(low+high)/2;
if(ar[mid]==num){
return mid;
}else if(ar[mid]>num){
high=mid-1;
}else {
low=mid+1;
}
}
return -1;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,660 | 3,889 |
3,462 |
import java.text.DecimalFormat;
import java.util.Scanner;
public class A {
public static void main(String[] args){
try{
Scanner scanner = new Scanner(System.in);
String in = scanner.next();
int max = 0;
for(int j=0;j<in.length()-1;j++){
for(int i=j;i<in.length();i++){
if(in.indexOf(in.substring(j, i)) != in.lastIndexOf(in.substring(j, i)) && (i-j)>max){
max = i-j;
}
}
}
System.out.println(max);
}catch(Exception e){
e.printStackTrace();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.text.DecimalFormat;
import java.util.Scanner;
public class A {
public static void main(String[] args){
try{
Scanner scanner = new Scanner(System.in);
String in = scanner.next();
int max = 0;
for(int j=0;j<in.length()-1;j++){
for(int i=j;i<in.length();i++){
if(in.indexOf(in.substring(j, i)) != in.lastIndexOf(in.substring(j, i)) && (i-j)>max){
max = i-j;
}
}
}
System.out.println(max);
}catch(Exception e){
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.text.DecimalFormat;
import java.util.Scanner;
public class A {
public static void main(String[] args){
try{
Scanner scanner = new Scanner(System.in);
String in = scanner.next();
int max = 0;
for(int j=0;j<in.length()-1;j++){
for(int i=j;i<in.length();i++){
if(in.indexOf(in.substring(j, i)) != in.lastIndexOf(in.substring(j, i)) && (i-j)>max){
max = i-j;
}
}
}
System.out.println(max);
}catch(Exception e){
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 486 | 3,456 |
3,241 |
import java.io. *;
import java.util. *;
public class Main {
void solve(Scanner in, PrintWriter out) {
out.println(25);
}
void run() {
Locale.setDefault(Locale.US);
try (
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
)
{
solve(in, out);
}
}
public static void main(String args[]) {
new Main().run();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io. *;
import java.util. *;
public class Main {
void solve(Scanner in, PrintWriter out) {
out.println(25);
}
void run() {
Locale.setDefault(Locale.US);
try (
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
)
{
solve(in, out);
}
}
public static void main(String args[]) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io. *;
import java.util. *;
public class Main {
void solve(Scanner in, PrintWriter out) {
out.println(25);
}
void run() {
Locale.setDefault(Locale.US);
try (
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
)
{
solve(in, out);
}
}
public static void main(String args[]) {
new Main().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 458 | 3,235 |
45 |
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Objects;
import java.util.Stack;
import java.util.StringTokenizer;
public class Test
{
static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args)throws Exception
{
Reader.init(System.in);
int n = Reader.nextInt();
int p = Reader.nextInt();
int L = Reader.nextInt();
int R = Reader.nextInt();
int a = 1;
int b = n;
int res = 0;
if(a == L && b == R)
{
res = 0;
}
else if(L != a && R != b && p >= L && p <= R)
{
res = Math.min(p-L, R-p);
res += R- L + 2;
}
else if(L != a && R != b && p < L )
{
res += L-p + 1;
res += R - L +1;
}
else if(L != a && R != b && p > R)
{
res += p-R + 1;
res += R - L +1;
}
else if(a == L && p >=L && p<=R)
{
res += R - p + 1;
}
else if(R == b && p>=L && p<=R)
{
res += p - L + 1;
}
else if(a == L && p > R)
{
res += p - R + 1;
}
else if(R == b && p<L)
{
res += L - p + 1;
}
pw.print(res);
pw.close();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
public static int pars(String x) {
int num = 0;
int i = 0;
if (x.charAt(0) == '-') {
i = 1;
}
for (; i < x.length(); i++) {
num = num * 10 + (x.charAt(i) - '0');
}
if (x.charAt(0) == '-') {
return -num;
}
return num;
}
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
static void init(FileReader input) {
reader = new BufferedReader(input);
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(
reader.readLine());
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return pars(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Objects;
import java.util.Stack;
import java.util.StringTokenizer;
public class Test
{
static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args)throws Exception
{
Reader.init(System.in);
int n = Reader.nextInt();
int p = Reader.nextInt();
int L = Reader.nextInt();
int R = Reader.nextInt();
int a = 1;
int b = n;
int res = 0;
if(a == L && b == R)
{
res = 0;
}
else if(L != a && R != b && p >= L && p <= R)
{
res = Math.min(p-L, R-p);
res += R- L + 2;
}
else if(L != a && R != b && p < L )
{
res += L-p + 1;
res += R - L +1;
}
else if(L != a && R != b && p > R)
{
res += p-R + 1;
res += R - L +1;
}
else if(a == L && p >=L && p<=R)
{
res += R - p + 1;
}
else if(R == b && p>=L && p<=R)
{
res += p - L + 1;
}
else if(a == L && p > R)
{
res += p - R + 1;
}
else if(R == b && p<L)
{
res += L - p + 1;
}
pw.print(res);
pw.close();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
public static int pars(String x) {
int num = 0;
int i = 0;
if (x.charAt(0) == '-') {
i = 1;
}
for (; i < x.length(); i++) {
num = num * 10 + (x.charAt(i) - '0');
}
if (x.charAt(0) == '-') {
return -num;
}
return num;
}
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
static void init(FileReader input) {
reader = new BufferedReader(input);
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(
reader.readLine());
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return pars(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Objects;
import java.util.Stack;
import java.util.StringTokenizer;
public class Test
{
static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args)throws Exception
{
Reader.init(System.in);
int n = Reader.nextInt();
int p = Reader.nextInt();
int L = Reader.nextInt();
int R = Reader.nextInt();
int a = 1;
int b = n;
int res = 0;
if(a == L && b == R)
{
res = 0;
}
else if(L != a && R != b && p >= L && p <= R)
{
res = Math.min(p-L, R-p);
res += R- L + 2;
}
else if(L != a && R != b && p < L )
{
res += L-p + 1;
res += R - L +1;
}
else if(L != a && R != b && p > R)
{
res += p-R + 1;
res += R - L +1;
}
else if(a == L && p >=L && p<=R)
{
res += R - p + 1;
}
else if(R == b && p>=L && p<=R)
{
res += p - L + 1;
}
else if(a == L && p > R)
{
res += p - R + 1;
}
else if(R == b && p<L)
{
res += L - p + 1;
}
pw.print(res);
pw.close();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
public static int pars(String x) {
int num = 0;
int i = 0;
if (x.charAt(0) == '-') {
i = 1;
}
for (; i < x.length(); i++) {
num = num * 10 + (x.charAt(i) - '0');
}
if (x.charAt(0) == '-') {
return -num;
}
return num;
}
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
static void init(FileReader input) {
reader = new BufferedReader(input);
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(
reader.readLine());
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return pars(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 999 | 45 |
1,232 |
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long numQuestions = in.nextInt();
long numCorrectlyAnsweredQuestions = in.nextInt();
long sizeForDoublingScore = in.nextInt();
long score = 0;
long numIncorrectlyAnsweredQuestions = numQuestions - numCorrectlyAnsweredQuestions;
long numDoublings = Math.max(numQuestions / sizeForDoublingScore - numIncorrectlyAnsweredQuestions, 0);
score += 2*sizeForDoublingScore*Long.parseLong(new BigInteger("2").modPow(new BigInteger(String.valueOf(numDoublings)), new BigInteger("1000000009")).subtract(BigInteger.ONE).toString());
score += numCorrectlyAnsweredQuestions - sizeForDoublingScore*numDoublings;
score %= 1000000009;
out.println(score);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long numQuestions = in.nextInt();
long numCorrectlyAnsweredQuestions = in.nextInt();
long sizeForDoublingScore = in.nextInt();
long score = 0;
long numIncorrectlyAnsweredQuestions = numQuestions - numCorrectlyAnsweredQuestions;
long numDoublings = Math.max(numQuestions / sizeForDoublingScore - numIncorrectlyAnsweredQuestions, 0);
score += 2*sizeForDoublingScore*Long.parseLong(new BigInteger("2").modPow(new BigInteger(String.valueOf(numDoublings)), new BigInteger("1000000009")).subtract(BigInteger.ONE).toString());
score += numCorrectlyAnsweredQuestions - sizeForDoublingScore*numDoublings;
score %= 1000000009;
out.println(score);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long numQuestions = in.nextInt();
long numCorrectlyAnsweredQuestions = in.nextInt();
long sizeForDoublingScore = in.nextInt();
long score = 0;
long numIncorrectlyAnsweredQuestions = numQuestions - numCorrectlyAnsweredQuestions;
long numDoublings = Math.max(numQuestions / sizeForDoublingScore - numIncorrectlyAnsweredQuestions, 0);
score += 2*sizeForDoublingScore*Long.parseLong(new BigInteger("2").modPow(new BigInteger(String.valueOf(numDoublings)), new BigInteger("1000000009")).subtract(BigInteger.ONE).toString());
score += numCorrectlyAnsweredQuestions - sizeForDoublingScore*numDoublings;
score %= 1000000009;
out.println(score);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 675 | 1,231 |
1,918 |
import java.io.*;
import java.util.*;
public class A implements Runnable {
private MyScanner in;
private PrintWriter out;
private void solve() {
int n = in.nextInt();
int[] a = new int[n];
int all = 0;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
all += a[i];
}
Arrays.sort(a);
int sum = 0, ans = 0;
for (int i = n - 1; i >= 0; --i) {
sum += a[i];
++ans;
if (sum > all - sum) {
break;
}
}
out.println(ans);
}
@Override
public void run() {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
public static void main(String[] args) {
new A().run();
}
static class MyScanner {
private BufferedReader br;
private StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
return st.nextToken();
}
public String nextLine() {
try {
st = null;
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean hasNext() {
if (st != null && st.hasMoreTokens()) {
return true;
}
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
if (st != null && st.hasMoreTokens()) {
return true;
}
}
} catch (IOException e) {
e.printStackTrace();
}
return false;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A implements Runnable {
private MyScanner in;
private PrintWriter out;
private void solve() {
int n = in.nextInt();
int[] a = new int[n];
int all = 0;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
all += a[i];
}
Arrays.sort(a);
int sum = 0, ans = 0;
for (int i = n - 1; i >= 0; --i) {
sum += a[i];
++ans;
if (sum > all - sum) {
break;
}
}
out.println(ans);
}
@Override
public void run() {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
public static void main(String[] args) {
new A().run();
}
static class MyScanner {
private BufferedReader br;
private StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
return st.nextToken();
}
public String nextLine() {
try {
st = null;
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean hasNext() {
if (st != null && st.hasMoreTokens()) {
return true;
}
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
if (st != null && st.hasMoreTokens()) {
return true;
}
}
} catch (IOException e) {
e.printStackTrace();
}
return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A implements Runnable {
private MyScanner in;
private PrintWriter out;
private void solve() {
int n = in.nextInt();
int[] a = new int[n];
int all = 0;
for (int i = 0; i < n; ++i) {
a[i] = in.nextInt();
all += a[i];
}
Arrays.sort(a);
int sum = 0, ans = 0;
for (int i = n - 1; i >= 0; --i) {
sum += a[i];
++ans;
if (sum > all - sum) {
break;
}
}
out.println(ans);
}
@Override
public void run() {
in = new MyScanner();
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
public static void main(String[] args) {
new A().run();
}
static class MyScanner {
private BufferedReader br;
private StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public void close() {
try {
br.close();
} catch (IOException e) {
e.printStackTrace();
}
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
return st.nextToken();
}
public String nextLine() {
try {
st = null;
return br.readLine();
} catch (IOException e) {
e.printStackTrace();
return null;
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public boolean hasNext() {
if (st != null && st.hasMoreTokens()) {
return true;
}
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
if (st != null && st.hasMoreTokens()) {
return true;
}
}
} catch (IOException e) {
e.printStackTrace();
}
return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 855 | 1,914 |
1,652 |
import java.io.*;
import java.util.*;
/**
* @author Vaibhav Mittal
*/
public class Main {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int testCases = 1;
Task solver = new Task();
for (int i = 1; i <= testCases; ++i)
solver.solve(in, out);
out.close();
}
}
class Task {
public void solve(Scanner in, PrintWriter out) {
int n = in.nextInt();
int a = in.nextInt();
int b = in.nextInt();
int[] complexity = new int[n];
for (int i = 0; i < n; ++i)
complexity[i] = in.nextInt();
Arrays.sort(complexity);
out.println(complexity[b] - complexity[b - 1]);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/**
* @author Vaibhav Mittal
*/
public class Main {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int testCases = 1;
Task solver = new Task();
for (int i = 1; i <= testCases; ++i)
solver.solve(in, out);
out.close();
}
}
class Task {
public void solve(Scanner in, PrintWriter out) {
int n = in.nextInt();
int a = in.nextInt();
int b = in.nextInt();
int[] complexity = new int[n];
for (int i = 0; i < n; ++i)
complexity[i] = in.nextInt();
Arrays.sort(complexity);
out.println(complexity[b] - complexity[b - 1]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/**
* @author Vaibhav Mittal
*/
public class Main {
public static void main(String[] args) throws Exception {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int testCases = 1;
Task solver = new Task();
for (int i = 1; i <= testCases; ++i)
solver.solve(in, out);
out.close();
}
}
class Task {
public void solve(Scanner in, PrintWriter out) {
int n = in.nextInt();
int a = in.nextInt();
int b = in.nextInt();
int[] complexity = new int[n];
for (int i = 0; i < n; ++i)
complexity[i] = in.nextInt();
Arrays.sort(complexity);
out.println(complexity[b] - complexity[b - 1]);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 526 | 1,649 |
3,008 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
/**
* @author Son-Huy TRAN
*
*/
public class P122A_LuckyDivision {
private static boolean isLuckyNumber(int number) {
while (number > 0) {
int digit = number % 10;
if (digit != 4 && digit != 7) {
return false;
}
number /= 10;
}
return true;
}
private static boolean isAlmostLuckyNumber(int number) {
int max = (int) Math.sqrt(number);
int i = 1;
while (i <= max) {
if (number % i == 0
&& (isLuckyNumber(i) || isLuckyNumber(number / i))) {
return true;
}
i++;
}
return false;
}
/**
* @param args
*/
public static void main(String[] args) {
try {
// begin reading inputs
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(isr);
// reading inputs
int input = Integer.parseInt(reader.readLine());
reader.close();
isr.close();
// end reading inputs
boolean result = isAlmostLuckyNumber(input);
System.out.println(result ? "YES" : "NO");
} catch (Exception e) {
e.printStackTrace();
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
/**
* @author Son-Huy TRAN
*
*/
public class P122A_LuckyDivision {
private static boolean isLuckyNumber(int number) {
while (number > 0) {
int digit = number % 10;
if (digit != 4 && digit != 7) {
return false;
}
number /= 10;
}
return true;
}
private static boolean isAlmostLuckyNumber(int number) {
int max = (int) Math.sqrt(number);
int i = 1;
while (i <= max) {
if (number % i == 0
&& (isLuckyNumber(i) || isLuckyNumber(number / i))) {
return true;
}
i++;
}
return false;
}
/**
* @param args
*/
public static void main(String[] args) {
try {
// begin reading inputs
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(isr);
// reading inputs
int input = Integer.parseInt(reader.readLine());
reader.close();
isr.close();
// end reading inputs
boolean result = isAlmostLuckyNumber(input);
System.out.println(result ? "YES" : "NO");
} catch (Exception e) {
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
/**
* @author Son-Huy TRAN
*
*/
public class P122A_LuckyDivision {
private static boolean isLuckyNumber(int number) {
while (number > 0) {
int digit = number % 10;
if (digit != 4 && digit != 7) {
return false;
}
number /= 10;
}
return true;
}
private static boolean isAlmostLuckyNumber(int number) {
int max = (int) Math.sqrt(number);
int i = 1;
while (i <= max) {
if (number % i == 0
&& (isLuckyNumber(i) || isLuckyNumber(number / i))) {
return true;
}
i++;
}
return false;
}
/**
* @param args
*/
public static void main(String[] args) {
try {
// begin reading inputs
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(isr);
// reading inputs
int input = Integer.parseInt(reader.readLine());
reader.close();
isr.close();
// end reading inputs
boolean result = isAlmostLuckyNumber(input);
System.out.println(result ? "YES" : "NO");
} catch (Exception e) {
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 638 | 3,002 |
252 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class AAA {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n=Integer.parseInt(st.nextToken());
int m=Integer.parseInt(st.nextToken());
String a="";
String b="";
for(int i=0;i<1129;i++) {
a+="1";
b+="8";
}
a+="9";
b+="1";
System.out.println(a);
System.out.println(b);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class AAA {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n=Integer.parseInt(st.nextToken());
int m=Integer.parseInt(st.nextToken());
String a="";
String b="";
for(int i=0;i<1129;i++) {
a+="1";
b+="8";
}
a+="9";
b+="1";
System.out.println(a);
System.out.println(b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class AAA {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n=Integer.parseInt(st.nextToken());
int m=Integer.parseInt(st.nextToken());
String a="";
String b="";
for(int i=0;i<1129;i++) {
a+="1";
b+="8";
}
a+="9";
b+="1";
System.out.println(a);
System.out.println(b);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 466 | 252 |
1,296 |
//package round489;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int[][] M = {
{2, mod-1},
{0, 1}
};
long n = nl();
if(n == 0){
out.println(0);
return;
}
n = n*2%mod;
long K = nl();
int[] v = new int[]{(int)n, 1};
out.println(pow(M, v, K)[0]);
}
///////// begin
public static final int mod = 1000000007;
public static final long m2 = (long)mod*mod;
public static final long BIG = 8L*m2;
// A^e*v
public static int[] pow(int[][] A, int[] v, long e)
{
for(int i = 0;i < v.length;i++){
if(v[i] >= mod)v[i] %= mod;
}
int[][] MUL = A;
for(;e > 0;e>>>=1) {
if((e&1)==1)v = mul(MUL, v);
MUL = p2(MUL);
}
return v;
}
// int matrix*int vector
public static int[] mul(int[][] A, int[] v)
{
int m = A.length;
int n = v.length;
int[] w = new int[m];
for(int i = 0;i < m;i++){
long sum = 0;
for(int k = 0;k < n;k++){
sum += (long)A[i][k] * v[k];
if(sum >= BIG)sum -= BIG;
}
w[i] = (int)(sum % mod);
}
return w;
}
// int matrix^2 (be careful about negative value)
public static int[][] p2(int[][] A)
{
int n = A.length;
int[][] C = new int[n][n];
for(int i = 0;i < n;i++){
long[] sum = new long[n];
for(int k = 0;k < n;k++){
for(int j = 0;j < n;j++){
sum[j] += (long)A[i][k] * A[k][j];
if(sum[j] >= BIG)sum[j] -= BIG;
}
}
for(int j = 0;j < n;j++){
C[i][j] = (int)(sum[j] % mod);
}
}
return C;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package round489;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int[][] M = {
{2, mod-1},
{0, 1}
};
long n = nl();
if(n == 0){
out.println(0);
return;
}
n = n*2%mod;
long K = nl();
int[] v = new int[]{(int)n, 1};
out.println(pow(M, v, K)[0]);
}
///////// begin
public static final int mod = 1000000007;
public static final long m2 = (long)mod*mod;
public static final long BIG = 8L*m2;
// A^e*v
public static int[] pow(int[][] A, int[] v, long e)
{
for(int i = 0;i < v.length;i++){
if(v[i] >= mod)v[i] %= mod;
}
int[][] MUL = A;
for(;e > 0;e>>>=1) {
if((e&1)==1)v = mul(MUL, v);
MUL = p2(MUL);
}
return v;
}
// int matrix*int vector
public static int[] mul(int[][] A, int[] v)
{
int m = A.length;
int n = v.length;
int[] w = new int[m];
for(int i = 0;i < m;i++){
long sum = 0;
for(int k = 0;k < n;k++){
sum += (long)A[i][k] * v[k];
if(sum >= BIG)sum -= BIG;
}
w[i] = (int)(sum % mod);
}
return w;
}
// int matrix^2 (be careful about negative value)
public static int[][] p2(int[][] A)
{
int n = A.length;
int[][] C = new int[n][n];
for(int i = 0;i < n;i++){
long[] sum = new long[n];
for(int k = 0;k < n;k++){
for(int j = 0;j < n;j++){
sum[j] += (long)A[i][k] * A[k][j];
if(sum[j] >= BIG)sum[j] -= BIG;
}
}
for(int j = 0;j < n;j++){
C[i][j] = (int)(sum[j] % mod);
}
}
return C;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package round489;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class C {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int[][] M = {
{2, mod-1},
{0, 1}
};
long n = nl();
if(n == 0){
out.println(0);
return;
}
n = n*2%mod;
long K = nl();
int[] v = new int[]{(int)n, 1};
out.println(pow(M, v, K)[0]);
}
///////// begin
public static final int mod = 1000000007;
public static final long m2 = (long)mod*mod;
public static final long BIG = 8L*m2;
// A^e*v
public static int[] pow(int[][] A, int[] v, long e)
{
for(int i = 0;i < v.length;i++){
if(v[i] >= mod)v[i] %= mod;
}
int[][] MUL = A;
for(;e > 0;e>>>=1) {
if((e&1)==1)v = mul(MUL, v);
MUL = p2(MUL);
}
return v;
}
// int matrix*int vector
public static int[] mul(int[][] A, int[] v)
{
int m = A.length;
int n = v.length;
int[] w = new int[m];
for(int i = 0;i < m;i++){
long sum = 0;
for(int k = 0;k < n;k++){
sum += (long)A[i][k] * v[k];
if(sum >= BIG)sum -= BIG;
}
w[i] = (int)(sum % mod);
}
return w;
}
// int matrix^2 (be careful about negative value)
public static int[][] p2(int[][] A)
{
int n = A.length;
int[][] C = new int[n][n];
for(int i = 0;i < n;i++){
long[] sum = new long[n];
for(int k = 0;k < n;k++){
for(int j = 0;j < n;j++){
sum[j] += (long)A[i][k] * A[k][j];
if(sum[j] >= BIG)sum[j] -= BIG;
}
}
for(int j = 0;j < n;j++){
C[i][j] = (int)(sum[j] % mod);
}
}
return C;
}
void run() throws Exception
{
is = oj ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new C().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private void tr(Object... o) { if(!oj)System.out.println(Arrays.deepToString(o)); }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,775 | 1,294 |
1,507 |
import java.io.*;
import java.util.*;
public class pr169D implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer str;
public void solve() throws IOException {
long l = nextLong();
long r = nextLong();
long x = l ^ r;
long i = 1;
while (x >= i)
i *= 2;
out.println(x > i ? x : i - 1);
}
public String nextToken() throws IOException {
while (str == null || !str.hasMoreTokens()) {
str = new StringTokenizer(in.readLine());
}
return str.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (IOException e) {
}
}
public static void main(String[] args) {
new Thread(new pr169D()).start();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class pr169D implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer str;
public void solve() throws IOException {
long l = nextLong();
long r = nextLong();
long x = l ^ r;
long i = 1;
while (x >= i)
i *= 2;
out.println(x > i ? x : i - 1);
}
public String nextToken() throws IOException {
while (str == null || !str.hasMoreTokens()) {
str = new StringTokenizer(in.readLine());
}
return str.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (IOException e) {
}
}
public static void main(String[] args) {
new Thread(new pr169D()).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class pr169D implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer str;
public void solve() throws IOException {
long l = nextLong();
long r = nextLong();
long x = l ^ r;
long i = 1;
while (x >= i)
i *= 2;
out.println(x > i ? x : i - 1);
}
public String nextToken() throws IOException {
while (str == null || !str.hasMoreTokens()) {
str = new StringTokenizer(in.readLine());
}
return str.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (IOException e) {
}
}
public static void main(String[] args) {
new Thread(new pr169D()).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 611 | 1,505 |
447 |
import java.util.*;
import java.io.*;
import java.math.*;
import java.util.HashMap;
public class Main
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String args[])
{
Reader sc=new Reader();
PrintWriter out=new PrintWriter(System.out);
int n=sc.i();
String s1=sc.s();
String s2=sc.s();
int pos1=-1;
int pos2=-1;
int arr[][][]=new int[100][100][2];
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
{
if(arr[s2.charAt(i)-97][s1.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr[s2.charAt(i)-97][s1.charAt(i)-97][1];
break;
}
arr[s1.charAt(i)-97][s2.charAt(i)-97][0]=1;
arr[s1.charAt(i)-97][s2.charAt(i)-97][1]=i;
}
}
int ham=0;
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
ham++;
}
if(pos1!=-1&&pos2!=-1)
{
System.out.println(ham-2);
System.out.println(pos1+1+" "+(pos2+1));
System.exit(0);
}
int arr1[][]=new int[100][2];
int arr2[][]=new int[100][2];
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
{
if(arr1[s1.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr1[s1.charAt(i)-97][1];
break;
}
if(arr2[s2.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr2[s2.charAt(i)-97][1];
break;
}
arr1[s2.charAt(i)-97][0]=1;
arr1[s2.charAt(i)-97][1]=i;
arr2[s1.charAt(i)-97][0]=1;
arr2[s1.charAt(i)-97][1]=i;
}
}
if(pos1!=-1&&pos2!=-1)
{
System.out.println(ham-1);
System.out.println(pos1+1+" "+(pos2+1));
System.exit(0);
}
System.out.println(ham);
System.out.println(pos1+" "+pos2);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
import java.util.HashMap;
public class Main
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String args[])
{
Reader sc=new Reader();
PrintWriter out=new PrintWriter(System.out);
int n=sc.i();
String s1=sc.s();
String s2=sc.s();
int pos1=-1;
int pos2=-1;
int arr[][][]=new int[100][100][2];
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
{
if(arr[s2.charAt(i)-97][s1.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr[s2.charAt(i)-97][s1.charAt(i)-97][1];
break;
}
arr[s1.charAt(i)-97][s2.charAt(i)-97][0]=1;
arr[s1.charAt(i)-97][s2.charAt(i)-97][1]=i;
}
}
int ham=0;
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
ham++;
}
if(pos1!=-1&&pos2!=-1)
{
System.out.println(ham-2);
System.out.println(pos1+1+" "+(pos2+1));
System.exit(0);
}
int arr1[][]=new int[100][2];
int arr2[][]=new int[100][2];
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
{
if(arr1[s1.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr1[s1.charAt(i)-97][1];
break;
}
if(arr2[s2.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr2[s2.charAt(i)-97][1];
break;
}
arr1[s2.charAt(i)-97][0]=1;
arr1[s2.charAt(i)-97][1]=i;
arr2[s1.charAt(i)-97][0]=1;
arr2[s1.charAt(i)-97][1]=i;
}
}
if(pos1!=-1&&pos2!=-1)
{
System.out.println(ham-1);
System.out.println(pos1+1+" "+(pos2+1));
System.exit(0);
}
System.out.println(ham);
System.out.println(pos1+" "+pos2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
import java.util.HashMap;
public class Main
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static void main(String args[])
{
Reader sc=new Reader();
PrintWriter out=new PrintWriter(System.out);
int n=sc.i();
String s1=sc.s();
String s2=sc.s();
int pos1=-1;
int pos2=-1;
int arr[][][]=new int[100][100][2];
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
{
if(arr[s2.charAt(i)-97][s1.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr[s2.charAt(i)-97][s1.charAt(i)-97][1];
break;
}
arr[s1.charAt(i)-97][s2.charAt(i)-97][0]=1;
arr[s1.charAt(i)-97][s2.charAt(i)-97][1]=i;
}
}
int ham=0;
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
ham++;
}
if(pos1!=-1&&pos2!=-1)
{
System.out.println(ham-2);
System.out.println(pos1+1+" "+(pos2+1));
System.exit(0);
}
int arr1[][]=new int[100][2];
int arr2[][]=new int[100][2];
for(int i=0;i<n;i++)
{
if(s1.charAt(i)!=s2.charAt(i))
{
if(arr1[s1.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr1[s1.charAt(i)-97][1];
break;
}
if(arr2[s2.charAt(i)-97][0]==1)
{
pos2=i;
pos1=arr2[s2.charAt(i)-97][1];
break;
}
arr1[s2.charAt(i)-97][0]=1;
arr1[s2.charAt(i)-97][1]=i;
arr2[s1.charAt(i)-97][0]=1;
arr2[s1.charAt(i)-97][1]=i;
}
}
if(pos1!=-1&&pos2!=-1)
{
System.out.println(ham-1);
System.out.println(pos1+1+" "+(pos2+1));
System.exit(0);
}
System.out.println(ham);
System.out.println(pos1+" "+pos2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,470 | 446 |
3,673 |
import java.io.*;
import java.util.ArrayList;
import java.util.StringTokenizer;
public class Solution {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
int[][] or;
int n;
int m;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int k = in.nextInt();
ArrayList<Point> arr1 = new ArrayList<>();
ArrayList<Point> arr2 = new ArrayList<>();
for (int i = 0; i < k; i++) {
arr1.add(new Point(in.nextInt(), in.nextInt()));
}
or = new int[n + 1][m + 1];
for (int i = 0; i < k; i++) {
or[arr1.get(i).x][arr1.get(i).y] = -1;
}
Point lastValue = arr1.get(0);
while (arr1.size() > 0 || arr2.size() > 0) {
for (Point p : arr1) {
if (valid(new Point(p.x - 1, p.y))) {
arr2.add(new Point(p.x - 1, p.y));
}
if (valid(new Point(p.x + 1, p.y))) {
arr2.add(new Point(p.x + 1, p.y));
}
if (valid(new Point(p.x, p.y - 1))) {
arr2.add(new Point(p.x, p.y - 1));
}
if (valid(new Point(p.x, p.y + 1))) {
arr2.add(new Point(p.x, p.y + 1));
}
}
arr1.clear();
if (arr2.size() > 0) {
lastValue = arr2.get(0);
}
for (Point p : arr2) {
if (valid(new Point(p.x - 1, p.y))) {
arr1.add(new Point(p.x - 1, p.y));
}
if (valid(new Point(p.x + 1, p.y))) {
arr1.add(new Point(p.x + 1, p.y));
}
if (valid(new Point(p.x, p.y - 1))) {
arr1.add(new Point(p.x, p.y - 1));
}
if (valid(new Point(p.x, p.y + 1))) {
arr1.add(new Point(p.x, p.y + 1));
}
}
arr2.clear();
if (arr1.size() > 0) {
lastValue = arr1.get(0);
}
}
out.println(lastValue.x + " " + lastValue.y);
}
boolean valid(Point p) {
if ((p.x < 1 || p.x > n) ||
(p.y < 1 || p.y > m) ||
or[p.x][p.y] == -1) {
return false;
}
or[p.x][p.y] = -1;
return true;
}
class Point {
int x;
int y;
public Point(int a, int b) {
x = a;
y = b;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.ArrayList;
import java.util.StringTokenizer;
public class Solution {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
int[][] or;
int n;
int m;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int k = in.nextInt();
ArrayList<Point> arr1 = new ArrayList<>();
ArrayList<Point> arr2 = new ArrayList<>();
for (int i = 0; i < k; i++) {
arr1.add(new Point(in.nextInt(), in.nextInt()));
}
or = new int[n + 1][m + 1];
for (int i = 0; i < k; i++) {
or[arr1.get(i).x][arr1.get(i).y] = -1;
}
Point lastValue = arr1.get(0);
while (arr1.size() > 0 || arr2.size() > 0) {
for (Point p : arr1) {
if (valid(new Point(p.x - 1, p.y))) {
arr2.add(new Point(p.x - 1, p.y));
}
if (valid(new Point(p.x + 1, p.y))) {
arr2.add(new Point(p.x + 1, p.y));
}
if (valid(new Point(p.x, p.y - 1))) {
arr2.add(new Point(p.x, p.y - 1));
}
if (valid(new Point(p.x, p.y + 1))) {
arr2.add(new Point(p.x, p.y + 1));
}
}
arr1.clear();
if (arr2.size() > 0) {
lastValue = arr2.get(0);
}
for (Point p : arr2) {
if (valid(new Point(p.x - 1, p.y))) {
arr1.add(new Point(p.x - 1, p.y));
}
if (valid(new Point(p.x + 1, p.y))) {
arr1.add(new Point(p.x + 1, p.y));
}
if (valid(new Point(p.x, p.y - 1))) {
arr1.add(new Point(p.x, p.y - 1));
}
if (valid(new Point(p.x, p.y + 1))) {
arr1.add(new Point(p.x, p.y + 1));
}
}
arr2.clear();
if (arr1.size() > 0) {
lastValue = arr1.get(0);
}
}
out.println(lastValue.x + " " + lastValue.y);
}
boolean valid(Point p) {
if ((p.x < 1 || p.x > n) ||
(p.y < 1 || p.y > m) ||
or[p.x][p.y] == -1) {
return false;
}
or[p.x][p.y] = -1;
return true;
}
class Point {
int x;
int y;
public Point(int a, int b) {
x = a;
y = b;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.ArrayList;
import java.util.StringTokenizer;
public class Solution {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
int[][] or;
int n;
int m;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int k = in.nextInt();
ArrayList<Point> arr1 = new ArrayList<>();
ArrayList<Point> arr2 = new ArrayList<>();
for (int i = 0; i < k; i++) {
arr1.add(new Point(in.nextInt(), in.nextInt()));
}
or = new int[n + 1][m + 1];
for (int i = 0; i < k; i++) {
or[arr1.get(i).x][arr1.get(i).y] = -1;
}
Point lastValue = arr1.get(0);
while (arr1.size() > 0 || arr2.size() > 0) {
for (Point p : arr1) {
if (valid(new Point(p.x - 1, p.y))) {
arr2.add(new Point(p.x - 1, p.y));
}
if (valid(new Point(p.x + 1, p.y))) {
arr2.add(new Point(p.x + 1, p.y));
}
if (valid(new Point(p.x, p.y - 1))) {
arr2.add(new Point(p.x, p.y - 1));
}
if (valid(new Point(p.x, p.y + 1))) {
arr2.add(new Point(p.x, p.y + 1));
}
}
arr1.clear();
if (arr2.size() > 0) {
lastValue = arr2.get(0);
}
for (Point p : arr2) {
if (valid(new Point(p.x - 1, p.y))) {
arr1.add(new Point(p.x - 1, p.y));
}
if (valid(new Point(p.x + 1, p.y))) {
arr1.add(new Point(p.x + 1, p.y));
}
if (valid(new Point(p.x, p.y - 1))) {
arr1.add(new Point(p.x, p.y - 1));
}
if (valid(new Point(p.x, p.y + 1))) {
arr1.add(new Point(p.x, p.y + 1));
}
}
arr2.clear();
if (arr1.size() > 0) {
lastValue = arr1.get(0);
}
}
out.println(lastValue.x + " " + lastValue.y);
}
boolean valid(Point p) {
if ((p.x < 1 || p.x > n) ||
(p.y < 1 || p.y > m) ||
or[p.x][p.y] == -1) {
return false;
}
or[p.x][p.y] = -1;
return true;
}
class Point {
int x;
int y;
public Point(int a, int b) {
x = a;
y = b;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,253 | 3,665 |
1,176 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static int[] UPPER = new int[64], LOWER = new int[64];
static long[][][] memo;
static long dp(int bit, int lims, int digs)
{
if(bit == -1)
return digs == 0 ? 1 : 0;
if(memo[lims][bit][digs] != -1)
return memo[lims][bit][digs];
long ret = 0;
for(int d = 0, end = digs < 10 ? digs + 1 : 10; d < end; ++d)
if(((lims & 1) == 1 || d >= LOWER[bit]) && ((lims & 2) == 2 || d <= UPPER[bit]))
ret += dp(bit - 1, lims | (d > LOWER[bit] ? 1 : 0) | (d < UPPER[bit] ? 2 : 0), digs - d);
return memo[lims][bit][digs] = ret;
}
static void create(int[] x, long n)
{
for(int i = 0; i < 64; ++i)
{
x[i] = (int) (n % 10);
n /= 10;
}
}
static void prepMemo(int sod)
{
memo = new long[4][64][sod + 1];
for(long[][] x: memo)
for(long[] y: x)
Arrays.fill(y, -1);
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = sc.nextLong(), s = sc.nextLong();
create(UPPER, n);
long ans = 0;
for(int sod = 1; sod <= 162; ++sod)
{
create(LOWER, s + sod);
prepMemo(sod);
ans += dp(63, 0, sod);
}
out.println(ans);
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException{ br = new BufferedReader(new FileReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static int[] UPPER = new int[64], LOWER = new int[64];
static long[][][] memo;
static long dp(int bit, int lims, int digs)
{
if(bit == -1)
return digs == 0 ? 1 : 0;
if(memo[lims][bit][digs] != -1)
return memo[lims][bit][digs];
long ret = 0;
for(int d = 0, end = digs < 10 ? digs + 1 : 10; d < end; ++d)
if(((lims & 1) == 1 || d >= LOWER[bit]) && ((lims & 2) == 2 || d <= UPPER[bit]))
ret += dp(bit - 1, lims | (d > LOWER[bit] ? 1 : 0) | (d < UPPER[bit] ? 2 : 0), digs - d);
return memo[lims][bit][digs] = ret;
}
static void create(int[] x, long n)
{
for(int i = 0; i < 64; ++i)
{
x[i] = (int) (n % 10);
n /= 10;
}
}
static void prepMemo(int sod)
{
memo = new long[4][64][sod + 1];
for(long[][] x: memo)
for(long[] y: x)
Arrays.fill(y, -1);
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = sc.nextLong(), s = sc.nextLong();
create(UPPER, n);
long ans = 0;
for(int sod = 1; sod <= 162; ++sod)
{
create(LOWER, s + sod);
prepMemo(sod);
ans += dp(63, 0, sod);
}
out.println(ans);
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException{ br = new BufferedReader(new FileReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
public class A {
static int[] UPPER = new int[64], LOWER = new int[64];
static long[][][] memo;
static long dp(int bit, int lims, int digs)
{
if(bit == -1)
return digs == 0 ? 1 : 0;
if(memo[lims][bit][digs] != -1)
return memo[lims][bit][digs];
long ret = 0;
for(int d = 0, end = digs < 10 ? digs + 1 : 10; d < end; ++d)
if(((lims & 1) == 1 || d >= LOWER[bit]) && ((lims & 2) == 2 || d <= UPPER[bit]))
ret += dp(bit - 1, lims | (d > LOWER[bit] ? 1 : 0) | (d < UPPER[bit] ? 2 : 0), digs - d);
return memo[lims][bit][digs] = ret;
}
static void create(int[] x, long n)
{
for(int i = 0; i < 64; ++i)
{
x[i] = (int) (n % 10);
n /= 10;
}
}
static void prepMemo(int sod)
{
memo = new long[4][64][sod + 1];
for(long[][] x: memo)
for(long[] y: x)
Arrays.fill(y, -1);
}
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
long n = sc.nextLong(), s = sc.nextLong();
create(UPPER, n);
long ans = 0;
for(int sod = 1; sod <= 162; ++sod)
{
create(LOWER, s + sod);
prepMemo(sod);
ans += dp(63, 0, sod);
}
out.println(ans);
out.close();
}
static class Scanner
{
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException{ br = new BufferedReader(new FileReader(s));}
public String next() throws IOException
{
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public double nextDouble() throws IOException { return Double.parseDouble(next()); }
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,034 | 1,175 |
464 |
import java.io.*;
import java.util.*;
/*
* Heart beats fast
* Colors and promises
* How to be brave
* How can I love when I am afraid...
*/
//read the question correctly (is y a vowel? what are the exact constraints?)
//look out for SPECIAL CASES (n=1?) and overflow (ll vs int?)
//always declare multidimensional arrays as [2][n] not [n][2]
//it can lead to upto 2-3x diff in runtime
//declare int/long tries with 16 array size due to object overhead :D
public class Main
{
public static void main(String[] args) throws Exception
{
int n=ni();
Map<String, Integer> hola=new HashMap<String,Integer>();
hola.put("S", 0);
hola.put("XS", 0);
hola.put("XXS", 0);
hola.put("XXXS", 0);
hola.put("M", 0);
hola.put("L", 0);
hola.put("XL", 0);
hola.put("XXL", 0);
hola.put("XXXL", 0);
for(int i=0; i<n; i++)
{
String te=ns();
hola.put(te,hola.get(te)+1);
}
for(int i=0; i<n; i++)
{
String te=ns();
hola.put(te,hola.get(te)-1);
}
int ans=0;
for(int te:hola.values())
{
ans+=max(te,0);
}
pr(ans);
System.out.print(output);
}
///////////////////////////////////////////
///////////////////////////////////////////
///template from here
static int pow(int a, int b)
{
int c=1;
while(b>0)
{
if(b%2!=0)
c*=a;
a*=a;
}
return c;
}
static class pair
{
int a, b;
pair(){}
pair(int c,int d){a=c;b=d;}
}
static interface combiner
{
public long combine(long a,long b);
}
static final long mod=1000000007;
static final double eps=1e-9;
static final long inf=100000000000000000L;
static Reader in=new Reader();
static StringBuilder output=new StringBuilder();
static Random rn=new Random();
static void reverse(int[]a){for(int i=0; i<a.length/2; i++){a[i]^=a[a.length-i-1];a[a.length-i-1]^=a[i];a[i]^=a[a.length-i-1];}}
static void sort(int[]a)
{
int te;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
a[i]^=a[te];
a[te]^=a[i];
a[i]^=a[te];
}
}
Arrays.sort(a);
}
static void sort(long[]a)
{
int te;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
a[i]^=a[te];
a[te]^=a[i];
a[i]^=a[te];
}
}
Arrays.sort(a);
}
static void sort(double[]a)
{
int te;
double te1;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
te1=a[te];
a[te]=a[i];
a[i]=te1;
}
}
Arrays.sort(a);
}
static void sort(int[][]a)
{
Arrays.sort(a, new Comparator<int[]>()
{
public int compare(int[]a,int[]b)
{
if(a[0]>b[0])
return -1;
if(b[0]>a[0])
return 1;
return 0;
}
});
}
static void sort(pair[]a)
{
Arrays.sort(a,new Comparator<pair>()
{
@Override
public int compare(pair a,pair b)
{
if(a.a>b.a)
return 1;
if(b.a>a.a)
return -1;
return 0;
}
});
}
static int log2n(long a)
{
int te=0;
while(a>0)
{
a>>=1;
++te;
}
return te;
}
static class vectorl implements Iterable<Long>
{
long a[];
int size;
vectorl(){a=new long[10];size=0;}
vectorl(int n){a=new long[n];size=0;}
public void add(long b){if(++size==a.length)a=Arrays.copyOf(a, 2*size);a[size-1]=b;}
public void sort(){Arrays.sort(a, 0, size);}
public void sort(int l, int r){Arrays.sort(a, l, r);}
@Override
public Iterator<Long> iterator() {
Iterator<Long> hola=new Iterator<Long>()
{
int cur=0;
@Override
public boolean hasNext() {
return cur<size;
}
@Override
public Long next() {
return a[cur++];
}
};
return hola;
}
}
static class vector implements Iterable<Integer>
{
int a[],size;
vector(){a=new int[10];size=0;}
vector(int n){a=new int[n];size=0;}
public void add(int b){if(++size==a.length)a=Arrays.copyOf(a, 2*size);a[size-1]=b;}
public void sort(){Arrays.sort(a, 0, size);}
public void sort(int l, int r){Arrays.sort(a, l, r);}
@Override
public Iterator<Integer> iterator() {
Iterator<Integer> hola=new Iterator<Integer>()
{
int cur=0;
@Override
public boolean hasNext() {
return cur<size;
}
@Override
public Integer next() {
return a[cur++];
}
};
return hola;
}
}
//output functions////////////////
static void pr(Object a){output.append(a+"\n");}
static void pr(){output.append("\n");}
static void p(Object a){output.append(a);}
static void pra(int[]a){for(int i:a)output.append(i+" ");output.append("\n");}
static void pra(long[]a){for(long i:a)output.append(i+" ");output.append("\n");}
static void pra(String[]a){for(String i:a)output.append(i+" ");output.append("\n");}
static void pra(double[]a){for(double i:a)output.append(i+" ");output.append("\n");}
static void sop(Object a){System.out.println(a);}
static void flush(){System.out.println(output);output=new StringBuilder();}
//////////////////////////////////
//input functions/////////////////
static int ni(){return Integer.parseInt(in.next());}
static long nl(){return Long.parseLong(in.next());}
static String ns(){return in.next();}
static double nd(){return Double.parseDouble(in.next());}
static int[] nia(int n){int a[]=new int[n];for(int i=0; i<n; i++)a[i]=ni();return a;}
static int[] pnia(int n){int a[]=new int[n+1];for(int i=1; i<=n; i++)a[i]=ni();return a;}
static long[] nla(int n){long a[]=new long[n];for(int i=0; i<n; i++)a[i]=nl();return a;}
static String[] nsa(int n){String a[]=new String[n];for(int i=0; i<n; i++)a[i]=ns();return a;}
static double[] nda(int n){double a[]=new double[n];for(int i=0; i<n; i++)a[i]=nd();return a;}
//////////////////////////////////
//some utility functions
static void exit(){System.out.print(output);System.exit(0);}
static int min(int... a){int min=a[0];for(int i:a)min=Math.min(min, i);return min;}
static int max(int... a){int max=a[0];for(int i:a)max=Math.max(max, i);return max;}
static int gcd(int... a){int gcd=a[0];for(int i:a)gcd=gcd(gcd, i);return gcd;}
static long min(long... a){long min=a[0];for(long i:a)min=Math.min(min, i);return min;}
static long max(long... a){long max=a[0];for(long i:a)max=Math.max(max, i);return max;}
static long gcd(long... a){long gcd=a[0];for(long i:a)gcd=gcd(gcd, i);return gcd;}
static String pr(String a, long b){String c="";while(b>0){if(b%2==1)c=c.concat(a);a=a.concat(a);b>>=1;}return c;}
static long powm(long a, long b, long m){long an=1;long c=a;while(b>0){if(b%2==1)an=(an*c)%m;c=(c*c)%m;b>>=1;}return an;}
static int gcd(int a, int b){if(b==0)return a;return gcd(b, a%b);}
static long gcd(long a, long b){if(b==0)return a;return gcd(b, a%b);}
static class Reader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Reader() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/*
* Heart beats fast
* Colors and promises
* How to be brave
* How can I love when I am afraid...
*/
//read the question correctly (is y a vowel? what are the exact constraints?)
//look out for SPECIAL CASES (n=1?) and overflow (ll vs int?)
//always declare multidimensional arrays as [2][n] not [n][2]
//it can lead to upto 2-3x diff in runtime
//declare int/long tries with 16 array size due to object overhead :D
public class Main
{
public static void main(String[] args) throws Exception
{
int n=ni();
Map<String, Integer> hola=new HashMap<String,Integer>();
hola.put("S", 0);
hola.put("XS", 0);
hola.put("XXS", 0);
hola.put("XXXS", 0);
hola.put("M", 0);
hola.put("L", 0);
hola.put("XL", 0);
hola.put("XXL", 0);
hola.put("XXXL", 0);
for(int i=0; i<n; i++)
{
String te=ns();
hola.put(te,hola.get(te)+1);
}
for(int i=0; i<n; i++)
{
String te=ns();
hola.put(te,hola.get(te)-1);
}
int ans=0;
for(int te:hola.values())
{
ans+=max(te,0);
}
pr(ans);
System.out.print(output);
}
///////////////////////////////////////////
///////////////////////////////////////////
///template from here
static int pow(int a, int b)
{
int c=1;
while(b>0)
{
if(b%2!=0)
c*=a;
a*=a;
}
return c;
}
static class pair
{
int a, b;
pair(){}
pair(int c,int d){a=c;b=d;}
}
static interface combiner
{
public long combine(long a,long b);
}
static final long mod=1000000007;
static final double eps=1e-9;
static final long inf=100000000000000000L;
static Reader in=new Reader();
static StringBuilder output=new StringBuilder();
static Random rn=new Random();
static void reverse(int[]a){for(int i=0; i<a.length/2; i++){a[i]^=a[a.length-i-1];a[a.length-i-1]^=a[i];a[i]^=a[a.length-i-1];}}
static void sort(int[]a)
{
int te;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
a[i]^=a[te];
a[te]^=a[i];
a[i]^=a[te];
}
}
Arrays.sort(a);
}
static void sort(long[]a)
{
int te;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
a[i]^=a[te];
a[te]^=a[i];
a[i]^=a[te];
}
}
Arrays.sort(a);
}
static void sort(double[]a)
{
int te;
double te1;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
te1=a[te];
a[te]=a[i];
a[i]=te1;
}
}
Arrays.sort(a);
}
static void sort(int[][]a)
{
Arrays.sort(a, new Comparator<int[]>()
{
public int compare(int[]a,int[]b)
{
if(a[0]>b[0])
return -1;
if(b[0]>a[0])
return 1;
return 0;
}
});
}
static void sort(pair[]a)
{
Arrays.sort(a,new Comparator<pair>()
{
@Override
public int compare(pair a,pair b)
{
if(a.a>b.a)
return 1;
if(b.a>a.a)
return -1;
return 0;
}
});
}
static int log2n(long a)
{
int te=0;
while(a>0)
{
a>>=1;
++te;
}
return te;
}
static class vectorl implements Iterable<Long>
{
long a[];
int size;
vectorl(){a=new long[10];size=0;}
vectorl(int n){a=new long[n];size=0;}
public void add(long b){if(++size==a.length)a=Arrays.copyOf(a, 2*size);a[size-1]=b;}
public void sort(){Arrays.sort(a, 0, size);}
public void sort(int l, int r){Arrays.sort(a, l, r);}
@Override
public Iterator<Long> iterator() {
Iterator<Long> hola=new Iterator<Long>()
{
int cur=0;
@Override
public boolean hasNext() {
return cur<size;
}
@Override
public Long next() {
return a[cur++];
}
};
return hola;
}
}
static class vector implements Iterable<Integer>
{
int a[],size;
vector(){a=new int[10];size=0;}
vector(int n){a=new int[n];size=0;}
public void add(int b){if(++size==a.length)a=Arrays.copyOf(a, 2*size);a[size-1]=b;}
public void sort(){Arrays.sort(a, 0, size);}
public void sort(int l, int r){Arrays.sort(a, l, r);}
@Override
public Iterator<Integer> iterator() {
Iterator<Integer> hola=new Iterator<Integer>()
{
int cur=0;
@Override
public boolean hasNext() {
return cur<size;
}
@Override
public Integer next() {
return a[cur++];
}
};
return hola;
}
}
//output functions////////////////
static void pr(Object a){output.append(a+"\n");}
static void pr(){output.append("\n");}
static void p(Object a){output.append(a);}
static void pra(int[]a){for(int i:a)output.append(i+" ");output.append("\n");}
static void pra(long[]a){for(long i:a)output.append(i+" ");output.append("\n");}
static void pra(String[]a){for(String i:a)output.append(i+" ");output.append("\n");}
static void pra(double[]a){for(double i:a)output.append(i+" ");output.append("\n");}
static void sop(Object a){System.out.println(a);}
static void flush(){System.out.println(output);output=new StringBuilder();}
//////////////////////////////////
//input functions/////////////////
static int ni(){return Integer.parseInt(in.next());}
static long nl(){return Long.parseLong(in.next());}
static String ns(){return in.next();}
static double nd(){return Double.parseDouble(in.next());}
static int[] nia(int n){int a[]=new int[n];for(int i=0; i<n; i++)a[i]=ni();return a;}
static int[] pnia(int n){int a[]=new int[n+1];for(int i=1; i<=n; i++)a[i]=ni();return a;}
static long[] nla(int n){long a[]=new long[n];for(int i=0; i<n; i++)a[i]=nl();return a;}
static String[] nsa(int n){String a[]=new String[n];for(int i=0; i<n; i++)a[i]=ns();return a;}
static double[] nda(int n){double a[]=new double[n];for(int i=0; i<n; i++)a[i]=nd();return a;}
//////////////////////////////////
//some utility functions
static void exit(){System.out.print(output);System.exit(0);}
static int min(int... a){int min=a[0];for(int i:a)min=Math.min(min, i);return min;}
static int max(int... a){int max=a[0];for(int i:a)max=Math.max(max, i);return max;}
static int gcd(int... a){int gcd=a[0];for(int i:a)gcd=gcd(gcd, i);return gcd;}
static long min(long... a){long min=a[0];for(long i:a)min=Math.min(min, i);return min;}
static long max(long... a){long max=a[0];for(long i:a)max=Math.max(max, i);return max;}
static long gcd(long... a){long gcd=a[0];for(long i:a)gcd=gcd(gcd, i);return gcd;}
static String pr(String a, long b){String c="";while(b>0){if(b%2==1)c=c.concat(a);a=a.concat(a);b>>=1;}return c;}
static long powm(long a, long b, long m){long an=1;long c=a;while(b>0){if(b%2==1)an=(an*c)%m;c=(c*c)%m;b>>=1;}return an;}
static int gcd(int a, int b){if(b==0)return a;return gcd(b, a%b);}
static long gcd(long a, long b){if(b==0)return a;return gcd(b, a%b);}
static class Reader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Reader() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
/*
* Heart beats fast
* Colors and promises
* How to be brave
* How can I love when I am afraid...
*/
//read the question correctly (is y a vowel? what are the exact constraints?)
//look out for SPECIAL CASES (n=1?) and overflow (ll vs int?)
//always declare multidimensional arrays as [2][n] not [n][2]
//it can lead to upto 2-3x diff in runtime
//declare int/long tries with 16 array size due to object overhead :D
public class Main
{
public static void main(String[] args) throws Exception
{
int n=ni();
Map<String, Integer> hola=new HashMap<String,Integer>();
hola.put("S", 0);
hola.put("XS", 0);
hola.put("XXS", 0);
hola.put("XXXS", 0);
hola.put("M", 0);
hola.put("L", 0);
hola.put("XL", 0);
hola.put("XXL", 0);
hola.put("XXXL", 0);
for(int i=0; i<n; i++)
{
String te=ns();
hola.put(te,hola.get(te)+1);
}
for(int i=0; i<n; i++)
{
String te=ns();
hola.put(te,hola.get(te)-1);
}
int ans=0;
for(int te:hola.values())
{
ans+=max(te,0);
}
pr(ans);
System.out.print(output);
}
///////////////////////////////////////////
///////////////////////////////////////////
///template from here
static int pow(int a, int b)
{
int c=1;
while(b>0)
{
if(b%2!=0)
c*=a;
a*=a;
}
return c;
}
static class pair
{
int a, b;
pair(){}
pair(int c,int d){a=c;b=d;}
}
static interface combiner
{
public long combine(long a,long b);
}
static final long mod=1000000007;
static final double eps=1e-9;
static final long inf=100000000000000000L;
static Reader in=new Reader();
static StringBuilder output=new StringBuilder();
static Random rn=new Random();
static void reverse(int[]a){for(int i=0; i<a.length/2; i++){a[i]^=a[a.length-i-1];a[a.length-i-1]^=a[i];a[i]^=a[a.length-i-1];}}
static void sort(int[]a)
{
int te;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
a[i]^=a[te];
a[te]^=a[i];
a[i]^=a[te];
}
}
Arrays.sort(a);
}
static void sort(long[]a)
{
int te;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
a[i]^=a[te];
a[te]^=a[i];
a[i]^=a[te];
}
}
Arrays.sort(a);
}
static void sort(double[]a)
{
int te;
double te1;
for(int i=0; i<a.length; i+=2)
{
te=rn.nextInt(a.length);
if(i!=te)
{
te1=a[te];
a[te]=a[i];
a[i]=te1;
}
}
Arrays.sort(a);
}
static void sort(int[][]a)
{
Arrays.sort(a, new Comparator<int[]>()
{
public int compare(int[]a,int[]b)
{
if(a[0]>b[0])
return -1;
if(b[0]>a[0])
return 1;
return 0;
}
});
}
static void sort(pair[]a)
{
Arrays.sort(a,new Comparator<pair>()
{
@Override
public int compare(pair a,pair b)
{
if(a.a>b.a)
return 1;
if(b.a>a.a)
return -1;
return 0;
}
});
}
static int log2n(long a)
{
int te=0;
while(a>0)
{
a>>=1;
++te;
}
return te;
}
static class vectorl implements Iterable<Long>
{
long a[];
int size;
vectorl(){a=new long[10];size=0;}
vectorl(int n){a=new long[n];size=0;}
public void add(long b){if(++size==a.length)a=Arrays.copyOf(a, 2*size);a[size-1]=b;}
public void sort(){Arrays.sort(a, 0, size);}
public void sort(int l, int r){Arrays.sort(a, l, r);}
@Override
public Iterator<Long> iterator() {
Iterator<Long> hola=new Iterator<Long>()
{
int cur=0;
@Override
public boolean hasNext() {
return cur<size;
}
@Override
public Long next() {
return a[cur++];
}
};
return hola;
}
}
static class vector implements Iterable<Integer>
{
int a[],size;
vector(){a=new int[10];size=0;}
vector(int n){a=new int[n];size=0;}
public void add(int b){if(++size==a.length)a=Arrays.copyOf(a, 2*size);a[size-1]=b;}
public void sort(){Arrays.sort(a, 0, size);}
public void sort(int l, int r){Arrays.sort(a, l, r);}
@Override
public Iterator<Integer> iterator() {
Iterator<Integer> hola=new Iterator<Integer>()
{
int cur=0;
@Override
public boolean hasNext() {
return cur<size;
}
@Override
public Integer next() {
return a[cur++];
}
};
return hola;
}
}
//output functions////////////////
static void pr(Object a){output.append(a+"\n");}
static void pr(){output.append("\n");}
static void p(Object a){output.append(a);}
static void pra(int[]a){for(int i:a)output.append(i+" ");output.append("\n");}
static void pra(long[]a){for(long i:a)output.append(i+" ");output.append("\n");}
static void pra(String[]a){for(String i:a)output.append(i+" ");output.append("\n");}
static void pra(double[]a){for(double i:a)output.append(i+" ");output.append("\n");}
static void sop(Object a){System.out.println(a);}
static void flush(){System.out.println(output);output=new StringBuilder();}
//////////////////////////////////
//input functions/////////////////
static int ni(){return Integer.parseInt(in.next());}
static long nl(){return Long.parseLong(in.next());}
static String ns(){return in.next();}
static double nd(){return Double.parseDouble(in.next());}
static int[] nia(int n){int a[]=new int[n];for(int i=0; i<n; i++)a[i]=ni();return a;}
static int[] pnia(int n){int a[]=new int[n+1];for(int i=1; i<=n; i++)a[i]=ni();return a;}
static long[] nla(int n){long a[]=new long[n];for(int i=0; i<n; i++)a[i]=nl();return a;}
static String[] nsa(int n){String a[]=new String[n];for(int i=0; i<n; i++)a[i]=ns();return a;}
static double[] nda(int n){double a[]=new double[n];for(int i=0; i<n; i++)a[i]=nd();return a;}
//////////////////////////////////
//some utility functions
static void exit(){System.out.print(output);System.exit(0);}
static int min(int... a){int min=a[0];for(int i:a)min=Math.min(min, i);return min;}
static int max(int... a){int max=a[0];for(int i:a)max=Math.max(max, i);return max;}
static int gcd(int... a){int gcd=a[0];for(int i:a)gcd=gcd(gcd, i);return gcd;}
static long min(long... a){long min=a[0];for(long i:a)min=Math.min(min, i);return min;}
static long max(long... a){long max=a[0];for(long i:a)max=Math.max(max, i);return max;}
static long gcd(long... a){long gcd=a[0];for(long i:a)gcd=gcd(gcd, i);return gcd;}
static String pr(String a, long b){String c="";while(b>0){if(b%2==1)c=c.concat(a);a=a.concat(a);b>>=1;}return c;}
static long powm(long a, long b, long m){long an=1;long c=a;while(b>0){if(b%2==1)an=(an*c)%m;c=(c*c)%m;b>>=1;}return an;}
static int gcd(int a, int b){if(b==0)return a;return gcd(b, a%b);}
static long gcd(long a, long b){if(b==0)return a;return gcd(b, a%b);}
static class Reader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Reader() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,608 | 463 |
1,347 |
import java.awt.*;
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.*;
import java.util.List;
import static java.lang.Math.max;
import static java.lang.Math.min;
public class B implements Runnable{
private final static Random rnd = new Random();
// SOLUTION!!!
// HACK ME PLEASE IF YOU CAN!!!
// PLEASE!!!
// PLEASE!!!
// PLEASE!!!
int n;
private void solve() {
this.query = 0;
this.n = readInt();
int left1 = 0;
int l = 1, r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(m, 1, n, n);
if (answer < 2) {
r = m - 1;
} else {
left1 = m;
l = m + 1;
}
}
int left2 = left1;
l = left1 + 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(m, 1, n, n);
if (answer < 1) {
r = m - 1;
} else {
left2 = m;
l = m + 1;
}
}
int right2 = n + 1;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, m, n);
if (answer < 2) {
l = m + 1;
} else {
right2 = m;
r = m - 1;
}
}
int right1 = right2;
l = 1;
r = right2 - 1;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, m, n);
if (answer < 1) {
l = m + 1;
} else {
right1 = m;
r = m - 1;
}
}
int bottom1 = 0;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, m, n, n);
if (answer < 2) {
r = m - 1;
} else {
bottom1 = m;
l = m + 1;
}
}
int bottom2 = bottom1;
l = bottom1 + 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, m, n, n);
if (answer < 1) {
r = m - 1;
} else {
bottom2 = m;
l = m + 1;
}
}
int top2 = n + 1;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, n, m);
if (answer < 2) {
l = m + 1;
} else {
top2 = m;
r = m - 1;
}
}
int top1 = top2;
l = 1;
r = top2 - 1;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, n, m);
if (answer < 1) {
l = m + 1;
} else {
top1 = m;
r = m - 1;
}
}
int ansLeftRightMask = -1, ansBottomTopMask = -1;
long answerS = 2L * n * n;
for (int leftRightMask = 0; leftRightMask < 4; ++leftRightMask) {
int left = (checkBit(leftRightMask, 0) ? left1 : left2);
int right = (checkBit(leftRightMask, 1) ? right1 : right2);
for (int bottomTopMask = 0; bottomTopMask < 4; ++bottomTopMask) {
int bottom = (checkBit(bottomTopMask, 0) ? bottom1 : bottom2);
int top = (checkBit(bottomTopMask, 1) ? top1 : top2);
int curTry = getAnswer(left, bottom, right, top);
if (curTry == 1) {
long s = (right - left + 1L) * (top - bottom + 1L);
if (s < answerS) {
answerS = s;
ansLeftRightMask = leftRightMask;
ansBottomTopMask = bottomTopMask;
}
}
}
}
int left = (checkBit(ansLeftRightMask, 0) ? left1 : left2);
int right = (checkBit(ansLeftRightMask, 1) ? right1 : right2);
int bottom = (checkBit(ansBottomTopMask, 0) ? bottom1 : bottom2);
int top = (checkBit(ansBottomTopMask, 1) ? top1 : top2);
printAnswer(left, bottom, right, top,
left1 + left2 - left, bottom1 + bottom2 - bottom,
right1 + right2 - right, top1 + top2 - top);
}
private void printAnswer(int... values) {
printQuery("!", values);
}
private void printQuery(String sign, int... values) {
out.print(sign);
for (int value : values) {
out.print(" " + value);
}
out.println();
out.flush();
}
int query = 0;
final int MAX_QUERY = 200;
private int getAnswer(int left, int bottom, int right, int top) {
if (left < 1 || right > n) {
while (true);
}
if (bottom < 1 || top > n) {
throw new RuntimeException();
}
if (left > right || bottom > top) {
return 0;
}
if (query == MAX_QUERY) {
throw new RuntimeException();
}
++query;
printQuery("?", left, bottom, right, top);
int answer = readInt();
return answer;
}
/////////////////////////////////////////////////////////////////////
private final static boolean FIRST_INPUT_STRING = false;
private final static boolean MULTIPLE_TESTS = true;
private final static boolean INTERACTIVE = true;
private final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private final static int MAX_STACK_SIZE = 128;
private final static boolean OPTIMIZE_READ_NUMBERS = false;
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeInit();
Locale.setDefault(Locale.US);
init();
if (ONLINE_JUDGE) {
solve();
} else {
do {
try {
timeInit();
solve();
time();
out.println();
} catch (NumberFormatException e) {
break;
} catch (NullPointerException e) {
if (FIRST_INPUT_STRING) break;
else throw e;
}
} while (MULTIPLE_TESTS);
}
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
private BufferedReader in;
private OutputWriter out;
private StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new B(), "", MAX_STACK_SIZE * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
private void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (INTERACTIVE || ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
private long timeBegin;
private void timeInit() {
this.timeBegin = System.currentTimeMillis();
}
private void time(){
long timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
private void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
private String delim = " ";
private String readLine() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
private String readString() {
try {
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(readLine());
}
return tok.nextToken(delim);
} catch (NullPointerException e) {
return null;
}
}
/////////////////////////////////////////////////////////////////
private final char NOT_A_SYMBOL = '\0';
private char readChar() {
try {
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
private char[] readCharArray() {
return readLine().toCharArray();
}
private char[][] readCharField(int rowsCount) {
char[][] field = new char[rowsCount][];
for (int row = 0; row < rowsCount; ++row) {
field[row] = readCharArray();
}
return field;
}
/////////////////////////////////////////////////////////////////
private long optimizedReadLong() {
long result = 0;
boolean started = false;
while (true) {
try {
int j = in.read();
if (-1 == j) {
if (started) return result;
throw new NumberFormatException();
}
if ('0' <= j && j <= '9') {
result = result * 10 + j - '0';
started = true;
} else if (started) {
return result;
}
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
}
private int readInt() {
if (!OPTIMIZE_READ_NUMBERS) {
return Integer.parseInt(readString());
} else {
return (int) optimizedReadLong();
}
}
private int[] readIntArray(int size) {
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
private int[] readSortedIntArray(int size) {
Integer[] array = new Integer[size];
for (int index = 0; index < size; ++index) {
array[index] = readInt();
}
Arrays.sort(array);
int[] sortedArray = new int[size];
for (int index = 0; index < size; ++index) {
sortedArray[index] = array[index];
}
return sortedArray;
}
private int[] readIntArrayWithDecrease(int size) {
int[] array = readIntArray(size);
for (int i = 0; i < size; ++i) {
array[i]--;
}
return array;
}
///////////////////////////////////////////////////////////////////
private int[][] readIntMatrix(int rowsCount, int columnsCount) {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArray(columnsCount);
}
return matrix;
}
private int[][] readIntMatrixWithDecrease(int rowsCount, int columnsCount) {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArrayWithDecrease(columnsCount);
}
return matrix;
}
///////////////////////////////////////////////////////////////////
private long readLong() {
if (!OPTIMIZE_READ_NUMBERS) {
return Long.parseLong(readString());
} else {
return optimizedReadLong();
}
}
private long[] readLongArray(int size) {
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
private double readDouble() {
return Double.parseDouble(readString());
}
private double[] readDoubleArray(int size) {
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
////////////////////////////////////////////////////////////////////
private BigInteger readBigInteger() {
return new BigInteger(readString());
}
private BigDecimal readBigDecimal() {
return new BigDecimal(readString());
}
/////////////////////////////////////////////////////////////////////
private Point readPoint() {
int x = readInt();
int y = readInt();
return new Point(x, y);
}
private Point[] readPointArray(int size) {
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
private List<Integer>[] readGraph(int vertexNumber, int edgeNumber) {
@SuppressWarnings("unchecked")
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
private static class IntIndexPair {
static Comparator<IntIndexPair> increaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(B.IntIndexPair indexPair1, B.IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return value1 - value2;
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
static Comparator<IntIndexPair> decreaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(B.IntIndexPair indexPair1, B.IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return -(value1 - value2);
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
int value, index;
IntIndexPair(int value, int index) {
super();
this.value = value;
this.index = index;
}
int getRealIndex() {
return index + 1;
}
}
private IntIndexPair[] readIntIndexArray(int size) {
IntIndexPair[] array = new IntIndexPair[size];
for (int index = 0; index < size; ++index) {
array[index] = new IntIndexPair(readInt(), index);
}
return array;
}
/////////////////////////////////////////////////////////////////////
private static class OutputWriter extends PrintWriter {
final int DEFAULT_PRECISION = 12;
private int precision;
private String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
OutputWriter(OutputStream out) {
super(out);
}
OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
int getPrecision() {
return precision;
}
void setPrecision(int precision) {
precision = max(0, precision);
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
void printWithSpace(double d){
printf(formatWithSpace, d);
}
void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
private static class RuntimeIOException extends RuntimeException {
/**
*
*/
private static final long serialVersionUID = -6463830523020118289L;
RuntimeIOException(Throwable cause) {
super(cause);
}
}
/////////////////////////////////////////////////////////////////////
//////////////// Some useful constants and functions ////////////////
/////////////////////////////////////////////////////////////////////
private static final int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
private static final int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
private static boolean checkCell(int row, int rowsCount, int column, int columnsCount) {
return checkIndex(row, rowsCount) && checkIndex(column, columnsCount);
}
private static boolean checkIndex(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
private static boolean checkBit(int mask, int bit){
return (mask & (1 << bit)) != 0;
}
private static boolean checkBit(long mask, int bit){
return (mask & (1L << bit)) != 0;
}
/////////////////////////////////////////////////////////////////////
private static long getSum(int[] array) {
long sum = 0;
for (int value: array) {
sum += value;
}
return sum;
}
private static Point getMinMax(int[] array) {
int min = array[0];
int max = array[0];
for (int index = 0, size = array.length; index < size; ++index, ++index) {
int value = array[index];
if (index == size - 1) {
min = min(min, value);
max = max(max, value);
} else {
int otherValue = array[index + 1];
if (value <= otherValue) {
min = min(min, value);
max = max(max, otherValue);
} else {
min = min(min, otherValue);
max = max(max, value);
}
}
}
return new Point(min, max);
}
/////////////////////////////////////////////////////////////////////
private static int[] getPrimes(int n) {
boolean[] used = new boolean[n];
used[0] = used[1] = true;
int size = 0;
for (int i = 2; i < n; ++i) {
if (!used[i]) {
++size;
for (int j = 2 * i; j < n; j += i) {
used[j] = true;
}
}
}
int[] primes = new int[size];
for (int i = 0, cur = 0; i < n; ++i) {
if (!used[i]) {
primes[cur++] = i;
}
}
return primes;
}
/////////////////////////////////////////////////////////////////////
private static long lcm(long a, long b) {
return a / gcd(a, b) * b;
}
private static long gcd(long a, long b) {
return (a == 0 ? b : gcd(b % a, a));
}
/////////////////////////////////////////////////////////////////////
private static class IdMap<KeyType> extends HashMap<KeyType, Integer> {
/**
*
*/
private static final long serialVersionUID = -3793737771950984481L;
public IdMap() {
super();
}
int getId(KeyType key) {
Integer id = super.get(key);
if (id == null) {
super.put(key, id = size());
}
return id;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.*;
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.*;
import java.util.List;
import static java.lang.Math.max;
import static java.lang.Math.min;
public class B implements Runnable{
private final static Random rnd = new Random();
// SOLUTION!!!
// HACK ME PLEASE IF YOU CAN!!!
// PLEASE!!!
// PLEASE!!!
// PLEASE!!!
int n;
private void solve() {
this.query = 0;
this.n = readInt();
int left1 = 0;
int l = 1, r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(m, 1, n, n);
if (answer < 2) {
r = m - 1;
} else {
left1 = m;
l = m + 1;
}
}
int left2 = left1;
l = left1 + 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(m, 1, n, n);
if (answer < 1) {
r = m - 1;
} else {
left2 = m;
l = m + 1;
}
}
int right2 = n + 1;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, m, n);
if (answer < 2) {
l = m + 1;
} else {
right2 = m;
r = m - 1;
}
}
int right1 = right2;
l = 1;
r = right2 - 1;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, m, n);
if (answer < 1) {
l = m + 1;
} else {
right1 = m;
r = m - 1;
}
}
int bottom1 = 0;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, m, n, n);
if (answer < 2) {
r = m - 1;
} else {
bottom1 = m;
l = m + 1;
}
}
int bottom2 = bottom1;
l = bottom1 + 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, m, n, n);
if (answer < 1) {
r = m - 1;
} else {
bottom2 = m;
l = m + 1;
}
}
int top2 = n + 1;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, n, m);
if (answer < 2) {
l = m + 1;
} else {
top2 = m;
r = m - 1;
}
}
int top1 = top2;
l = 1;
r = top2 - 1;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, n, m);
if (answer < 1) {
l = m + 1;
} else {
top1 = m;
r = m - 1;
}
}
int ansLeftRightMask = -1, ansBottomTopMask = -1;
long answerS = 2L * n * n;
for (int leftRightMask = 0; leftRightMask < 4; ++leftRightMask) {
int left = (checkBit(leftRightMask, 0) ? left1 : left2);
int right = (checkBit(leftRightMask, 1) ? right1 : right2);
for (int bottomTopMask = 0; bottomTopMask < 4; ++bottomTopMask) {
int bottom = (checkBit(bottomTopMask, 0) ? bottom1 : bottom2);
int top = (checkBit(bottomTopMask, 1) ? top1 : top2);
int curTry = getAnswer(left, bottom, right, top);
if (curTry == 1) {
long s = (right - left + 1L) * (top - bottom + 1L);
if (s < answerS) {
answerS = s;
ansLeftRightMask = leftRightMask;
ansBottomTopMask = bottomTopMask;
}
}
}
}
int left = (checkBit(ansLeftRightMask, 0) ? left1 : left2);
int right = (checkBit(ansLeftRightMask, 1) ? right1 : right2);
int bottom = (checkBit(ansBottomTopMask, 0) ? bottom1 : bottom2);
int top = (checkBit(ansBottomTopMask, 1) ? top1 : top2);
printAnswer(left, bottom, right, top,
left1 + left2 - left, bottom1 + bottom2 - bottom,
right1 + right2 - right, top1 + top2 - top);
}
private void printAnswer(int... values) {
printQuery("!", values);
}
private void printQuery(String sign, int... values) {
out.print(sign);
for (int value : values) {
out.print(" " + value);
}
out.println();
out.flush();
}
int query = 0;
final int MAX_QUERY = 200;
private int getAnswer(int left, int bottom, int right, int top) {
if (left < 1 || right > n) {
while (true);
}
if (bottom < 1 || top > n) {
throw new RuntimeException();
}
if (left > right || bottom > top) {
return 0;
}
if (query == MAX_QUERY) {
throw new RuntimeException();
}
++query;
printQuery("?", left, bottom, right, top);
int answer = readInt();
return answer;
}
/////////////////////////////////////////////////////////////////////
private final static boolean FIRST_INPUT_STRING = false;
private final static boolean MULTIPLE_TESTS = true;
private final static boolean INTERACTIVE = true;
private final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private final static int MAX_STACK_SIZE = 128;
private final static boolean OPTIMIZE_READ_NUMBERS = false;
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeInit();
Locale.setDefault(Locale.US);
init();
if (ONLINE_JUDGE) {
solve();
} else {
do {
try {
timeInit();
solve();
time();
out.println();
} catch (NumberFormatException e) {
break;
} catch (NullPointerException e) {
if (FIRST_INPUT_STRING) break;
else throw e;
}
} while (MULTIPLE_TESTS);
}
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
private BufferedReader in;
private OutputWriter out;
private StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new B(), "", MAX_STACK_SIZE * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
private void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (INTERACTIVE || ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
private long timeBegin;
private void timeInit() {
this.timeBegin = System.currentTimeMillis();
}
private void time(){
long timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
private void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
private String delim = " ";
private String readLine() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
private String readString() {
try {
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(readLine());
}
return tok.nextToken(delim);
} catch (NullPointerException e) {
return null;
}
}
/////////////////////////////////////////////////////////////////
private final char NOT_A_SYMBOL = '\0';
private char readChar() {
try {
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
private char[] readCharArray() {
return readLine().toCharArray();
}
private char[][] readCharField(int rowsCount) {
char[][] field = new char[rowsCount][];
for (int row = 0; row < rowsCount; ++row) {
field[row] = readCharArray();
}
return field;
}
/////////////////////////////////////////////////////////////////
private long optimizedReadLong() {
long result = 0;
boolean started = false;
while (true) {
try {
int j = in.read();
if (-1 == j) {
if (started) return result;
throw new NumberFormatException();
}
if ('0' <= j && j <= '9') {
result = result * 10 + j - '0';
started = true;
} else if (started) {
return result;
}
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
}
private int readInt() {
if (!OPTIMIZE_READ_NUMBERS) {
return Integer.parseInt(readString());
} else {
return (int) optimizedReadLong();
}
}
private int[] readIntArray(int size) {
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
private int[] readSortedIntArray(int size) {
Integer[] array = new Integer[size];
for (int index = 0; index < size; ++index) {
array[index] = readInt();
}
Arrays.sort(array);
int[] sortedArray = new int[size];
for (int index = 0; index < size; ++index) {
sortedArray[index] = array[index];
}
return sortedArray;
}
private int[] readIntArrayWithDecrease(int size) {
int[] array = readIntArray(size);
for (int i = 0; i < size; ++i) {
array[i]--;
}
return array;
}
///////////////////////////////////////////////////////////////////
private int[][] readIntMatrix(int rowsCount, int columnsCount) {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArray(columnsCount);
}
return matrix;
}
private int[][] readIntMatrixWithDecrease(int rowsCount, int columnsCount) {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArrayWithDecrease(columnsCount);
}
return matrix;
}
///////////////////////////////////////////////////////////////////
private long readLong() {
if (!OPTIMIZE_READ_NUMBERS) {
return Long.parseLong(readString());
} else {
return optimizedReadLong();
}
}
private long[] readLongArray(int size) {
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
private double readDouble() {
return Double.parseDouble(readString());
}
private double[] readDoubleArray(int size) {
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
////////////////////////////////////////////////////////////////////
private BigInteger readBigInteger() {
return new BigInteger(readString());
}
private BigDecimal readBigDecimal() {
return new BigDecimal(readString());
}
/////////////////////////////////////////////////////////////////////
private Point readPoint() {
int x = readInt();
int y = readInt();
return new Point(x, y);
}
private Point[] readPointArray(int size) {
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
private List<Integer>[] readGraph(int vertexNumber, int edgeNumber) {
@SuppressWarnings("unchecked")
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
private static class IntIndexPair {
static Comparator<IntIndexPair> increaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(B.IntIndexPair indexPair1, B.IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return value1 - value2;
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
static Comparator<IntIndexPair> decreaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(B.IntIndexPair indexPair1, B.IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return -(value1 - value2);
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
int value, index;
IntIndexPair(int value, int index) {
super();
this.value = value;
this.index = index;
}
int getRealIndex() {
return index + 1;
}
}
private IntIndexPair[] readIntIndexArray(int size) {
IntIndexPair[] array = new IntIndexPair[size];
for (int index = 0; index < size; ++index) {
array[index] = new IntIndexPair(readInt(), index);
}
return array;
}
/////////////////////////////////////////////////////////////////////
private static class OutputWriter extends PrintWriter {
final int DEFAULT_PRECISION = 12;
private int precision;
private String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
OutputWriter(OutputStream out) {
super(out);
}
OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
int getPrecision() {
return precision;
}
void setPrecision(int precision) {
precision = max(0, precision);
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
void printWithSpace(double d){
printf(formatWithSpace, d);
}
void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
private static class RuntimeIOException extends RuntimeException {
/**
*
*/
private static final long serialVersionUID = -6463830523020118289L;
RuntimeIOException(Throwable cause) {
super(cause);
}
}
/////////////////////////////////////////////////////////////////////
//////////////// Some useful constants and functions ////////////////
/////////////////////////////////////////////////////////////////////
private static final int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
private static final int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
private static boolean checkCell(int row, int rowsCount, int column, int columnsCount) {
return checkIndex(row, rowsCount) && checkIndex(column, columnsCount);
}
private static boolean checkIndex(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
private static boolean checkBit(int mask, int bit){
return (mask & (1 << bit)) != 0;
}
private static boolean checkBit(long mask, int bit){
return (mask & (1L << bit)) != 0;
}
/////////////////////////////////////////////////////////////////////
private static long getSum(int[] array) {
long sum = 0;
for (int value: array) {
sum += value;
}
return sum;
}
private static Point getMinMax(int[] array) {
int min = array[0];
int max = array[0];
for (int index = 0, size = array.length; index < size; ++index, ++index) {
int value = array[index];
if (index == size - 1) {
min = min(min, value);
max = max(max, value);
} else {
int otherValue = array[index + 1];
if (value <= otherValue) {
min = min(min, value);
max = max(max, otherValue);
} else {
min = min(min, otherValue);
max = max(max, value);
}
}
}
return new Point(min, max);
}
/////////////////////////////////////////////////////////////////////
private static int[] getPrimes(int n) {
boolean[] used = new boolean[n];
used[0] = used[1] = true;
int size = 0;
for (int i = 2; i < n; ++i) {
if (!used[i]) {
++size;
for (int j = 2 * i; j < n; j += i) {
used[j] = true;
}
}
}
int[] primes = new int[size];
for (int i = 0, cur = 0; i < n; ++i) {
if (!used[i]) {
primes[cur++] = i;
}
}
return primes;
}
/////////////////////////////////////////////////////////////////////
private static long lcm(long a, long b) {
return a / gcd(a, b) * b;
}
private static long gcd(long a, long b) {
return (a == 0 ? b : gcd(b % a, a));
}
/////////////////////////////////////////////////////////////////////
private static class IdMap<KeyType> extends HashMap<KeyType, Integer> {
/**
*
*/
private static final long serialVersionUID = -3793737771950984481L;
public IdMap() {
super();
}
int getId(KeyType key) {
Integer id = super.get(key);
if (id == null) {
super.put(key, id = size());
}
return id;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.*;
import java.io.*;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.*;
import java.util.List;
import static java.lang.Math.max;
import static java.lang.Math.min;
public class B implements Runnable{
private final static Random rnd = new Random();
// SOLUTION!!!
// HACK ME PLEASE IF YOU CAN!!!
// PLEASE!!!
// PLEASE!!!
// PLEASE!!!
int n;
private void solve() {
this.query = 0;
this.n = readInt();
int left1 = 0;
int l = 1, r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(m, 1, n, n);
if (answer < 2) {
r = m - 1;
} else {
left1 = m;
l = m + 1;
}
}
int left2 = left1;
l = left1 + 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(m, 1, n, n);
if (answer < 1) {
r = m - 1;
} else {
left2 = m;
l = m + 1;
}
}
int right2 = n + 1;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, m, n);
if (answer < 2) {
l = m + 1;
} else {
right2 = m;
r = m - 1;
}
}
int right1 = right2;
l = 1;
r = right2 - 1;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, m, n);
if (answer < 1) {
l = m + 1;
} else {
right1 = m;
r = m - 1;
}
}
int bottom1 = 0;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, m, n, n);
if (answer < 2) {
r = m - 1;
} else {
bottom1 = m;
l = m + 1;
}
}
int bottom2 = bottom1;
l = bottom1 + 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, m, n, n);
if (answer < 1) {
r = m - 1;
} else {
bottom2 = m;
l = m + 1;
}
}
int top2 = n + 1;
l = 1;
r = n;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, n, m);
if (answer < 2) {
l = m + 1;
} else {
top2 = m;
r = m - 1;
}
}
int top1 = top2;
l = 1;
r = top2 - 1;
while (l <= r) {
int m = (l + r) / 2;
int answer = getAnswer(1, 1, n, m);
if (answer < 1) {
l = m + 1;
} else {
top1 = m;
r = m - 1;
}
}
int ansLeftRightMask = -1, ansBottomTopMask = -1;
long answerS = 2L * n * n;
for (int leftRightMask = 0; leftRightMask < 4; ++leftRightMask) {
int left = (checkBit(leftRightMask, 0) ? left1 : left2);
int right = (checkBit(leftRightMask, 1) ? right1 : right2);
for (int bottomTopMask = 0; bottomTopMask < 4; ++bottomTopMask) {
int bottom = (checkBit(bottomTopMask, 0) ? bottom1 : bottom2);
int top = (checkBit(bottomTopMask, 1) ? top1 : top2);
int curTry = getAnswer(left, bottom, right, top);
if (curTry == 1) {
long s = (right - left + 1L) * (top - bottom + 1L);
if (s < answerS) {
answerS = s;
ansLeftRightMask = leftRightMask;
ansBottomTopMask = bottomTopMask;
}
}
}
}
int left = (checkBit(ansLeftRightMask, 0) ? left1 : left2);
int right = (checkBit(ansLeftRightMask, 1) ? right1 : right2);
int bottom = (checkBit(ansBottomTopMask, 0) ? bottom1 : bottom2);
int top = (checkBit(ansBottomTopMask, 1) ? top1 : top2);
printAnswer(left, bottom, right, top,
left1 + left2 - left, bottom1 + bottom2 - bottom,
right1 + right2 - right, top1 + top2 - top);
}
private void printAnswer(int... values) {
printQuery("!", values);
}
private void printQuery(String sign, int... values) {
out.print(sign);
for (int value : values) {
out.print(" " + value);
}
out.println();
out.flush();
}
int query = 0;
final int MAX_QUERY = 200;
private int getAnswer(int left, int bottom, int right, int top) {
if (left < 1 || right > n) {
while (true);
}
if (bottom < 1 || top > n) {
throw new RuntimeException();
}
if (left > right || bottom > top) {
return 0;
}
if (query == MAX_QUERY) {
throw new RuntimeException();
}
++query;
printQuery("?", left, bottom, right, top);
int answer = readInt();
return answer;
}
/////////////////////////////////////////////////////////////////////
private final static boolean FIRST_INPUT_STRING = false;
private final static boolean MULTIPLE_TESTS = true;
private final static boolean INTERACTIVE = true;
private final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private final static int MAX_STACK_SIZE = 128;
private final static boolean OPTIMIZE_READ_NUMBERS = false;
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeInit();
Locale.setDefault(Locale.US);
init();
if (ONLINE_JUDGE) {
solve();
} else {
do {
try {
timeInit();
solve();
time();
out.println();
} catch (NumberFormatException e) {
break;
} catch (NullPointerException e) {
if (FIRST_INPUT_STRING) break;
else throw e;
}
} while (MULTIPLE_TESTS);
}
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
private BufferedReader in;
private OutputWriter out;
private StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new B(), "", MAX_STACK_SIZE * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
private void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (INTERACTIVE || ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
private long timeBegin;
private void timeInit() {
this.timeBegin = System.currentTimeMillis();
}
private void time(){
long timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
private void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
private String delim = " ";
private String readLine() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
private String readString() {
try {
while(!tok.hasMoreTokens()){
tok = new StringTokenizer(readLine());
}
return tok.nextToken(delim);
} catch (NullPointerException e) {
return null;
}
}
/////////////////////////////////////////////////////////////////
private final char NOT_A_SYMBOL = '\0';
private char readChar() {
try {
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
private char[] readCharArray() {
return readLine().toCharArray();
}
private char[][] readCharField(int rowsCount) {
char[][] field = new char[rowsCount][];
for (int row = 0; row < rowsCount; ++row) {
field[row] = readCharArray();
}
return field;
}
/////////////////////////////////////////////////////////////////
private long optimizedReadLong() {
long result = 0;
boolean started = false;
while (true) {
try {
int j = in.read();
if (-1 == j) {
if (started) return result;
throw new NumberFormatException();
}
if ('0' <= j && j <= '9') {
result = result * 10 + j - '0';
started = true;
} else if (started) {
return result;
}
} catch (IOException e) {
throw new RuntimeIOException(e);
}
}
}
private int readInt() {
if (!OPTIMIZE_READ_NUMBERS) {
return Integer.parseInt(readString());
} else {
return (int) optimizedReadLong();
}
}
private int[] readIntArray(int size) {
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
private int[] readSortedIntArray(int size) {
Integer[] array = new Integer[size];
for (int index = 0; index < size; ++index) {
array[index] = readInt();
}
Arrays.sort(array);
int[] sortedArray = new int[size];
for (int index = 0; index < size; ++index) {
sortedArray[index] = array[index];
}
return sortedArray;
}
private int[] readIntArrayWithDecrease(int size) {
int[] array = readIntArray(size);
for (int i = 0; i < size; ++i) {
array[i]--;
}
return array;
}
///////////////////////////////////////////////////////////////////
private int[][] readIntMatrix(int rowsCount, int columnsCount) {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArray(columnsCount);
}
return matrix;
}
private int[][] readIntMatrixWithDecrease(int rowsCount, int columnsCount) {
int[][] matrix = new int[rowsCount][];
for (int rowIndex = 0; rowIndex < rowsCount; ++rowIndex) {
matrix[rowIndex] = readIntArrayWithDecrease(columnsCount);
}
return matrix;
}
///////////////////////////////////////////////////////////////////
private long readLong() {
if (!OPTIMIZE_READ_NUMBERS) {
return Long.parseLong(readString());
} else {
return optimizedReadLong();
}
}
private long[] readLongArray(int size) {
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
private double readDouble() {
return Double.parseDouble(readString());
}
private double[] readDoubleArray(int size) {
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
////////////////////////////////////////////////////////////////////
private BigInteger readBigInteger() {
return new BigInteger(readString());
}
private BigDecimal readBigDecimal() {
return new BigDecimal(readString());
}
/////////////////////////////////////////////////////////////////////
private Point readPoint() {
int x = readInt();
int y = readInt();
return new Point(x, y);
}
private Point[] readPointArray(int size) {
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
private List<Integer>[] readGraph(int vertexNumber, int edgeNumber) {
@SuppressWarnings("unchecked")
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
private static class IntIndexPair {
static Comparator<IntIndexPair> increaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(B.IntIndexPair indexPair1, B.IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return value1 - value2;
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
static Comparator<IntIndexPair> decreaseComparator = new Comparator<B.IntIndexPair>() {
@Override
public int compare(B.IntIndexPair indexPair1, B.IntIndexPair indexPair2) {
int value1 = indexPair1.value;
int value2 = indexPair2.value;
if (value1 != value2) return -(value1 - value2);
int index1 = indexPair1.index;
int index2 = indexPair2.index;
return index1 - index2;
}
};
int value, index;
IntIndexPair(int value, int index) {
super();
this.value = value;
this.index = index;
}
int getRealIndex() {
return index + 1;
}
}
private IntIndexPair[] readIntIndexArray(int size) {
IntIndexPair[] array = new IntIndexPair[size];
for (int index = 0; index < size; ++index) {
array[index] = new IntIndexPair(readInt(), index);
}
return array;
}
/////////////////////////////////////////////////////////////////////
private static class OutputWriter extends PrintWriter {
final int DEFAULT_PRECISION = 12;
private int precision;
private String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
OutputWriter(OutputStream out) {
super(out);
}
OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
int getPrecision() {
return precision;
}
void setPrecision(int precision) {
precision = max(0, precision);
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
void printWithSpace(double d){
printf(formatWithSpace, d);
}
void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
private static class RuntimeIOException extends RuntimeException {
/**
*
*/
private static final long serialVersionUID = -6463830523020118289L;
RuntimeIOException(Throwable cause) {
super(cause);
}
}
/////////////////////////////////////////////////////////////////////
//////////////// Some useful constants and functions ////////////////
/////////////////////////////////////////////////////////////////////
private static final int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
private static final int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
private static boolean checkCell(int row, int rowsCount, int column, int columnsCount) {
return checkIndex(row, rowsCount) && checkIndex(column, columnsCount);
}
private static boolean checkIndex(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
private static boolean checkBit(int mask, int bit){
return (mask & (1 << bit)) != 0;
}
private static boolean checkBit(long mask, int bit){
return (mask & (1L << bit)) != 0;
}
/////////////////////////////////////////////////////////////////////
private static long getSum(int[] array) {
long sum = 0;
for (int value: array) {
sum += value;
}
return sum;
}
private static Point getMinMax(int[] array) {
int min = array[0];
int max = array[0];
for (int index = 0, size = array.length; index < size; ++index, ++index) {
int value = array[index];
if (index == size - 1) {
min = min(min, value);
max = max(max, value);
} else {
int otherValue = array[index + 1];
if (value <= otherValue) {
min = min(min, value);
max = max(max, otherValue);
} else {
min = min(min, otherValue);
max = max(max, value);
}
}
}
return new Point(min, max);
}
/////////////////////////////////////////////////////////////////////
private static int[] getPrimes(int n) {
boolean[] used = new boolean[n];
used[0] = used[1] = true;
int size = 0;
for (int i = 2; i < n; ++i) {
if (!used[i]) {
++size;
for (int j = 2 * i; j < n; j += i) {
used[j] = true;
}
}
}
int[] primes = new int[size];
for (int i = 0, cur = 0; i < n; ++i) {
if (!used[i]) {
primes[cur++] = i;
}
}
return primes;
}
/////////////////////////////////////////////////////////////////////
private static long lcm(long a, long b) {
return a / gcd(a, b) * b;
}
private static long gcd(long a, long b) {
return (a == 0 ? b : gcd(b % a, a));
}
/////////////////////////////////////////////////////////////////////
private static class IdMap<KeyType> extends HashMap<KeyType, Integer> {
/**
*
*/
private static final long serialVersionUID = -3793737771950984481L;
public IdMap() {
super();
}
int getId(KeyType key) {
Integer id = super.get(key);
if (id == null) {
super.put(key, id = size());
}
return id;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 4,913 | 1,345 |
3,333 |
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.lang.System.out;
import static java.util.Collections.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
static boolean LOCAL = System.getSecurityManager() == null;
Scanner in = new Scanner(System.in);
private int[] B;
private int[] A;
private int n;
private int m;
void run() {
n = in.nextInt();
m = in.nextInt();
A = new int[m];
B = new int[m];
for (int i = 0; i < m; i++) {
A[i] = in.nextInt() - 1;
B[i] = in.nextInt() - 1;
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
ans = min(ans, solve(i));
}
out.println(ans);
}
int solve(int x) {
int ans = 3 * (n - 1) + 1 + m;
V[] vs = new V[n * 2];
for (int i = 0; i < vs.length; i++) vs[i] = new V();
for (int i = 0; i < m; i++) {
if (A[i] == x || B[i] == x) ans -= 2;
else vs[A[i]].connect(vs[n + B[i]]);
}
return ans - 2 * bipartiteMatching(vs);
}
class V extends ArrayList<V> {
V pair;
boolean used;
void connect(V v) {
add(v);
v.add(this);
}
}
int bipartiteMatching(V[] vs) {
int match = 0;
for (V v : vs) if (v.pair == null) {
for (V u : vs) u.used = false;
if (dfs(v)) match++;
}
return match;
}
boolean dfs(V v) {
v.used = true;
for (V u : v) {
V w = u.pair;
if (w == null || !w.used && dfs(w)) {
v.pair = u;
u.pair = v;
return true;
}
}
return false;
}
void debug(Object... os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("./../../in.txt"));
// System.setOut(new PrintStream("./../../out"));
} catch (Throwable e) {
LOCAL = false;
}
}
long start = 0;
if (LOCAL)
start = System.nanoTime();
new Main().run();
if (LOCAL)
System.err.printf("[Time : %.6f s]%n",
(System.nanoTime() - start) * 1e-9);
}
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.lang.System.out;
import static java.util.Collections.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
static boolean LOCAL = System.getSecurityManager() == null;
Scanner in = new Scanner(System.in);
private int[] B;
private int[] A;
private int n;
private int m;
void run() {
n = in.nextInt();
m = in.nextInt();
A = new int[m];
B = new int[m];
for (int i = 0; i < m; i++) {
A[i] = in.nextInt() - 1;
B[i] = in.nextInt() - 1;
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
ans = min(ans, solve(i));
}
out.println(ans);
}
int solve(int x) {
int ans = 3 * (n - 1) + 1 + m;
V[] vs = new V[n * 2];
for (int i = 0; i < vs.length; i++) vs[i] = new V();
for (int i = 0; i < m; i++) {
if (A[i] == x || B[i] == x) ans -= 2;
else vs[A[i]].connect(vs[n + B[i]]);
}
return ans - 2 * bipartiteMatching(vs);
}
class V extends ArrayList<V> {
V pair;
boolean used;
void connect(V v) {
add(v);
v.add(this);
}
}
int bipartiteMatching(V[] vs) {
int match = 0;
for (V v : vs) if (v.pair == null) {
for (V u : vs) u.used = false;
if (dfs(v)) match++;
}
return match;
}
boolean dfs(V v) {
v.used = true;
for (V u : v) {
V w = u.pair;
if (w == null || !w.used && dfs(w)) {
v.pair = u;
u.pair = v;
return true;
}
}
return false;
}
void debug(Object... os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("./../../in.txt"));
// System.setOut(new PrintStream("./../../out"));
} catch (Throwable e) {
LOCAL = false;
}
}
long start = 0;
if (LOCAL)
start = System.nanoTime();
new Main().run();
if (LOCAL)
System.err.printf("[Time : %.6f s]%n",
(System.nanoTime() - start) * 1e-9);
}
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import static java.lang.Math.*;
import static java.util.Arrays.*;
import static java.lang.System.out;
import static java.util.Collections.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
static boolean LOCAL = System.getSecurityManager() == null;
Scanner in = new Scanner(System.in);
private int[] B;
private int[] A;
private int n;
private int m;
void run() {
n = in.nextInt();
m = in.nextInt();
A = new int[m];
B = new int[m];
for (int i = 0; i < m; i++) {
A[i] = in.nextInt() - 1;
B[i] = in.nextInt() - 1;
}
int ans = Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
ans = min(ans, solve(i));
}
out.println(ans);
}
int solve(int x) {
int ans = 3 * (n - 1) + 1 + m;
V[] vs = new V[n * 2];
for (int i = 0; i < vs.length; i++) vs[i] = new V();
for (int i = 0; i < m; i++) {
if (A[i] == x || B[i] == x) ans -= 2;
else vs[A[i]].connect(vs[n + B[i]]);
}
return ans - 2 * bipartiteMatching(vs);
}
class V extends ArrayList<V> {
V pair;
boolean used;
void connect(V v) {
add(v);
v.add(this);
}
}
int bipartiteMatching(V[] vs) {
int match = 0;
for (V v : vs) if (v.pair == null) {
for (V u : vs) u.used = false;
if (dfs(v)) match++;
}
return match;
}
boolean dfs(V v) {
v.used = true;
for (V u : v) {
V w = u.pair;
if (w == null || !w.used && dfs(w)) {
v.pair = u;
u.pair = v;
return true;
}
}
return false;
}
void debug(Object... os) {
System.err.println(deepToString(os));
}
public static void main(String[] args) {
if (LOCAL) {
try {
System.setIn(new FileInputStream("./../../in.txt"));
// System.setOut(new PrintStream("./../../out"));
} catch (Throwable e) {
LOCAL = false;
}
}
long start = 0;
if (LOCAL)
start = System.nanoTime();
new Main().run();
if (LOCAL)
System.err.printf("[Time : %.6f s]%n",
(System.nanoTime() - start) * 1e-9);
}
}
class Scanner {
BufferedReader br;
StringTokenizer st;
Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
void eat(String s) {
st = new StringTokenizer(s);
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
String next() {
hasNext();
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,139 | 3,327 |
2,370 |
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int a[]=new int[n];
for(int i=0; i<n; i++)
a[i]=in.nextInt();
long no=0;
for(int i=0; i<n-1; i++)
{
for(int j=i+1; j<n; j++)
{
if(a[i]>a[j])
no++;
}
}
// System.out.println(no);
no%=2;
int m=in.nextInt();
int te;
String te2="odd",te1="even";
for(int i=0; i<m; i++)
{
te=in.nextInt()-in.nextInt();
te=-te+1;
// System.out.println(te);
if((te*(te-1)/2)%2==0)
{
// System.out.println("HOLA"+no);
if(no==0)
System.out.println("even");
else
System.out.println("odd");
}
else
{
no=(no+1)%2;
if(no==0)
System.out.println("even");
else
System.out.println("odd");
}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int a[]=new int[n];
for(int i=0; i<n; i++)
a[i]=in.nextInt();
long no=0;
for(int i=0; i<n-1; i++)
{
for(int j=i+1; j<n; j++)
{
if(a[i]>a[j])
no++;
}
}
// System.out.println(no);
no%=2;
int m=in.nextInt();
int te;
String te2="odd",te1="even";
for(int i=0; i<m; i++)
{
te=in.nextInt()-in.nextInt();
te=-te+1;
// System.out.println(te);
if((te*(te-1)/2)%2==0)
{
// System.out.println("HOLA"+no);
if(no==0)
System.out.println("even");
else
System.out.println("odd");
}
else
{
no=(no+1)%2;
if(no==0)
System.out.println("even");
else
System.out.println("odd");
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
int a[]=new int[n];
for(int i=0; i<n; i++)
a[i]=in.nextInt();
long no=0;
for(int i=0; i<n-1; i++)
{
for(int j=i+1; j<n; j++)
{
if(a[i]>a[j])
no++;
}
}
// System.out.println(no);
no%=2;
int m=in.nextInt();
int te;
String te2="odd",te1="even";
for(int i=0; i<m; i++)
{
te=in.nextInt()-in.nextInt();
te=-te+1;
// System.out.println(te);
if((te*(te-1)/2)%2==0)
{
// System.out.println("HOLA"+no);
if(no==0)
System.out.println("even");
else
System.out.println("odd");
}
else
{
no=(no+1)%2;
if(no==0)
System.out.println("even");
else
System.out.println("odd");
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 646 | 2,365 |
3,326 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
/**
* @author Don Li
*/
public class GeorgeInterestingGraph {
int N = 505;
int INF = (int) 1e9;
List<Integer>[] G = new List[N];
int[] match = new int[N];
int[] used = new int[N];
int cur = 0;
{
for (int i = 0; i < N; i++) G[i] = new ArrayList<>(1);
}
void solve() {
int n = in.nextInt(), m = in.nextInt();
int[] fr = new int[m], to = new int[m];
for (int i = 0; i < m; i++) {
fr[i] = in.nextInt() - 1;
to[i] = in.nextInt() - 1;
}
int ans = INF;
for (int i = 0; i < n; i++) {
int cnt = 0;
for (int j = 0; j < n; j++) {
G[j].clear();
match[j] = -1;
}
for (int j = 0; j < m; j++) {
if (fr[j] == i || to[j] == i) {
cnt++;
} else {
G[fr[j]].add(to[j]);
}
}
int other = m - cnt;
int max = 0;
for (int j = 0; j < n; j++) {
cur++;
if (augment(j)) max++;
}
ans = Math.min(ans, 2 * (n - 1) + 1 - cnt + other - max + (n - 1) - max);
}
out.println(ans);
}
boolean augment(int u) {
if (used[u] == cur) return false;
used[u] = cur;
for (int v : G[u]) {
if (match[v] < 0 || augment(match[v])) {
match[v] = u;
return true;
}
}
return false;
}
public static void main(String[] args) {
in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
new GeorgeInterestingGraph().solve();
out.close();
}
static FastScanner in;
static PrintWriter out;
static class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
/**
* @author Don Li
*/
public class GeorgeInterestingGraph {
int N = 505;
int INF = (int) 1e9;
List<Integer>[] G = new List[N];
int[] match = new int[N];
int[] used = new int[N];
int cur = 0;
{
for (int i = 0; i < N; i++) G[i] = new ArrayList<>(1);
}
void solve() {
int n = in.nextInt(), m = in.nextInt();
int[] fr = new int[m], to = new int[m];
for (int i = 0; i < m; i++) {
fr[i] = in.nextInt() - 1;
to[i] = in.nextInt() - 1;
}
int ans = INF;
for (int i = 0; i < n; i++) {
int cnt = 0;
for (int j = 0; j < n; j++) {
G[j].clear();
match[j] = -1;
}
for (int j = 0; j < m; j++) {
if (fr[j] == i || to[j] == i) {
cnt++;
} else {
G[fr[j]].add(to[j]);
}
}
int other = m - cnt;
int max = 0;
for (int j = 0; j < n; j++) {
cur++;
if (augment(j)) max++;
}
ans = Math.min(ans, 2 * (n - 1) + 1 - cnt + other - max + (n - 1) - max);
}
out.println(ans);
}
boolean augment(int u) {
if (used[u] == cur) return false;
used[u] = cur;
for (int v : G[u]) {
if (match[v] < 0 || augment(match[v])) {
match[v] = u;
return true;
}
}
return false;
}
public static void main(String[] args) {
in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
new GeorgeInterestingGraph().solve();
out.close();
}
static FastScanner in;
static PrintWriter out;
static class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
/**
* @author Don Li
*/
public class GeorgeInterestingGraph {
int N = 505;
int INF = (int) 1e9;
List<Integer>[] G = new List[N];
int[] match = new int[N];
int[] used = new int[N];
int cur = 0;
{
for (int i = 0; i < N; i++) G[i] = new ArrayList<>(1);
}
void solve() {
int n = in.nextInt(), m = in.nextInt();
int[] fr = new int[m], to = new int[m];
for (int i = 0; i < m; i++) {
fr[i] = in.nextInt() - 1;
to[i] = in.nextInt() - 1;
}
int ans = INF;
for (int i = 0; i < n; i++) {
int cnt = 0;
for (int j = 0; j < n; j++) {
G[j].clear();
match[j] = -1;
}
for (int j = 0; j < m; j++) {
if (fr[j] == i || to[j] == i) {
cnt++;
} else {
G[fr[j]].add(to[j]);
}
}
int other = m - cnt;
int max = 0;
for (int j = 0; j < n; j++) {
cur++;
if (augment(j)) max++;
}
ans = Math.min(ans, 2 * (n - 1) + 1 - cnt + other - max + (n - 1) - max);
}
out.println(ans);
}
boolean augment(int u) {
if (used[u] == cur) return false;
used[u] = cur;
for (int v : G[u]) {
if (match[v] < 0 || augment(match[v])) {
match[v] = u;
return true;
}
}
return false;
}
public static void main(String[] args) {
in = new FastScanner(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
new GeorgeInterestingGraph().solve();
out.close();
}
static FastScanner in;
static PrintWriter out;
static class FastScanner {
BufferedReader in;
StringTokenizer st;
public FastScanner(BufferedReader in) {
this.in = in;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextToken());
}
public long nextLong() {
return Long.parseLong(nextToken());
}
public double nextDouble() {
return Double.parseDouble(nextToken());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,024 | 3,320 |
42 |
import java.util.*;
import java.io.*;
public class X
{
public static void main(String args[])throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String s1 = br.readLine();
String s2 = br.readLine();
int i=0;
char c1,c2;
int cost = 0;
while(i<n)
{
c1 = s1.charAt(i);
c2 = s2.charAt(i);
if(c1 != c2)
{
if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1))
{
cost +=1;
i++;
}
else
{
cost +=1;
}
}
i++;
}
System.out.println(cost);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class X
{
public static void main(String args[])throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String s1 = br.readLine();
String s2 = br.readLine();
int i=0;
char c1,c2;
int cost = 0;
while(i<n)
{
c1 = s1.charAt(i);
c2 = s2.charAt(i);
if(c1 != c2)
{
if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1))
{
cost +=1;
i++;
}
else
{
cost +=1;
}
}
i++;
}
System.out.println(cost);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class X
{
public static void main(String args[])throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String s1 = br.readLine();
String s2 = br.readLine();
int i=0;
char c1,c2;
int cost = 0;
while(i<n)
{
c1 = s1.charAt(i);
c2 = s2.charAt(i);
if(c1 != c2)
{
if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1))
{
cost +=1;
i++;
}
else
{
cost +=1;
}
}
i++;
}
System.out.println(cost);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 536 | 42 |
2,099 |
import java.util.*;
public class Main {
public static void main(String args[]) {
(new Main()).solve();
}
void solve() {
Scanner cin = new Scanner(System.in);
while( cin.hasNextInt() ) {
int n = cin.nextInt();
int arr[] = new int[n];
for(int i=0; i<n; ++i) {
arr[i] = cin.nextInt();
}
Arrays.sort(arr);
int ret[] = new int[n];
ret[0] = 1;
for(int i=0; i<n-1; ++i) { ret[i + 1] = arr[i]; }
if( arr[n - 1] == 1 ) { ret[n - 1] = 2; }
String glue = "";
for(int i=0; i<n; ++i) {
System.out.print(glue + ret[i]);
glue = " ";
}
System.out.println();
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String args[]) {
(new Main()).solve();
}
void solve() {
Scanner cin = new Scanner(System.in);
while( cin.hasNextInt() ) {
int n = cin.nextInt();
int arr[] = new int[n];
for(int i=0; i<n; ++i) {
arr[i] = cin.nextInt();
}
Arrays.sort(arr);
int ret[] = new int[n];
ret[0] = 1;
for(int i=0; i<n-1; ++i) { ret[i + 1] = arr[i]; }
if( arr[n - 1] == 1 ) { ret[n - 1] = 2; }
String glue = "";
for(int i=0; i<n; ++i) {
System.out.print(glue + ret[i]);
glue = " ";
}
System.out.println();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String args[]) {
(new Main()).solve();
}
void solve() {
Scanner cin = new Scanner(System.in);
while( cin.hasNextInt() ) {
int n = cin.nextInt();
int arr[] = new int[n];
for(int i=0; i<n; ++i) {
arr[i] = cin.nextInt();
}
Arrays.sort(arr);
int ret[] = new int[n];
ret[0] = 1;
for(int i=0; i<n-1; ++i) { ret[i + 1] = arr[i]; }
if( arr[n - 1] == 1 ) { ret[n - 1] = 2; }
String glue = "";
for(int i=0; i<n; ++i) {
System.out.print(glue + ret[i]);
glue = " ";
}
System.out.println();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 542 | 2,095 |
4,152 |
import java.util.HashMap;
import java.util.Scanner;
import javax.swing.text.html.HTMLDocument.Iterator;
public class Main
{
public static double p[];
static double s[];
static double m[];
static int n;
public static double a[][];
public static int index=0;
public static boolean vis[];
public static HashMap<Integer, Integer> permMap;
public static void main(String g[])
{
Scanner sc = new Scanner(System.in);
n=sc.nextInt();
m = new double[(1<<n) +1];
vis = new boolean[(1<<n) +1];
a = new double[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
//System.out.println("read"+(c++));
a[i][j] = sc.nextDouble();
}
}
s = new double[1<<n]; // 2^n
int perm=0;
m[0]=1;
p();
// System.out.println("answers : ");
int c=((1<<n)-1);
for(int i=0;i<n;i++)
{
perm = c-(1<<i);
// System.out.printf("permutation = %x, prob = %f\n",perm,m[perm]);
System.out.printf("%.6f ",m[perm]);
}
// getPerms(0);
// p(perm);
// double res[] = new double[n];
// for(int i=0;i<n;i++)
{
// for(int j=0;j<n;j++)
// if((i&(i-1))!=0)
// continue;
// res[i] =
// p(perm,n);
// System.out.println(m[i][j]);
}
// int cur=(1<<n)-1;
//
//int i=0;
// for(i=0;i<n;i++)
// {
// int val=(cur-(1<<i));
// int L = n-1;
// System.out.printf("running for %x .... P = %f\n",val,getProb(val,L));
//
// }
//getP((1<<n)-1));
// for(int i=0;i<m.length;i++)
// {
// System.out.println(m[perm]);
// }
}
public static void p()
{
for(int k=0;k<(1<<n);k++)
{
int perm=k;
for(int j=0;j<n;j++)
{
if(bitTest(perm, j))
{
continue;
}
int newPerm=perm|(1<<j); // j got eaten
for(int i=0;i<n;i++)
{
if( (i==j) || bitTest(newPerm,i))
{
continue;
}
// i eats j
int L=n-countO(perm);
if(L<2)
{
continue;
}
//System.out.println("L="+L);
double pm = 2.0/(L*(L-1));
// System.out.printf("Left with %d,%d eats %d \n",L,i,j);
m[newPerm]+=m[perm]*a[i][j]*pm;
// System.out.printf("p(%x)= %f \n",newPerm,m[newPerm]);
//System.out.printf("p(%x)= %f \n",newPerm2,m[newPerm2]);
}
// System.out.printf("p(%x)= %f \n",newPerm,m[newPerm]);
// System.out.println("here-------------------->");
}
}
}
private static int countO(int marked) {
// TODO Auto-generated method stub
int count=0;
for(int i=0;i<n;i++)
{
int test = (1<<i);
if((test&marked)==(test))
count++;
}
return count;
}
private static boolean bitTest(int perm, int i) {
// TODO Auto-generated method stub
int test = (1<<i);
if((test&perm)==test)
return true;
return false;
}
private static int bitSet(int perm, int i) {
// TODO Auto-generated method stub
int np = (1<<i);
return np;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.Scanner;
import javax.swing.text.html.HTMLDocument.Iterator;
public class Main
{
public static double p[];
static double s[];
static double m[];
static int n;
public static double a[][];
public static int index=0;
public static boolean vis[];
public static HashMap<Integer, Integer> permMap;
public static void main(String g[])
{
Scanner sc = new Scanner(System.in);
n=sc.nextInt();
m = new double[(1<<n) +1];
vis = new boolean[(1<<n) +1];
a = new double[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
//System.out.println("read"+(c++));
a[i][j] = sc.nextDouble();
}
}
s = new double[1<<n]; // 2^n
int perm=0;
m[0]=1;
p();
// System.out.println("answers : ");
int c=((1<<n)-1);
for(int i=0;i<n;i++)
{
perm = c-(1<<i);
// System.out.printf("permutation = %x, prob = %f\n",perm,m[perm]);
System.out.printf("%.6f ",m[perm]);
}
// getPerms(0);
// p(perm);
// double res[] = new double[n];
// for(int i=0;i<n;i++)
{
// for(int j=0;j<n;j++)
// if((i&(i-1))!=0)
// continue;
// res[i] =
// p(perm,n);
// System.out.println(m[i][j]);
}
// int cur=(1<<n)-1;
//
//int i=0;
// for(i=0;i<n;i++)
// {
// int val=(cur-(1<<i));
// int L = n-1;
// System.out.printf("running for %x .... P = %f\n",val,getProb(val,L));
//
// }
//getP((1<<n)-1));
// for(int i=0;i<m.length;i++)
// {
// System.out.println(m[perm]);
// }
}
public static void p()
{
for(int k=0;k<(1<<n);k++)
{
int perm=k;
for(int j=0;j<n;j++)
{
if(bitTest(perm, j))
{
continue;
}
int newPerm=perm|(1<<j); // j got eaten
for(int i=0;i<n;i++)
{
if( (i==j) || bitTest(newPerm,i))
{
continue;
}
// i eats j
int L=n-countO(perm);
if(L<2)
{
continue;
}
//System.out.println("L="+L);
double pm = 2.0/(L*(L-1));
// System.out.printf("Left with %d,%d eats %d \n",L,i,j);
m[newPerm]+=m[perm]*a[i][j]*pm;
// System.out.printf("p(%x)= %f \n",newPerm,m[newPerm]);
//System.out.printf("p(%x)= %f \n",newPerm2,m[newPerm2]);
}
// System.out.printf("p(%x)= %f \n",newPerm,m[newPerm]);
// System.out.println("here-------------------->");
}
}
}
private static int countO(int marked) {
// TODO Auto-generated method stub
int count=0;
for(int i=0;i<n;i++)
{
int test = (1<<i);
if((test&marked)==(test))
count++;
}
return count;
}
private static boolean bitTest(int perm, int i) {
// TODO Auto-generated method stub
int test = (1<<i);
if((test&perm)==test)
return true;
return false;
}
private static int bitSet(int perm, int i) {
// TODO Auto-generated method stub
int np = (1<<i);
return np;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.Scanner;
import javax.swing.text.html.HTMLDocument.Iterator;
public class Main
{
public static double p[];
static double s[];
static double m[];
static int n;
public static double a[][];
public static int index=0;
public static boolean vis[];
public static HashMap<Integer, Integer> permMap;
public static void main(String g[])
{
Scanner sc = new Scanner(System.in);
n=sc.nextInt();
m = new double[(1<<n) +1];
vis = new boolean[(1<<n) +1];
a = new double[n][n];
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
//System.out.println("read"+(c++));
a[i][j] = sc.nextDouble();
}
}
s = new double[1<<n]; // 2^n
int perm=0;
m[0]=1;
p();
// System.out.println("answers : ");
int c=((1<<n)-1);
for(int i=0;i<n;i++)
{
perm = c-(1<<i);
// System.out.printf("permutation = %x, prob = %f\n",perm,m[perm]);
System.out.printf("%.6f ",m[perm]);
}
// getPerms(0);
// p(perm);
// double res[] = new double[n];
// for(int i=0;i<n;i++)
{
// for(int j=0;j<n;j++)
// if((i&(i-1))!=0)
// continue;
// res[i] =
// p(perm,n);
// System.out.println(m[i][j]);
}
// int cur=(1<<n)-1;
//
//int i=0;
// for(i=0;i<n;i++)
// {
// int val=(cur-(1<<i));
// int L = n-1;
// System.out.printf("running for %x .... P = %f\n",val,getProb(val,L));
//
// }
//getP((1<<n)-1));
// for(int i=0;i<m.length;i++)
// {
// System.out.println(m[perm]);
// }
}
public static void p()
{
for(int k=0;k<(1<<n);k++)
{
int perm=k;
for(int j=0;j<n;j++)
{
if(bitTest(perm, j))
{
continue;
}
int newPerm=perm|(1<<j); // j got eaten
for(int i=0;i<n;i++)
{
if( (i==j) || bitTest(newPerm,i))
{
continue;
}
// i eats j
int L=n-countO(perm);
if(L<2)
{
continue;
}
//System.out.println("L="+L);
double pm = 2.0/(L*(L-1));
// System.out.printf("Left with %d,%d eats %d \n",L,i,j);
m[newPerm]+=m[perm]*a[i][j]*pm;
// System.out.printf("p(%x)= %f \n",newPerm,m[newPerm]);
//System.out.printf("p(%x)= %f \n",newPerm2,m[newPerm2]);
}
// System.out.printf("p(%x)= %f \n",newPerm,m[newPerm]);
// System.out.println("here-------------------->");
}
}
}
private static int countO(int marked) {
// TODO Auto-generated method stub
int count=0;
for(int i=0;i<n;i++)
{
int test = (1<<i);
if((test&marked)==(test))
count++;
}
return count;
}
private static boolean bitTest(int perm, int i) {
// TODO Auto-generated method stub
int test = (1<<i);
if((test&perm)==test)
return true;
return false;
}
private static int bitSet(int perm, int i) {
// TODO Auto-generated method stub
int np = (1<<i);
return np;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,291 | 4,141 |
3,238 |
import java.util.Scanner;
public class A {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
long n = in.nextLong();
System.out.println(25);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
long n = in.nextLong();
System.out.println(25);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args){
Scanner in = new Scanner(System.in);
long n = in.nextLong();
System.out.println(25);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 377 | 3,232 |
2,947 |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long a=s.nextLong(), b=s.nextLong();
long c=0;
while(true) {
if(a==b ){
System.out.println(c+a);
return ;
} else if(b==a+1){
c+=1;
b=a;
} else if(b<a){
long h = a/b-1;
if(h<=0){
a-=b;c++;continue;
}
a-=b*h;
c+=h;
} else{
if(a==1){
long t = b-a;
b = t;
c+=t;
b = a;
continue;
}
long t = b-a;
long h = b/a - 1 ;
if(h<=0){
b = t;
c+=1;continue;
}
c+=h;b-=h*a;
// b = a;
}
}
// System.out.println(c);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long a=s.nextLong(), b=s.nextLong();
long c=0;
while(true) {
if(a==b ){
System.out.println(c+a);
return ;
} else if(b==a+1){
c+=1;
b=a;
} else if(b<a){
long h = a/b-1;
if(h<=0){
a-=b;c++;continue;
}
a-=b*h;
c+=h;
} else{
if(a==1){
long t = b-a;
b = t;
c+=t;
b = a;
continue;
}
long t = b-a;
long h = b/a - 1 ;
if(h<=0){
b = t;
c+=1;continue;
}
c+=h;b-=h*a;
// b = a;
}
}
// System.out.println(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long a=s.nextLong(), b=s.nextLong();
long c=0;
while(true) {
if(a==b ){
System.out.println(c+a);
return ;
} else if(b==a+1){
c+=1;
b=a;
} else if(b<a){
long h = a/b-1;
if(h<=0){
a-=b;c++;continue;
}
a-=b*h;
c+=h;
} else{
if(a==1){
long t = b-a;
b = t;
c+=t;
b = a;
continue;
}
long t = b-a;
long h = b/a - 1 ;
if(h<=0){
b = t;
c+=1;continue;
}
c+=h;b-=h*a;
// b = a;
}
}
// System.out.println(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 584 | 2,941 |
1,529 |
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
public static void main(String[] args) {
new Main().run();
}
void run() {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i)
a[i] = in.nextInt();
Arrays.sort(a);
int ret = 0, it = 0;
for (int i = 0; i < n; ++i) {
int val = a[i] % k == 0 ? a[i] / k : -1;
while (it < i && a[it] < val) ++it;
if (it == i || a[it] != val) {
++ret;
}
else {
a[i] = 0;
}
}
out.println(ret);
out.close();
}
}
class InputReader {
BufferedReader buff;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
buff = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
boolean hasNext() {
while (tokenizer == null || !tokenizer.hasMoreTokens())
try {
tokenizer = new StringTokenizer(buff.readLine());
}
catch (Exception e) {
return false;
}
return true;
}
String next() {
if (!hasNext())
throw new RuntimeException();
return tokenizer.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
public static void main(String[] args) {
new Main().run();
}
void run() {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i)
a[i] = in.nextInt();
Arrays.sort(a);
int ret = 0, it = 0;
for (int i = 0; i < n; ++i) {
int val = a[i] % k == 0 ? a[i] / k : -1;
while (it < i && a[it] < val) ++it;
if (it == i || a[it] != val) {
++ret;
}
else {
a[i] = 0;
}
}
out.println(ret);
out.close();
}
}
class InputReader {
BufferedReader buff;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
buff = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
boolean hasNext() {
while (tokenizer == null || !tokenizer.hasMoreTokens())
try {
tokenizer = new StringTokenizer(buff.readLine());
}
catch (Exception e) {
return false;
}
return true;
}
String next() {
if (!hasNext())
throw new RuntimeException();
return tokenizer.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
public static void main(String[] args) {
new Main().run();
}
void run() {
InputReader in = new InputReader(System.in);
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt(), k = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; ++i)
a[i] = in.nextInt();
Arrays.sort(a);
int ret = 0, it = 0;
for (int i = 0; i < n; ++i) {
int val = a[i] % k == 0 ? a[i] / k : -1;
while (it < i && a[it] < val) ++it;
if (it == i || a[it] != val) {
++ret;
}
else {
a[i] = 0;
}
}
out.println(ret);
out.close();
}
}
class InputReader {
BufferedReader buff;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
buff = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
boolean hasNext() {
while (tokenizer == null || !tokenizer.hasMoreTokens())
try {
tokenizer = new StringTokenizer(buff.readLine());
}
catch (Exception e) {
return false;
}
return true;
}
String next() {
if (!hasNext())
throw new RuntimeException();
return tokenizer.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 708 | 1,527 |
673 |
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner sc = new Scanner(new InputStreamReader(System.in));
int n = sc.nextInt(),even = 0,odd = 0,evI = 0,OdI = 0;
for (int i = 0; i < n; i++) {
if(sc.nextInt()%2 == 1){
odd++;
OdI = i+1;
}else{
even++;
evI = i+1;
}
}
if(even < odd)
System.out.println(evI);
else
System.out.println(OdI);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner sc = new Scanner(new InputStreamReader(System.in));
int n = sc.nextInt(),even = 0,odd = 0,evI = 0,OdI = 0;
for (int i = 0; i < n; i++) {
if(sc.nextInt()%2 == 1){
odd++;
OdI = i+1;
}else{
even++;
evI = i+1;
}
}
if(even < odd)
System.out.println(evI);
else
System.out.println(OdI);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
public class Main {
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner sc = new Scanner(new InputStreamReader(System.in));
int n = sc.nextInt(),even = 0,odd = 0,evI = 0,OdI = 0;
for (int i = 0; i < n; i++) {
if(sc.nextInt()%2 == 1){
odd++;
OdI = i+1;
}else{
even++;
evI = i+1;
}
}
if(even < odd)
System.out.println(evI);
else
System.out.println(OdI);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 493 | 672 |
2,037 |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class order {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(
new OutputStreamWriter(System.out)));
int n=Integer.parseInt(in.readLine());
Set<Integer> set = new TreeSet<Integer>();
StringTokenizer st= new StringTokenizer(in.readLine());
int a;
List<Integer> list =new LinkedList<Integer>();
while(st.hasMoreTokens()){
a= Integer.parseInt(st.nextToken());
if(!set.contains(a)){
list.add(a);
set.add(a);
}
}
if(list.size()==1){
out.println("NO");
}else{
Collections.sort(list);
out.println(list.get(1));
}
out.close();
System.exit(0);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class order {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(
new OutputStreamWriter(System.out)));
int n=Integer.parseInt(in.readLine());
Set<Integer> set = new TreeSet<Integer>();
StringTokenizer st= new StringTokenizer(in.readLine());
int a;
List<Integer> list =new LinkedList<Integer>();
while(st.hasMoreTokens()){
a= Integer.parseInt(st.nextToken());
if(!set.contains(a)){
list.add(a);
set.add(a);
}
}
if(list.size()==1){
out.println("NO");
}else{
Collections.sort(list);
out.println(list.get(1));
}
out.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class order {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(
new OutputStreamWriter(System.out)));
int n=Integer.parseInt(in.readLine());
Set<Integer> set = new TreeSet<Integer>();
StringTokenizer st= new StringTokenizer(in.readLine());
int a;
List<Integer> list =new LinkedList<Integer>();
while(st.hasMoreTokens()){
a= Integer.parseInt(st.nextToken());
if(!set.contains(a)){
list.add(a);
set.add(a);
}
}
if(list.size()==1){
out.println("NO");
}else{
Collections.sort(list);
out.println(list.get(1));
}
out.close();
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 585 | 2,033 |
3,878 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
@SuppressWarnings("unused")
public class C{
static long inf = (long)1e15;
public static void main(String[] args) throws IOException {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int tt = fs.nextInt();
outer:
while(tt-->0) {
int n = fs.nextInt();
int[] a = fs.readArray(n);
ArrayList<Integer>[] l = new ArrayList[n];
for(int i=0;i<n;i++) l[i] = new ArrayList<Integer>();
l[0].add(1);
for(int i=1;i<n;i++) {
if(a[i]==1) {
for(int j=0;j<l[i-1].size();j++) l[i].add(l[i-1].get(j));
l[i].add(1);
}
else {
int ind = -1;
for(int j=l[i-1].size()-1;j>=0;j--) {
if(l[i-1].get(j)+1==a[i]) {
ind = j; break;
}
}
for(int j=0;j<ind;j++) l[i].add(l[i-1].get(j));
l[i].add(a[i]);
}
}
for(int i=0;i<n;i++) {
out.print(l[i].get(0));
for(int j=1;j<l[i].size();j++) out.print("."+l[i].get(j));
out.println();
}
}
out.close();
}
static final Random random=new Random();
static <T> void shuffle(T[] arr) {
int n = arr.length;
for(int i=0;i<n;i++ ) {
int k = random.nextInt(n);
T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp;
}
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); long temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void reverse(int[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static void reverse(long[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static <T> void reverse(T[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++) {
T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static class FastScanner{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next(){
while(!st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
} catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt(){
return Integer.parseInt(next());
}
public int[] readArray(int n){
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = nextInt();
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public char nextChar() {
return next().toCharArray()[0];
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
@SuppressWarnings("unused")
public class C{
static long inf = (long)1e15;
public static void main(String[] args) throws IOException {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int tt = fs.nextInt();
outer:
while(tt-->0) {
int n = fs.nextInt();
int[] a = fs.readArray(n);
ArrayList<Integer>[] l = new ArrayList[n];
for(int i=0;i<n;i++) l[i] = new ArrayList<Integer>();
l[0].add(1);
for(int i=1;i<n;i++) {
if(a[i]==1) {
for(int j=0;j<l[i-1].size();j++) l[i].add(l[i-1].get(j));
l[i].add(1);
}
else {
int ind = -1;
for(int j=l[i-1].size()-1;j>=0;j--) {
if(l[i-1].get(j)+1==a[i]) {
ind = j; break;
}
}
for(int j=0;j<ind;j++) l[i].add(l[i-1].get(j));
l[i].add(a[i]);
}
}
for(int i=0;i<n;i++) {
out.print(l[i].get(0));
for(int j=1;j<l[i].size();j++) out.print("."+l[i].get(j));
out.println();
}
}
out.close();
}
static final Random random=new Random();
static <T> void shuffle(T[] arr) {
int n = arr.length;
for(int i=0;i<n;i++ ) {
int k = random.nextInt(n);
T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp;
}
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); long temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void reverse(int[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static void reverse(long[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static <T> void reverse(T[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++) {
T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static class FastScanner{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next(){
while(!st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
} catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt(){
return Integer.parseInt(next());
}
public int[] readArray(int n){
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = nextInt();
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public char nextChar() {
return next().toCharArray()[0];
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
@SuppressWarnings("unused")
public class C{
static long inf = (long)1e15;
public static void main(String[] args) throws IOException {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int tt = fs.nextInt();
outer:
while(tt-->0) {
int n = fs.nextInt();
int[] a = fs.readArray(n);
ArrayList<Integer>[] l = new ArrayList[n];
for(int i=0;i<n;i++) l[i] = new ArrayList<Integer>();
l[0].add(1);
for(int i=1;i<n;i++) {
if(a[i]==1) {
for(int j=0;j<l[i-1].size();j++) l[i].add(l[i-1].get(j));
l[i].add(1);
}
else {
int ind = -1;
for(int j=l[i-1].size()-1;j>=0;j--) {
if(l[i-1].get(j)+1==a[i]) {
ind = j; break;
}
}
for(int j=0;j<ind;j++) l[i].add(l[i-1].get(j));
l[i].add(a[i]);
}
}
for(int i=0;i<n;i++) {
out.print(l[i].get(0));
for(int j=1;j<l[i].size();j++) out.print("."+l[i].get(j));
out.println();
}
}
out.close();
}
static final Random random=new Random();
static <T> void shuffle(T[] arr) {
int n = arr.length;
for(int i=0;i<n;i++ ) {
int k = random.nextInt(n);
T temp = arr[k]; arr[k] = arr[i]; arr[i] = temp;
}
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); int temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(long[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n); long temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static void reverse(int[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
int temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static void reverse(long[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++){
long temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static <T> void reverse(T[] arr, int l, int r) {
for(int i=l;i<l+(r-l)/2;i++) {
T temp = arr[i]; arr[i] = arr[r-i+l-1]; arr[r-i+l-1] = temp;
}
}
static class FastScanner{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next(){
while(!st.hasMoreElements()){
try{
st = new StringTokenizer(br.readLine());
} catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int nextInt(){
return Integer.parseInt(next());
}
public int[] readArray(int n){
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = nextInt();
return a;
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public char nextChar() {
return next().toCharArray()[0];
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,392 | 3,868 |
3,411 |
import java.io.*;
import java.util.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
void solve() throws IOException {
String s = next();
HashSet<String> set = new HashSet<String>();
int ans = 0;
for (int i = 0; i < s.length(); ++i) {
for (int j = i + 1; j <= s.length(); ++j) {
String t = s.substring(i, j);
if (set.contains(t)) {
ans = Math.max(ans, t.length());
}
set.add(t);
}
}
out.println(ans);
}
Solution() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
void solve() throws IOException {
String s = next();
HashSet<String> set = new HashSet<String>();
int ans = 0;
for (int i = 0; i < s.length(); ++i) {
for (int j = i + 1; j <= s.length(); ++j) {
String t = s.substring(i, j);
if (set.contains(t)) {
ans = Math.max(ans, t.length());
}
set.add(t);
}
}
out.println(ans);
}
Solution() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
void solve() throws IOException {
String s = next();
HashSet<String> set = new HashSet<String>();
int ans = 0;
for (int i = 0; i < s.length(); ++i) {
for (int j = i + 1; j <= s.length(); ++j) {
String t = s.substring(i, j);
if (set.contains(t)) {
ans = Math.max(ans, t.length());
}
set.add(t);
}
}
out.println(ans);
}
Solution() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
eat("");
solve();
in.close();
out.close();
}
private void eat(String str) {
st = new StringTokenizer(str);
}
String next() throws IOException {
while (!st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
eat(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 651 | 3,405 |
3,229 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Egor Kulikov (egor@egork.net)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
out.printLine(25);
}
}
static class InputReader {
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Egor Kulikov (egor@egork.net)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
out.printLine(25);
}
}
static class InputReader {
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Egor Kulikov (egor@egork.net)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
out.printLine(25);
}
}
static class InputReader {
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 635 | 3,223 |
743 |
import java.util.Scanner;
public class ChainReaction {
public static void main(String [] args) {
Scanner kb = new Scanner(System.in);
int num = kb.nextInt();
int[] beacons = new int[1000002];
for (int i=0; i<num; i++) {
beacons[kb.nextInt()] = kb.nextInt();
}
int [] dp = new int[1000002];
int max = 0;
if (beacons[0] != 0)
dp[0] = 1;
for (int i=1; i<dp.length; i++) {
if (beacons[i] == 0) {
dp[i] = dp[i-1];
} else {
int index = i-1-beacons[i];
if (index<0)
dp[i] = 1;
else
dp[i] = 1 + dp[index];
}
max = Math.max(max, dp[i]);
//if (i<11)
//System.out.println(i +" is "+dp[i]);
}
System.out.println(num-max);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class ChainReaction {
public static void main(String [] args) {
Scanner kb = new Scanner(System.in);
int num = kb.nextInt();
int[] beacons = new int[1000002];
for (int i=0; i<num; i++) {
beacons[kb.nextInt()] = kb.nextInt();
}
int [] dp = new int[1000002];
int max = 0;
if (beacons[0] != 0)
dp[0] = 1;
for (int i=1; i<dp.length; i++) {
if (beacons[i] == 0) {
dp[i] = dp[i-1];
} else {
int index = i-1-beacons[i];
if (index<0)
dp[i] = 1;
else
dp[i] = 1 + dp[index];
}
max = Math.max(max, dp[i]);
//if (i<11)
//System.out.println(i +" is "+dp[i]);
}
System.out.println(num-max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class ChainReaction {
public static void main(String [] args) {
Scanner kb = new Scanner(System.in);
int num = kb.nextInt();
int[] beacons = new int[1000002];
for (int i=0; i<num; i++) {
beacons[kb.nextInt()] = kb.nextInt();
}
int [] dp = new int[1000002];
int max = 0;
if (beacons[0] != 0)
dp[0] = 1;
for (int i=1; i<dp.length; i++) {
if (beacons[i] == 0) {
dp[i] = dp[i-1];
} else {
int index = i-1-beacons[i];
if (index<0)
dp[i] = 1;
else
dp[i] = 1 + dp[index];
}
max = Math.max(max, dp[i]);
//if (i<11)
//System.out.println(i +" is "+dp[i]);
}
System.out.println(num-max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 612 | 742 |
4,317 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashSet;
/**
* Created by Tejas on 18-10-2018.
*/
public class Main {
static HashSet<Integer> adjList[];
public static void main(String[]args)throws IOException{
BufferedReader bufferedReader=new BufferedReader(new InputStreamReader(System.in));
StringBuilder stringBuilder=new StringBuilder();
String temp[]=bufferedReader.readLine().split(" ");
int V=Integer.parseInt(temp[0]);
int E=Integer.parseInt(temp[1]);
adjList=new HashSet[V];
for(int i=0;i<V;i++)
adjList[i]=new HashSet<>();
for(int i=0;i<E;i++){
temp=bufferedReader.readLine().split(" ");
int x=Integer.parseInt(temp[0])-1;
int y=Integer.parseInt(temp[1])-1;
adjList[y].add(x);
adjList[x].add(y);
}
stringBuilder.append(solve(V)+"\n");
System.out.println(stringBuilder);
}
private static long solve(int V) {
long dp[][]=new long[(1<<V)][V];
long count=0;
for(int i=0;i<V;i++)
dp[(1<<i)][i]=1;
for(int mask=1;mask<(1<<V);mask++){
// HW starting at pos first and ending at j.
int first = Integer.numberOfTrailingZeros(mask);
for(int i=0;i<V;i++){
if((mask&(1<<i))==0 || first==i) continue;
for (int j = 0; j < V; j++)
if (adjList[i].contains(j) && (mask & (1<<j))!=0)
dp[mask][i] += dp[mask ^ (1 << i)][j];
//Calculating simple cycles
if (Integer.bitCount(mask)>=3)
if(adjList[first].contains(i))
count+=dp[mask][i];
}
}
return count/2;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashSet;
/**
* Created by Tejas on 18-10-2018.
*/
public class Main {
static HashSet<Integer> adjList[];
public static void main(String[]args)throws IOException{
BufferedReader bufferedReader=new BufferedReader(new InputStreamReader(System.in));
StringBuilder stringBuilder=new StringBuilder();
String temp[]=bufferedReader.readLine().split(" ");
int V=Integer.parseInt(temp[0]);
int E=Integer.parseInt(temp[1]);
adjList=new HashSet[V];
for(int i=0;i<V;i++)
adjList[i]=new HashSet<>();
for(int i=0;i<E;i++){
temp=bufferedReader.readLine().split(" ");
int x=Integer.parseInt(temp[0])-1;
int y=Integer.parseInt(temp[1])-1;
adjList[y].add(x);
adjList[x].add(y);
}
stringBuilder.append(solve(V)+"\n");
System.out.println(stringBuilder);
}
private static long solve(int V) {
long dp[][]=new long[(1<<V)][V];
long count=0;
for(int i=0;i<V;i++)
dp[(1<<i)][i]=1;
for(int mask=1;mask<(1<<V);mask++){
// HW starting at pos first and ending at j.
int first = Integer.numberOfTrailingZeros(mask);
for(int i=0;i<V;i++){
if((mask&(1<<i))==0 || first==i) continue;
for (int j = 0; j < V; j++)
if (adjList[i].contains(j) && (mask & (1<<j))!=0)
dp[mask][i] += dp[mask ^ (1 << i)][j];
//Calculating simple cycles
if (Integer.bitCount(mask)>=3)
if(adjList[first].contains(i))
count+=dp[mask][i];
}
}
return count/2;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashSet;
/**
* Created by Tejas on 18-10-2018.
*/
public class Main {
static HashSet<Integer> adjList[];
public static void main(String[]args)throws IOException{
BufferedReader bufferedReader=new BufferedReader(new InputStreamReader(System.in));
StringBuilder stringBuilder=new StringBuilder();
String temp[]=bufferedReader.readLine().split(" ");
int V=Integer.parseInt(temp[0]);
int E=Integer.parseInt(temp[1]);
adjList=new HashSet[V];
for(int i=0;i<V;i++)
adjList[i]=new HashSet<>();
for(int i=0;i<E;i++){
temp=bufferedReader.readLine().split(" ");
int x=Integer.parseInt(temp[0])-1;
int y=Integer.parseInt(temp[1])-1;
adjList[y].add(x);
adjList[x].add(y);
}
stringBuilder.append(solve(V)+"\n");
System.out.println(stringBuilder);
}
private static long solve(int V) {
long dp[][]=new long[(1<<V)][V];
long count=0;
for(int i=0;i<V;i++)
dp[(1<<i)][i]=1;
for(int mask=1;mask<(1<<V);mask++){
// HW starting at pos first and ending at j.
int first = Integer.numberOfTrailingZeros(mask);
for(int i=0;i<V;i++){
if((mask&(1<<i))==0 || first==i) continue;
for (int j = 0; j < V; j++)
if (adjList[i].contains(j) && (mask & (1<<j))!=0)
dp[mask][i] += dp[mask ^ (1 << i)][j];
//Calculating simple cycles
if (Integer.bitCount(mask)>=3)
if(adjList[first].contains(i))
count+=dp[mask][i];
}
}
return count/2;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 781 | 4,306 |
4,465 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.Random;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = in.scanInt();
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
int[][] dp;
int[] cur;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int[][] ar = new int[n][m];
int[][] max = new int[m][2];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
ar[i][j] = in.scanInt();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) max[i][0] = Math.max(max[i][0], ar[j][i]);
max[i][1] = i;
}
CodeHash.shuffle(max);
Arrays.sort(max, (o1, o2) -> -o1[0] + o2[0]);
dp = new int[2][1 << n];
cur = new int[1 << n];
for (int i = 0; i < Math.min(m, n); i++) {
Arrays.fill(cur, 0);
Arrays.fill(dp[i & 1], 0);
for (int j = 0; j < 1 << n; j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0) {
sum += (ar[(k + l) % n][max[i][1]]);
}
}
cur[j] = Math.max(cur[j], sum);
}
}
for (int j = 0; j < (1 << n); j++) {
for (int k = j; ; k = (k - 1) & j) {
dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + cur[j ^ k]);
if (k == 0) break;
}
}
}
out.println(dp[Math.min(n, m) & 1 ^ 1][(1 << n) - 1]);
}
}
static class CodeHash {
public static void shuffle(int[][] ar) {
Random rd = new Random(new Random().nextInt());
for (int i = 0; i < ar.length; i++) {
int index = rd.nextInt(ar.length);
int[] temp = ar[i];
ar[i] = ar[index];
ar[index] = temp;
}
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.Random;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = in.scanInt();
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
int[][] dp;
int[] cur;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int[][] ar = new int[n][m];
int[][] max = new int[m][2];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
ar[i][j] = in.scanInt();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) max[i][0] = Math.max(max[i][0], ar[j][i]);
max[i][1] = i;
}
CodeHash.shuffle(max);
Arrays.sort(max, (o1, o2) -> -o1[0] + o2[0]);
dp = new int[2][1 << n];
cur = new int[1 << n];
for (int i = 0; i < Math.min(m, n); i++) {
Arrays.fill(cur, 0);
Arrays.fill(dp[i & 1], 0);
for (int j = 0; j < 1 << n; j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0) {
sum += (ar[(k + l) % n][max[i][1]]);
}
}
cur[j] = Math.max(cur[j], sum);
}
}
for (int j = 0; j < (1 << n); j++) {
for (int k = j; ; k = (k - 1) & j) {
dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + cur[j ^ k]);
if (k == 0) break;
}
}
}
out.println(dp[Math.min(n, m) & 1 ^ 1][(1 << n) - 1]);
}
}
static class CodeHash {
public static void shuffle(int[][] ar) {
Random rd = new Random(new Random().nextInt());
for (int i = 0; i < ar.length; i++) {
int index = rd.nextInt(ar.length);
int[] temp = ar[i];
ar[i] = ar[index];
ar[index] = temp;
}
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.util.Random;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E2RotateColumnsHardVersion solver = new E2RotateColumnsHardVersion();
int testCount = in.scanInt();
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class E2RotateColumnsHardVersion {
int[][] dp;
int[] cur;
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int m = in.scanInt();
int[][] ar = new int[n][m];
int[][] max = new int[m][2];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
ar[i][j] = in.scanInt();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) max[i][0] = Math.max(max[i][0], ar[j][i]);
max[i][1] = i;
}
CodeHash.shuffle(max);
Arrays.sort(max, (o1, o2) -> -o1[0] + o2[0]);
dp = new int[2][1 << n];
cur = new int[1 << n];
for (int i = 0; i < Math.min(m, n); i++) {
Arrays.fill(cur, 0);
Arrays.fill(dp[i & 1], 0);
for (int j = 0; j < 1 << n; j++) {
for (int k = 0; k < n; k++) {
int sum = 0;
for (int l = 0; l < n; l++) {
if ((j & (1 << l)) != 0) {
sum += (ar[(k + l) % n][max[i][1]]);
}
}
cur[j] = Math.max(cur[j], sum);
}
}
for (int j = 0; j < (1 << n); j++) {
for (int k = j; ; k = (k - 1) & j) {
dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + cur[j ^ k]);
if (k == 0) break;
}
}
}
out.println(dp[Math.min(n, m) & 1 ^ 1][(1 << n) - 1]);
}
}
static class CodeHash {
public static void shuffle(int[][] ar) {
Random rd = new Random(new Random().nextInt());
for (int i = 0; i < ar.length; i++) {
int index = rd.nextInt(ar.length);
int[] temp = ar[i];
ar[i] = ar[index];
ar[index] = temp;
}
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,413 | 4,454 |
2,146 |
import java.io.*;
import java.util.*;
import java.lang.*;
import java.math.*;
public class USACO {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(reader.readLine()," ");
int n= Integer.parseInt(st.nextToken());
int r= Integer.parseInt(st.nextToken());
StringTokenizer st2 = new StringTokenizer(reader.readLine()," ");
double[][] coord = new double[n][2];
for (int i=0;i<n;i++) {
coord[i][0] = Integer.parseInt(st2.nextToken());
double y=r;
for (int j=0;j<i;j++) {
if (coord[j][0]<=coord[i][0]+2*r&&coord[j][0]>=coord[i][0]-2*r) {
if (coord[j][1]+Math.sqrt(4*r*r-(coord[i][0]-coord[j][0])*(coord[i][0]-coord[j][0]))>y) {
y=coord[j][1]+Math.sqrt(4*r*r-(coord[i][0]-coord[j][0])*(coord[i][0]-coord[j][0]));
}
}
}
coord[i][1]=y;
}
for (int i=0;i<n;i++) {
System.out.print(coord[i][1]);
if (i<n-1) {
System.out.print(" ");
} else {
System.out.print("\n");
}
}
reader.close();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
import java.math.*;
public class USACO {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(reader.readLine()," ");
int n= Integer.parseInt(st.nextToken());
int r= Integer.parseInt(st.nextToken());
StringTokenizer st2 = new StringTokenizer(reader.readLine()," ");
double[][] coord = new double[n][2];
for (int i=0;i<n;i++) {
coord[i][0] = Integer.parseInt(st2.nextToken());
double y=r;
for (int j=0;j<i;j++) {
if (coord[j][0]<=coord[i][0]+2*r&&coord[j][0]>=coord[i][0]-2*r) {
if (coord[j][1]+Math.sqrt(4*r*r-(coord[i][0]-coord[j][0])*(coord[i][0]-coord[j][0]))>y) {
y=coord[j][1]+Math.sqrt(4*r*r-(coord[i][0]-coord[j][0])*(coord[i][0]-coord[j][0]));
}
}
}
coord[i][1]=y;
}
for (int i=0;i<n;i++) {
System.out.print(coord[i][1]);
if (i<n-1) {
System.out.print(" ");
} else {
System.out.print("\n");
}
}
reader.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.*;
import java.math.*;
public class USACO {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(reader.readLine()," ");
int n= Integer.parseInt(st.nextToken());
int r= Integer.parseInt(st.nextToken());
StringTokenizer st2 = new StringTokenizer(reader.readLine()," ");
double[][] coord = new double[n][2];
for (int i=0;i<n;i++) {
coord[i][0] = Integer.parseInt(st2.nextToken());
double y=r;
for (int j=0;j<i;j++) {
if (coord[j][0]<=coord[i][0]+2*r&&coord[j][0]>=coord[i][0]-2*r) {
if (coord[j][1]+Math.sqrt(4*r*r-(coord[i][0]-coord[j][0])*(coord[i][0]-coord[j][0]))>y) {
y=coord[j][1]+Math.sqrt(4*r*r-(coord[i][0]-coord[j][0])*(coord[i][0]-coord[j][0]));
}
}
}
coord[i][1]=y;
}
for (int i=0;i<n;i++) {
System.out.print(coord[i][1]);
if (i<n-1) {
System.out.print(" ");
} else {
System.out.print("\n");
}
}
reader.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 668 | 2,142 |
3,161 |
import java.util.*;
import java.io.*;
public class ProbA {
int account;
void start(Scanner sc, PrintStream out) {
int ans = 0;
account = sc.nextInt();
int account1 = account / 10;
int account2 = (account - (account % 100)) / 10 + (account % 10);
out.println(Math.max(account1, Math.max(account, account2)));
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
PrintStream out = System.out;
new ProbA().start(sc, out);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class ProbA {
int account;
void start(Scanner sc, PrintStream out) {
int ans = 0;
account = sc.nextInt();
int account1 = account / 10;
int account2 = (account - (account % 100)) / 10 + (account % 10);
out.println(Math.max(account1, Math.max(account, account2)));
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
PrintStream out = System.out;
new ProbA().start(sc, out);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class ProbA {
int account;
void start(Scanner sc, PrintStream out) {
int ans = 0;
account = sc.nextInt();
int account1 = account / 10;
int account2 = (account - (account % 100)) / 10 + (account % 10);
out.println(Math.max(account1, Math.max(account, account2)));
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
PrintStream out = System.out;
new ProbA().start(sc, out);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 474 | 3,155 |
1,575 |
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class A implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new Thread(null, new A(), "", 128 * (1L << 20)).start();
}
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
long memoryTotal, memoryFree;
void memory(){
memoryFree = Runtime.getRuntime().freeMemory();
System.err.println("Memory = " + ((memoryTotal - memoryFree) >> 10) + " KB");
}
void debug(Object... objects){
if (DEBUG){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
public void run(){
try{
timeBegin = System.currentTimeMillis();
memoryTotal = Runtime.getRuntime().freeMemory();
init();
solve();
out.close();
time();
memory();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
boolean DEBUG = false;
void solve() throws IOException{
int n = readInt();
int[] a = new int[n];
Integer[] b = new Integer[n];
for (int i = 0; i < n; ++i){
a[i] = readInt();
b[i] = a[i];
}
Arrays.sort(b);
int count = 0;
for (int i = 0; i < n; ++i){
if (a[i] != b[i]){
count++;
}
}
if (count == 2 || count == 0){
out.println("YES");
}else{
out.println("NO");
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class A implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new Thread(null, new A(), "", 128 * (1L << 20)).start();
}
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
long memoryTotal, memoryFree;
void memory(){
memoryFree = Runtime.getRuntime().freeMemory();
System.err.println("Memory = " + ((memoryTotal - memoryFree) >> 10) + " KB");
}
void debug(Object... objects){
if (DEBUG){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
public void run(){
try{
timeBegin = System.currentTimeMillis();
memoryTotal = Runtime.getRuntime().freeMemory();
init();
solve();
out.close();
time();
memory();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
boolean DEBUG = false;
void solve() throws IOException{
int n = readInt();
int[] a = new int[n];
Integer[] b = new Integer[n];
for (int i = 0; i < n; ++i){
a[i] = readInt();
b[i] = a[i];
}
Arrays.sort(b);
int count = 0;
for (int i = 0; i < n; ++i){
if (a[i] != b[i]){
count++;
}
}
if (count == 2 || count == 0){
out.println("YES");
}else{
out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import static java.lang.Math.*;
public class A implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
PrintWriter out;
StringTokenizer tok = new StringTokenizer("");
void init() throws FileNotFoundException{
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
}
}
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken();
}
int readInt() throws IOException{
return Integer.parseInt(readString());
}
long readLong() throws IOException{
return Long.parseLong(readString());
}
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
public static void main(String[] args){
new Thread(null, new A(), "", 128 * (1L << 20)).start();
}
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
long memoryTotal, memoryFree;
void memory(){
memoryFree = Runtime.getRuntime().freeMemory();
System.err.println("Memory = " + ((memoryTotal - memoryFree) >> 10) + " KB");
}
void debug(Object... objects){
if (DEBUG){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
public void run(){
try{
timeBegin = System.currentTimeMillis();
memoryTotal = Runtime.getRuntime().freeMemory();
init();
solve();
out.close();
time();
memory();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
boolean DEBUG = false;
void solve() throws IOException{
int n = readInt();
int[] a = new int[n];
Integer[] b = new Integer[n];
for (int i = 0; i < n; ++i){
a[i] = readInt();
b[i] = a[i];
}
Arrays.sort(b);
int count = 0;
for (int i = 0; i < n; ++i){
if (a[i] != b[i]){
count++;
}
}
if (count == 2 || count == 0){
out.println("YES");
}else{
out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 939 | 1,572 |
3,300 |
import java.io.InputStreamReader;
import java.util.Scanner;
public class Hexadecimal {
public static void main(String [] args){
Scanner s = new Scanner(new InputStreamReader(System.in));
int x = s.nextInt();
System.out.println(x + " " + 0 + " " + 0);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.util.Scanner;
public class Hexadecimal {
public static void main(String [] args){
Scanner s = new Scanner(new InputStreamReader(System.in));
int x = s.nextInt();
System.out.println(x + " " + 0 + " " + 0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.util.Scanner;
public class Hexadecimal {
public static void main(String [] args){
Scanner s = new Scanner(new InputStreamReader(System.in));
int x = s.nextInt();
System.out.println(x + " " + 0 + " " + 0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 395 | 3,294 |
4,209 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.FileReader;
import java.util.StringTokenizer;
import java.io.IOException;
import java.util.Arrays;
public class Fish extends Thread {
public Fish() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
private void solve() throws Throwable {
int n = nextInt();
double[][] a = new double[n][n];
double[] dp = new double[(1 << n)];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = nextDouble();
}
}
int limit = (1 << n) - 1;
//dp[mask] = probability of current subset (mask) to remain in the end
dp[limit] = 1.0;
for (int mask = limit; mask > 0; --mask) {
int cardinality = Integer.bitCount(mask);
int probability = cardinality * (cardinality - 1) / 2;
for (int first = 0; first < n; ++first) {
if ((mask & powers[first]) != 0) {
for (int second = first + 1; second < n; ++second) {
if ((mask & powers[second]) != 0) {
dp[mask - powers[first]] += dp[mask] * a[second][first] / probability;
dp[mask - powers[second]] += dp[mask] * a[first][second] / probability;
}
}
}
}
}
for (int i = 0; i < n; ++i) {
output.printf("%.10f ", dp[powers[i]]);
}
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.flush();
output.close();
}
}
public static void main(String[] args) {
new Fish().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
static int powers[] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144};
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.FileReader;
import java.util.StringTokenizer;
import java.io.IOException;
import java.util.Arrays;
public class Fish extends Thread {
public Fish() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
private void solve() throws Throwable {
int n = nextInt();
double[][] a = new double[n][n];
double[] dp = new double[(1 << n)];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = nextDouble();
}
}
int limit = (1 << n) - 1;
//dp[mask] = probability of current subset (mask) to remain in the end
dp[limit] = 1.0;
for (int mask = limit; mask > 0; --mask) {
int cardinality = Integer.bitCount(mask);
int probability = cardinality * (cardinality - 1) / 2;
for (int first = 0; first < n; ++first) {
if ((mask & powers[first]) != 0) {
for (int second = first + 1; second < n; ++second) {
if ((mask & powers[second]) != 0) {
dp[mask - powers[first]] += dp[mask] * a[second][first] / probability;
dp[mask - powers[second]] += dp[mask] * a[first][second] / probability;
}
}
}
}
}
for (int i = 0; i < n; ++i) {
output.printf("%.10f ", dp[powers[i]]);
}
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.flush();
output.close();
}
}
public static void main(String[] args) {
new Fish().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
static int powers[] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144};
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.FileReader;
import java.util.StringTokenizer;
import java.io.IOException;
import java.util.Arrays;
public class Fish extends Thread {
public Fish() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
private void solve() throws Throwable {
int n = nextInt();
double[][] a = new double[n][n];
double[] dp = new double[(1 << n)];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
a[i][j] = nextDouble();
}
}
int limit = (1 << n) - 1;
//dp[mask] = probability of current subset (mask) to remain in the end
dp[limit] = 1.0;
for (int mask = limit; mask > 0; --mask) {
int cardinality = Integer.bitCount(mask);
int probability = cardinality * (cardinality - 1) / 2;
for (int first = 0; first < n; ++first) {
if ((mask & powers[first]) != 0) {
for (int second = first + 1; second < n; ++second) {
if ((mask & powers[second]) != 0) {
dp[mask - powers[first]] += dp[mask] * a[second][first] / probability;
dp[mask - powers[second]] += dp[mask] * a[first][second] / probability;
}
}
}
}
}
for (int i = 0; i < n; ++i) {
output.printf("%.10f ", dp[powers[i]]);
}
}
public void run() {
try {
solve();
} catch (Throwable e) {
System.err.println(e.getMessage());
e.printStackTrace();
System.exit(666);
} finally {
output.flush();
output.close();
}
}
public static void main(String[] args) {
new Fish().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
static int powers[] = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144};
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,022 | 4,198 |
1,113 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
int n;
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.nextInt();
int base = calc(in, out, 0);
if (base == 0) {
out.printLine("! 1");
out.flush();
return;
}
if (Math.abs(base) % 2 != 0) {
out.printLine("! -1");
out.flush();
return;
}
int down = 0, up = n / 2;
int sdown = base < 0 ? -1 : 1;
int sup = up < 0 ? -1 : 1;
while (up - down > 1) {
int t = (up + down) / 2;
int cur = calc(in, out, t);
if (cur == 0) {
out.printLine("! " + (t + 1));
out.flush();
return;
}
int scur = cur < 0 ? -1 : 1;
if (scur == sdown) {
down = t;
} else {
up = t;
}
}
throw new RuntimeException();
}
private int calc(InputReader in, OutputWriter out, int val) {
out.printLine("? " + (val + 1));
out.flush();
int res1 = in.nextInt();
out.printLine("? " + ((val + n / 2) % n + 1));
out.flush();
int res2 = in.nextInt();
return res1 - res2;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
int n;
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.nextInt();
int base = calc(in, out, 0);
if (base == 0) {
out.printLine("! 1");
out.flush();
return;
}
if (Math.abs(base) % 2 != 0) {
out.printLine("! -1");
out.flush();
return;
}
int down = 0, up = n / 2;
int sdown = base < 0 ? -1 : 1;
int sup = up < 0 ? -1 : 1;
while (up - down > 1) {
int t = (up + down) / 2;
int cur = calc(in, out, t);
if (cur == 0) {
out.printLine("! " + (t + 1));
out.flush();
return;
}
int scur = cur < 0 ? -1 : 1;
if (scur == sdown) {
down = t;
} else {
up = t;
}
}
throw new RuntimeException();
}
private int calc(InputReader in, OutputWriter out, int val) {
out.printLine("? " + (val + 1));
out.flush();
int res1 = in.nextInt();
out.printLine("? " + ((val + n / 2) % n + 1));
out.flush();
int res2 = in.nextInt();
return res1 - res2;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
int n;
public void solve(int testNumber, InputReader in, OutputWriter out) {
n = in.nextInt();
int base = calc(in, out, 0);
if (base == 0) {
out.printLine("! 1");
out.flush();
return;
}
if (Math.abs(base) % 2 != 0) {
out.printLine("! -1");
out.flush();
return;
}
int down = 0, up = n / 2;
int sdown = base < 0 ? -1 : 1;
int sup = up < 0 ? -1 : 1;
while (up - down > 1) {
int t = (up + down) / 2;
int cur = calc(in, out, t);
if (cur == 0) {
out.printLine("! " + (t + 1));
out.flush();
return;
}
int scur = cur < 0 ? -1 : 1;
if (scur == sdown) {
down = t;
} else {
up = t;
}
}
throw new RuntimeException();
}
private int calc(InputReader in, OutputWriter out, int val) {
out.printLine("? " + (val + 1));
out.flush();
int res1 = in.nextInt();
out.printLine("? " + ((val + n / 2) % n + 1));
out.flush();
int res2 = in.nextInt();
return res1 - res2;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,332 | 1,112 |
1,398 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
long k;
private void solve() throws IOException {
long n = nl();
k = nl();
if (n == 1) {
prln(0);
return;
}
if (n <= k) {
prln(1);
return;
}
long l = 1, r = k - 1;
long mid = (l + r + 1) / 2;
long old = -1;
while (old != mid) {
old = mid;
if (take(mid) >= n)
r = mid;
if (take(mid) < n)
l = mid;
mid = (l + r + 1) / 2;
}
if (mid >= k || mid <= 0) {
prln(-1);
return;
}
if (take(mid) == n) {
prln(mid);
return;
}
if (mid == k - 1)
prln(-1);
else
if (take(mid) < n)
prln(mid + 1);
else
prln(mid);
}
long take(long t) {
return k * t - t * (t - 1) / 2 - (t - 1);
}
public static void main(String[] args) {
new Main().run();
}
public void run() {
try {
if (isFileIO) {
pw = new PrintWriter(new File("output.out"));
br = new BufferedReader(new FileReader("input.in"));
} else {
pw = new PrintWriter(System.out);
br = new BufferedReader(new InputStreamReader(System.in));
}
solve();
pw.close();
br.close();
} catch (IOException e) {
System.err.println("IO Error");
}
}
private int[] nia(int n) throws IOException {
int arr[] = new int[n];
for (int i = 0; i < n; ++i)
arr[i] = Integer.parseInt(nextToken());
return arr;
}
private int[] niam1(int n) throws IOException {
int arr[] = new int[n];
for (int i = 0; i < n; ++i)
arr[i] = Integer.parseInt(nextToken()) - 1;
return arr;
}
private long[] nla(int n) throws IOException {
long arr[] = new long[n];
for (int i = 0; i < n; ++i)
arr[i] = Long.parseLong(nextToken());
return arr;
}
private void pr(Object o) {
pw.print(o);
}
private void prln(Object o) {
pw.println(o);
}
private void prln() {
pw.println();
}
int ni() throws IOException {
return Integer.parseInt(nextToken());
}
long nl() throws IOException {
return Long.parseLong(nextToken());
}
double nd() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(br.readLine());
}
return tokenizer.nextToken();
}
// private void qsort(int a[]) {
// Random rand = new Random(271828182l);
// qsort(a, 0, a.length, rand);
// }
//
// private void qsort(int a[], int l, int r, Random rand) {
// if (r - l <= 1)
// return;
//
// if (r - l == 2) {
// if (a[r - 1] < a[l]) {
// int t = a[r - 1];
// a[r - 1] = a[l];
// a[l] = t;
// }
//
// return;
// }
//
// int x = a[rand.nextInt(r - l) + l];
// int i = l, j = r - 1;
// while (i < j) {
// while (a[i] < x)
// ++i;
// while (a[j] > x)
// --j;
// if (i < j) {
// int t = a[i];
// a[i] = a[j];
// a[j] = t;
// ++i;
// --j;
// }
// }
//
// qsort(a, l, j + 1, rand);
// qsort(a, i, r, rand);
// }
private BufferedReader br;
private StringTokenizer tokenizer;
private PrintWriter pw;
private final boolean isFileIO = false;
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
long k;
private void solve() throws IOException {
long n = nl();
k = nl();
if (n == 1) {
prln(0);
return;
}
if (n <= k) {
prln(1);
return;
}
long l = 1, r = k - 1;
long mid = (l + r + 1) / 2;
long old = -1;
while (old != mid) {
old = mid;
if (take(mid) >= n)
r = mid;
if (take(mid) < n)
l = mid;
mid = (l + r + 1) / 2;
}
if (mid >= k || mid <= 0) {
prln(-1);
return;
}
if (take(mid) == n) {
prln(mid);
return;
}
if (mid == k - 1)
prln(-1);
else
if (take(mid) < n)
prln(mid + 1);
else
prln(mid);
}
long take(long t) {
return k * t - t * (t - 1) / 2 - (t - 1);
}
public static void main(String[] args) {
new Main().run();
}
public void run() {
try {
if (isFileIO) {
pw = new PrintWriter(new File("output.out"));
br = new BufferedReader(new FileReader("input.in"));
} else {
pw = new PrintWriter(System.out);
br = new BufferedReader(new InputStreamReader(System.in));
}
solve();
pw.close();
br.close();
} catch (IOException e) {
System.err.println("IO Error");
}
}
private int[] nia(int n) throws IOException {
int arr[] = new int[n];
for (int i = 0; i < n; ++i)
arr[i] = Integer.parseInt(nextToken());
return arr;
}
private int[] niam1(int n) throws IOException {
int arr[] = new int[n];
for (int i = 0; i < n; ++i)
arr[i] = Integer.parseInt(nextToken()) - 1;
return arr;
}
private long[] nla(int n) throws IOException {
long arr[] = new long[n];
for (int i = 0; i < n; ++i)
arr[i] = Long.parseLong(nextToken());
return arr;
}
private void pr(Object o) {
pw.print(o);
}
private void prln(Object o) {
pw.println(o);
}
private void prln() {
pw.println();
}
int ni() throws IOException {
return Integer.parseInt(nextToken());
}
long nl() throws IOException {
return Long.parseLong(nextToken());
}
double nd() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(br.readLine());
}
return tokenizer.nextToken();
}
// private void qsort(int a[]) {
// Random rand = new Random(271828182l);
// qsort(a, 0, a.length, rand);
// }
//
// private void qsort(int a[], int l, int r, Random rand) {
// if (r - l <= 1)
// return;
//
// if (r - l == 2) {
// if (a[r - 1] < a[l]) {
// int t = a[r - 1];
// a[r - 1] = a[l];
// a[l] = t;
// }
//
// return;
// }
//
// int x = a[rand.nextInt(r - l) + l];
// int i = l, j = r - 1;
// while (i < j) {
// while (a[i] < x)
// ++i;
// while (a[j] > x)
// --j;
// if (i < j) {
// int t = a[i];
// a[i] = a[j];
// a[j] = t;
// ++i;
// --j;
// }
// }
//
// qsort(a, l, j + 1, rand);
// qsort(a, i, r, rand);
// }
private BufferedReader br;
private StringTokenizer tokenizer;
private PrintWriter pw;
private final boolean isFileIO = false;
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
long k;
private void solve() throws IOException {
long n = nl();
k = nl();
if (n == 1) {
prln(0);
return;
}
if (n <= k) {
prln(1);
return;
}
long l = 1, r = k - 1;
long mid = (l + r + 1) / 2;
long old = -1;
while (old != mid) {
old = mid;
if (take(mid) >= n)
r = mid;
if (take(mid) < n)
l = mid;
mid = (l + r + 1) / 2;
}
if (mid >= k || mid <= 0) {
prln(-1);
return;
}
if (take(mid) == n) {
prln(mid);
return;
}
if (mid == k - 1)
prln(-1);
else
if (take(mid) < n)
prln(mid + 1);
else
prln(mid);
}
long take(long t) {
return k * t - t * (t - 1) / 2 - (t - 1);
}
public static void main(String[] args) {
new Main().run();
}
public void run() {
try {
if (isFileIO) {
pw = new PrintWriter(new File("output.out"));
br = new BufferedReader(new FileReader("input.in"));
} else {
pw = new PrintWriter(System.out);
br = new BufferedReader(new InputStreamReader(System.in));
}
solve();
pw.close();
br.close();
} catch (IOException e) {
System.err.println("IO Error");
}
}
private int[] nia(int n) throws IOException {
int arr[] = new int[n];
for (int i = 0; i < n; ++i)
arr[i] = Integer.parseInt(nextToken());
return arr;
}
private int[] niam1(int n) throws IOException {
int arr[] = new int[n];
for (int i = 0; i < n; ++i)
arr[i] = Integer.parseInt(nextToken()) - 1;
return arr;
}
private long[] nla(int n) throws IOException {
long arr[] = new long[n];
for (int i = 0; i < n; ++i)
arr[i] = Long.parseLong(nextToken());
return arr;
}
private void pr(Object o) {
pw.print(o);
}
private void prln(Object o) {
pw.println(o);
}
private void prln() {
pw.println();
}
int ni() throws IOException {
return Integer.parseInt(nextToken());
}
long nl() throws IOException {
return Long.parseLong(nextToken());
}
double nd() throws IOException {
return Double.parseDouble(nextToken());
}
private String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(br.readLine());
}
return tokenizer.nextToken();
}
// private void qsort(int a[]) {
// Random rand = new Random(271828182l);
// qsort(a, 0, a.length, rand);
// }
//
// private void qsort(int a[], int l, int r, Random rand) {
// if (r - l <= 1)
// return;
//
// if (r - l == 2) {
// if (a[r - 1] < a[l]) {
// int t = a[r - 1];
// a[r - 1] = a[l];
// a[l] = t;
// }
//
// return;
// }
//
// int x = a[rand.nextInt(r - l) + l];
// int i = l, j = r - 1;
// while (i < j) {
// while (a[i] < x)
// ++i;
// while (a[j] > x)
// --j;
// if (i < j) {
// int t = a[i];
// a[i] = a[j];
// a[j] = t;
// ++i;
// --j;
// }
// }
//
// qsort(a, l, j + 1, rand);
// qsort(a, i, r, rand);
// }
private BufferedReader br;
private StringTokenizer tokenizer;
private PrintWriter pw;
private final boolean isFileIO = false;
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,391 | 1,396 |
3,738 |
import java.io.IOException;
import java.io.InputStream;
import java.util.*;
import java.math.*;
/*
50
873 838 288 87 889 364 720 410 565 651 577 356 740 99 549 592 994 385 777 435 486 118 887 440 749 533 356 790 413 681 267 496 475 317 88 660 374 186 61 437 729 860 880 538 277 301 667 180 60 393
6
2 2 3 3 5 5
4
2 2 3 3
*/
public class C429 {
static InputStream is;
static int[] counts;
static int[] sufsum;
static long mod = (long)(1e9+7);
static long[][] choose;
static long[][] memo;
public static void main(String[] args) throws IOException {
is = System.in;
int n = ni();
int[] a = na(n);
long[] fact = new long[n+2];
fact[0] = 1;
for (int i = 1; i < fact.length; i++) {
fact[i] = (fact[i-1]*i)%mod;
}
HashMap<Integer,ArrayList<Integer>> hm = new HashMap<>();
for (int i = 0; i < a.length; i++) {
int cp = a[i];
int sfree = 1;
for(int p = 2; p*p <= a[i] && cp > 1; p++){
int count = 0;
while(cp % p == 0){
cp /= p;
count++;
}
if(count % 2 == 1) sfree *= p;
}
if(cp != 1) sfree *= cp;
if(!hm.containsKey(sfree)) hm.put(sfree, new ArrayList<Integer>());
hm.get(sfree).add(a[i]);
}
counts = new int[hm.size()];
int dex = 0;
//System.out.println(hm);
long bigmult = 1;
for(Integer key : hm.keySet()){
ArrayList<Integer> list = hm.get(key);
counts[dex++] = list.size();
bigmult = bigmult*fact[list.size()] % mod;
// HashMap<Integer,Integer> dups = new HashMap<>();
// for(int x : list){
// if(!dups.containsKey(x)){
// dups.put(x, 0);
// }
// dups.put(x, dups.get(x)+1);
// }
// for (int k : dups.keySet()) {
// int amount = dups.get(k);
// long tomult = new BigInteger(fact[amount]+"").modInverse(new BigInteger(mod+"")).longValue();
// bigmult*= tomult;
// bigmult %= mod;
// }
}
Arrays.sort(counts);
sufsum = new int[counts.length];
for(int i = counts.length-2; i >= 0; i--){
sufsum[i] = sufsum[i+1]+counts[i+1];
}
choose = new long[2*n+3][2*n+3];
for(int i = 0; i < choose.length; i++){
choose[i][0] = 1;
for(int j = 1; j <=i; j++){
choose[i][j] = (choose[i-1][j]+choose[i-1][j-1])%mod;
}
}
memo = new long[counts.length][700];
for (int i = 0; i < memo.length; i++) {
Arrays.fill(memo[i], -1);
}
//System.out.println("bigmult: " + bigmult);
System.out.println((bigmult*dp(counts.length-2,counts[counts.length-1]-1))%mod);
}
static long dp(int dex, int need){
if(dex == -1){
if(need == 0) return 1;
return 0;
}
//System.out.println("dex: " + dex + " need " + need);
if(memo[dex][need] != -1) return memo[dex][need];
int numspots = sufsum[dex]+1;
long ret = 0;
int c = counts[dex];
for(int numdivs = 1; numdivs <= c; numdivs++) {
long toadd = 0;
for(int gotoneed =0; gotoneed <= need && gotoneed <= numdivs; gotoneed++) {
long temp = choose[need][gotoneed];
temp *= choose[numspots-need][numdivs-gotoneed];
//System.out.println("dex: " + dex + " need: "+ need + " numdivs: " + numdivs + " c1: " + choose[need][gotoneed] + " c2 " + choose[numspots-need][numdivs-gotoneed]);
temp %= mod;
temp *= dp(dex-1,need-gotoneed+c-numdivs);
temp %= mod;
toadd += temp;
toadd %= mod;
}
toadd *= choose[c-1][numdivs-1];
toadd %= mod;
ret += toadd;
ret %= mod;
}
//System.out.println("dex: " + dex + " need: "+ need + " ret: " + ret);
return memo[dex][need]=ret;
}
private static byte[] inbuf = new byte[1024];
public static int lenbuf = 0, ptrbuf = 0;
private static int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }
private static String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private static int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private static int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.*;
import java.math.*;
/*
50
873 838 288 87 889 364 720 410 565 651 577 356 740 99 549 592 994 385 777 435 486 118 887 440 749 533 356 790 413 681 267 496 475 317 88 660 374 186 61 437 729 860 880 538 277 301 667 180 60 393
6
2 2 3 3 5 5
4
2 2 3 3
*/
public class C429 {
static InputStream is;
static int[] counts;
static int[] sufsum;
static long mod = (long)(1e9+7);
static long[][] choose;
static long[][] memo;
public static void main(String[] args) throws IOException {
is = System.in;
int n = ni();
int[] a = na(n);
long[] fact = new long[n+2];
fact[0] = 1;
for (int i = 1; i < fact.length; i++) {
fact[i] = (fact[i-1]*i)%mod;
}
HashMap<Integer,ArrayList<Integer>> hm = new HashMap<>();
for (int i = 0; i < a.length; i++) {
int cp = a[i];
int sfree = 1;
for(int p = 2; p*p <= a[i] && cp > 1; p++){
int count = 0;
while(cp % p == 0){
cp /= p;
count++;
}
if(count % 2 == 1) sfree *= p;
}
if(cp != 1) sfree *= cp;
if(!hm.containsKey(sfree)) hm.put(sfree, new ArrayList<Integer>());
hm.get(sfree).add(a[i]);
}
counts = new int[hm.size()];
int dex = 0;
//System.out.println(hm);
long bigmult = 1;
for(Integer key : hm.keySet()){
ArrayList<Integer> list = hm.get(key);
counts[dex++] = list.size();
bigmult = bigmult*fact[list.size()] % mod;
// HashMap<Integer,Integer> dups = new HashMap<>();
// for(int x : list){
// if(!dups.containsKey(x)){
// dups.put(x, 0);
// }
// dups.put(x, dups.get(x)+1);
// }
// for (int k : dups.keySet()) {
// int amount = dups.get(k);
// long tomult = new BigInteger(fact[amount]+"").modInverse(new BigInteger(mod+"")).longValue();
// bigmult*= tomult;
// bigmult %= mod;
// }
}
Arrays.sort(counts);
sufsum = new int[counts.length];
for(int i = counts.length-2; i >= 0; i--){
sufsum[i] = sufsum[i+1]+counts[i+1];
}
choose = new long[2*n+3][2*n+3];
for(int i = 0; i < choose.length; i++){
choose[i][0] = 1;
for(int j = 1; j <=i; j++){
choose[i][j] = (choose[i-1][j]+choose[i-1][j-1])%mod;
}
}
memo = new long[counts.length][700];
for (int i = 0; i < memo.length; i++) {
Arrays.fill(memo[i], -1);
}
//System.out.println("bigmult: " + bigmult);
System.out.println((bigmult*dp(counts.length-2,counts[counts.length-1]-1))%mod);
}
static long dp(int dex, int need){
if(dex == -1){
if(need == 0) return 1;
return 0;
}
//System.out.println("dex: " + dex + " need " + need);
if(memo[dex][need] != -1) return memo[dex][need];
int numspots = sufsum[dex]+1;
long ret = 0;
int c = counts[dex];
for(int numdivs = 1; numdivs <= c; numdivs++) {
long toadd = 0;
for(int gotoneed =0; gotoneed <= need && gotoneed <= numdivs; gotoneed++) {
long temp = choose[need][gotoneed];
temp *= choose[numspots-need][numdivs-gotoneed];
//System.out.println("dex: " + dex + " need: "+ need + " numdivs: " + numdivs + " c1: " + choose[need][gotoneed] + " c2 " + choose[numspots-need][numdivs-gotoneed]);
temp %= mod;
temp *= dp(dex-1,need-gotoneed+c-numdivs);
temp %= mod;
toadd += temp;
toadd %= mod;
}
toadd *= choose[c-1][numdivs-1];
toadd %= mod;
ret += toadd;
ret %= mod;
}
//System.out.println("dex: " + dex + " need: "+ need + " ret: " + ret);
return memo[dex][need]=ret;
}
private static byte[] inbuf = new byte[1024];
public static int lenbuf = 0, ptrbuf = 0;
private static int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }
private static String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private static int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private static int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.*;
import java.math.*;
/*
50
873 838 288 87 889 364 720 410 565 651 577 356 740 99 549 592 994 385 777 435 486 118 887 440 749 533 356 790 413 681 267 496 475 317 88 660 374 186 61 437 729 860 880 538 277 301 667 180 60 393
6
2 2 3 3 5 5
4
2 2 3 3
*/
public class C429 {
static InputStream is;
static int[] counts;
static int[] sufsum;
static long mod = (long)(1e9+7);
static long[][] choose;
static long[][] memo;
public static void main(String[] args) throws IOException {
is = System.in;
int n = ni();
int[] a = na(n);
long[] fact = new long[n+2];
fact[0] = 1;
for (int i = 1; i < fact.length; i++) {
fact[i] = (fact[i-1]*i)%mod;
}
HashMap<Integer,ArrayList<Integer>> hm = new HashMap<>();
for (int i = 0; i < a.length; i++) {
int cp = a[i];
int sfree = 1;
for(int p = 2; p*p <= a[i] && cp > 1; p++){
int count = 0;
while(cp % p == 0){
cp /= p;
count++;
}
if(count % 2 == 1) sfree *= p;
}
if(cp != 1) sfree *= cp;
if(!hm.containsKey(sfree)) hm.put(sfree, new ArrayList<Integer>());
hm.get(sfree).add(a[i]);
}
counts = new int[hm.size()];
int dex = 0;
//System.out.println(hm);
long bigmult = 1;
for(Integer key : hm.keySet()){
ArrayList<Integer> list = hm.get(key);
counts[dex++] = list.size();
bigmult = bigmult*fact[list.size()] % mod;
// HashMap<Integer,Integer> dups = new HashMap<>();
// for(int x : list){
// if(!dups.containsKey(x)){
// dups.put(x, 0);
// }
// dups.put(x, dups.get(x)+1);
// }
// for (int k : dups.keySet()) {
// int amount = dups.get(k);
// long tomult = new BigInteger(fact[amount]+"").modInverse(new BigInteger(mod+"")).longValue();
// bigmult*= tomult;
// bigmult %= mod;
// }
}
Arrays.sort(counts);
sufsum = new int[counts.length];
for(int i = counts.length-2; i >= 0; i--){
sufsum[i] = sufsum[i+1]+counts[i+1];
}
choose = new long[2*n+3][2*n+3];
for(int i = 0; i < choose.length; i++){
choose[i][0] = 1;
for(int j = 1; j <=i; j++){
choose[i][j] = (choose[i-1][j]+choose[i-1][j-1])%mod;
}
}
memo = new long[counts.length][700];
for (int i = 0; i < memo.length; i++) {
Arrays.fill(memo[i], -1);
}
//System.out.println("bigmult: " + bigmult);
System.out.println((bigmult*dp(counts.length-2,counts[counts.length-1]-1))%mod);
}
static long dp(int dex, int need){
if(dex == -1){
if(need == 0) return 1;
return 0;
}
//System.out.println("dex: " + dex + " need " + need);
if(memo[dex][need] != -1) return memo[dex][need];
int numspots = sufsum[dex]+1;
long ret = 0;
int c = counts[dex];
for(int numdivs = 1; numdivs <= c; numdivs++) {
long toadd = 0;
for(int gotoneed =0; gotoneed <= need && gotoneed <= numdivs; gotoneed++) {
long temp = choose[need][gotoneed];
temp *= choose[numspots-need][numdivs-gotoneed];
//System.out.println("dex: " + dex + " need: "+ need + " numdivs: " + numdivs + " c1: " + choose[need][gotoneed] + " c2 " + choose[numspots-need][numdivs-gotoneed]);
temp %= mod;
temp *= dp(dex-1,need-gotoneed+c-numdivs);
temp %= mod;
toadd += temp;
toadd %= mod;
}
toadd *= choose[c-1][numdivs-1];
toadd %= mod;
ret += toadd;
ret %= mod;
}
//System.out.println("dex: " + dex + " need: "+ need + " ret: " + ret);
return memo[dex][need]=ret;
}
private static byte[] inbuf = new byte[1024];
public static int lenbuf = 0, ptrbuf = 0;
private static int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private static int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private static double nd() { return Double.parseDouble(ns()); }
private static char nc() { return (char)skip(); }
private static String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private static char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private static char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private static int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private static int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,409 | 3,730 |
4,452 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE1 solver = new TaskE1();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++) {
solver.solve(i, in, out);
}
out.close();
}
static class TaskE1 {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int m = in.nextInt();
// int n = 12;
// int m = 2000;
int[][] d = new int[2][1 << n];
int[] buf = new int[1 << n];
int[][] a = new int[m][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
a[j][i] = in.nextInt();
// a[j][i] = (int)((i * 12346L + j * 789L) % 100000);
}
}
ArrayList<Integer> inds = new ArrayList<>();
for (int i = 0; i < m; ++i) {
inds.add(i);
}
int[][] finalA = a;
Collections.sort(inds, new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
int val1 = 0, val2 = 0;
for (int i = 0; i < n; ++i) {
if (finalA[i1][i] > val1) {
val1 = finalA[i1][i];
}
}
for (int i = 0; i < n; ++i) {
if (finalA[i2][i] > val2) {
val2 = finalA[i2][i];
}
}
return -Integer.compare(val1, val2);
}
});
int newM = Math.min(m, n + 1);
int[][] na = new int[newM][];
for (int i = 0; i < newM; ++i) {
int ind = inds.get(i);
na[i] = a[ind];
}
m = newM;
a = na;
for (int i = 0; i < m; ++i) {
int[] prev = d[i % 2], nx = d[(i + 1) % 2];
for (int shift = 0; shift < n; ++shift) {
int[] b = new int[n];
for (int j = 0; j < n; ++j) {
b[j] = a[i][(j + shift) % n];
}
System.arraycopy(prev, 0, buf, 0, prev.length);
for (int j = 0; j < n; ++j) {
int inc = b[j];
for (int mask = 0; mask < (1 << n); ++mask) {
if ((mask >> j) % 2 == 0) {
int val = buf[mask] + inc;
int nm = mask ^ (1 << j);
if (val > buf[nm]) {
buf[nm] = val;
}
}
}
}
for (int mask = 0; mask < (1 << n); ++mask) {
if (nx[mask] < buf[mask]) {
nx[mask] = buf[mask];
}
}
}
}
out.printLine(d[m % 2][(1 << n) - 1]);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public String nextToken() {
int c = readSkipSpace();
StringBuilder sb = new StringBuilder();
while (!isSpace(c)) {
sb.append((char) c);
c = read();
}
return sb.toString();
}
public String next() {
return nextToken();
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE1 solver = new TaskE1();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++) {
solver.solve(i, in, out);
}
out.close();
}
static class TaskE1 {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int m = in.nextInt();
// int n = 12;
// int m = 2000;
int[][] d = new int[2][1 << n];
int[] buf = new int[1 << n];
int[][] a = new int[m][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
a[j][i] = in.nextInt();
// a[j][i] = (int)((i * 12346L + j * 789L) % 100000);
}
}
ArrayList<Integer> inds = new ArrayList<>();
for (int i = 0; i < m; ++i) {
inds.add(i);
}
int[][] finalA = a;
Collections.sort(inds, new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
int val1 = 0, val2 = 0;
for (int i = 0; i < n; ++i) {
if (finalA[i1][i] > val1) {
val1 = finalA[i1][i];
}
}
for (int i = 0; i < n; ++i) {
if (finalA[i2][i] > val2) {
val2 = finalA[i2][i];
}
}
return -Integer.compare(val1, val2);
}
});
int newM = Math.min(m, n + 1);
int[][] na = new int[newM][];
for (int i = 0; i < newM; ++i) {
int ind = inds.get(i);
na[i] = a[ind];
}
m = newM;
a = na;
for (int i = 0; i < m; ++i) {
int[] prev = d[i % 2], nx = d[(i + 1) % 2];
for (int shift = 0; shift < n; ++shift) {
int[] b = new int[n];
for (int j = 0; j < n; ++j) {
b[j] = a[i][(j + shift) % n];
}
System.arraycopy(prev, 0, buf, 0, prev.length);
for (int j = 0; j < n; ++j) {
int inc = b[j];
for (int mask = 0; mask < (1 << n); ++mask) {
if ((mask >> j) % 2 == 0) {
int val = buf[mask] + inc;
int nm = mask ^ (1 << j);
if (val > buf[nm]) {
buf[nm] = val;
}
}
}
}
for (int mask = 0; mask < (1 << n); ++mask) {
if (nx[mask] < buf[mask]) {
nx[mask] = buf[mask];
}
}
}
}
out.printLine(d[m % 2][(1 << n) - 1]);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public String nextToken() {
int c = readSkipSpace();
StringBuilder sb = new StringBuilder();
while (!isSpace(c)) {
sb.append((char) c);
c = read();
}
return sb.toString();
}
public String next() {
return nextToken();
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in Actual solution is at the top
*
* @author ilyakor
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskE1 solver = new TaskE1();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++) {
solver.solve(i, in, out);
}
out.close();
}
static class TaskE1 {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int m = in.nextInt();
// int n = 12;
// int m = 2000;
int[][] d = new int[2][1 << n];
int[] buf = new int[1 << n];
int[][] a = new int[m][n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < m; ++j) {
a[j][i] = in.nextInt();
// a[j][i] = (int)((i * 12346L + j * 789L) % 100000);
}
}
ArrayList<Integer> inds = new ArrayList<>();
for (int i = 0; i < m; ++i) {
inds.add(i);
}
int[][] finalA = a;
Collections.sort(inds, new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
int val1 = 0, val2 = 0;
for (int i = 0; i < n; ++i) {
if (finalA[i1][i] > val1) {
val1 = finalA[i1][i];
}
}
for (int i = 0; i < n; ++i) {
if (finalA[i2][i] > val2) {
val2 = finalA[i2][i];
}
}
return -Integer.compare(val1, val2);
}
});
int newM = Math.min(m, n + 1);
int[][] na = new int[newM][];
for (int i = 0; i < newM; ++i) {
int ind = inds.get(i);
na[i] = a[ind];
}
m = newM;
a = na;
for (int i = 0; i < m; ++i) {
int[] prev = d[i % 2], nx = d[(i + 1) % 2];
for (int shift = 0; shift < n; ++shift) {
int[] b = new int[n];
for (int j = 0; j < n; ++j) {
b[j] = a[i][(j + shift) % n];
}
System.arraycopy(prev, 0, buf, 0, prev.length);
for (int j = 0; j < n; ++j) {
int inc = b[j];
for (int mask = 0; mask < (1 << n); ++mask) {
if ((mask >> j) % 2 == 0) {
int val = buf[mask] + inc;
int nm = mask ^ (1 << j);
if (val > buf[nm]) {
buf[nm] = val;
}
}
}
}
for (int mask = 0; mask < (1 << n); ++mask) {
if (nx[mask] < buf[mask]) {
nx[mask] = buf[mask];
}
}
}
}
out.printLine(d[m % 2][(1 << n) - 1]);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class InputReader {
private InputStream stream;
private byte[] buffer = new byte[10000];
private int cur;
private int count;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isSpace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public int read() {
if (count == -1) {
throw new InputMismatchException();
}
try {
if (cur >= count) {
cur = 0;
count = stream.read(buffer);
if (count <= 0) {
return -1;
}
}
} catch (IOException e) {
throw new InputMismatchException();
}
return buffer[cur++];
}
public int readSkipSpace() {
int c;
do {
c = read();
} while (isSpace(c));
return c;
}
public String nextToken() {
int c = readSkipSpace();
StringBuilder sb = new StringBuilder();
while (!isSpace(c)) {
sb.append((char) c);
c = read();
}
return sb.toString();
}
public String next() {
return nextToken();
}
public int nextInt() {
int sgn = 1;
int c = readSkipSpace();
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res = res * 10 + c - '0';
c = read();
} while (!isSpace(c));
res *= sgn;
return res;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,812 | 4,441 |
2,694 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int[] hash = new int[101];
boolean[] hash1 = new boolean[101];
for (int i = 0; i < n; i++) hash[in.scanInt()]++;
int ans = 0;
for (int i = 1; i <= 100; i++) {
if (hash1[i]) continue;
if (hash[i] == 0) continue;
for (int j = i; j <= 100; j += i) hash1[j] = true;
ans++;
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int[] hash = new int[101];
boolean[] hash1 = new boolean[101];
for (int i = 0; i < n; i++) hash[in.scanInt()]++;
int ans = 0;
for (int i = 1; i <= 100; i++) {
if (hash1[i]) continue;
if (hash[i] == 0) continue;
for (int j = i; j <= 100; j += i) hash1[j] = true;
ans++;
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.FilterInputStream;
import java.io.BufferedInputStream;
import java.io.InputStream;
/**
* @author khokharnikunj8
*/
public class Main {
public static void main(String[] args) {
new Thread(null, new Runnable() {
public void run() {
new Main().solve();
}
}, "1", 1 << 26).start();
}
void solve() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
ScanReader in = new ScanReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, ScanReader in, PrintWriter out) {
int n = in.scanInt();
int[] hash = new int[101];
boolean[] hash1 = new boolean[101];
for (int i = 0; i < n; i++) hash[in.scanInt()]++;
int ans = 0;
for (int i = 1; i <= 100; i++) {
if (hash1[i]) continue;
if (hash[i] == 0) continue;
for (int j = i; j <= 100; j += i) hash1[j] = true;
ans++;
}
out.println(ans);
}
}
static class ScanReader {
private byte[] buf = new byte[4 * 1024];
private int index;
private BufferedInputStream in;
private int total;
public ScanReader(InputStream inputStream) {
in = new BufferedInputStream(inputStream);
}
private int scan() {
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (Exception e) {
e.printStackTrace();
}
if (total <= 0) return -1;
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) n = scan();
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
}
}
return neg * integer;
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true;
else return false;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 974 | 2,688 |
4,472 |
import java.util.*;
import java.io.*;
public class E1 {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
//optimizaciones que parece que solo son necesarias para java
ArrayList<Integer>[] reps = new ArrayList[13]; //representantes de las clases
int[][] index = new int[13][]; // mapea para cada representante un indice de 0 a |clases|-1
int[][] eqcl = new int[13][]; //mapea para cada mask, su clase
ArrayList<Integer>[][] nexts = new ArrayList[13][]; //para cada clase, los masks compatibles
for(int n = 1; n <= 12; n++) {
eqcl[n] = new int[(1 << n)];
reps[n] = new ArrayList<Integer>();
index[n] = new int[(1 << n)];
int ind = 0;
for(int mask = 0; mask < (1 << n); mask++) {
boolean add = true;
for(int k = 0; k < n; k++) {
if(rot(mask, k, n) < mask) add = false;
}
if(add) {
reps[n].add(mask);
index[n][mask] = ind; ind++;
}
}
nexts[n] = new ArrayList[reps[n].size()];
for(int i = 0; i < reps[n].size(); i++) {
int mask = reps[n].get(i);
for(int k = 0; k < n; k++) {
eqcl[n][rot(mask, k, n)] = i;
}
nexts[n][i] = new ArrayList<>();
for(int y = 0; y < (1 << n); y++) {
if((mask & y) == 0) {
nexts[n][i].add(y);
}
}
}
}
int T = Integer.parseInt(br.readLine());
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
for(int test = 0; test < T; test++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[][] arrt = new int[m][n];
for(int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
for(int j = 0; j < m; j++) {
arrt[j][i] = Integer.parseInt(st.nextToken());
}
}
Column[] cols = new Column[m];
for(int j = 0; j < m; j++) {
cols[j] = new Column(arrt[j]);
}
Arrays.sort(cols, Collections.reverseOrder());
m = Integer.min(n, m);
int[][] arr = new int[n][m];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
arr[i][j] = cols[j].arr[i];
}
}
int[][] max = new int[m][reps[n].size()];
for(int c = 0; c < m; c++) {
for(int mask = 0; mask < (1 << n); mask++) {
int curr = 0;
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) curr += arr[i][c];
}
int cl = eqcl[n][mask];
max[c][cl] = Integer.max(max[c][cl], curr);
}
}
int[][] dp = new int[m+1][reps[n].size()];
for(int c = 0; c < m; c++) {
for(int i = 0; i < reps[n].size(); i++) {
int mask = reps[n].get(i);
for(int next: nexts[n][i]) { //opt
int cl = eqcl[n][next];
int dl = eqcl[n][mask | next];
if(dp[c][i] + max[c][cl] > dp[c+1][dl]) { // el dp
dp[c+1][dl] = dp[c][i] + max[c][cl];
}
}
}
}
bw.write(dp[m][reps[n].size() - 1]+"\n");
}
bw.flush();
}
static int rot(int x, int k, int n) {
int a = x << k;
int b = x >> (n - k);
return (a + b) & ((1 << n) - 1);
}
static class Column implements Comparable<Column>{
int[] arr;
int max;
public Column(int[] arr) {
this.arr = arr;
max = 0;
for(int k: arr) {
max = Integer.max(max, k);
}
}
@Override
public int compareTo(Column col) {
return max - col.max;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E1 {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
//optimizaciones que parece que solo son necesarias para java
ArrayList<Integer>[] reps = new ArrayList[13]; //representantes de las clases
int[][] index = new int[13][]; // mapea para cada representante un indice de 0 a |clases|-1
int[][] eqcl = new int[13][]; //mapea para cada mask, su clase
ArrayList<Integer>[][] nexts = new ArrayList[13][]; //para cada clase, los masks compatibles
for(int n = 1; n <= 12; n++) {
eqcl[n] = new int[(1 << n)];
reps[n] = new ArrayList<Integer>();
index[n] = new int[(1 << n)];
int ind = 0;
for(int mask = 0; mask < (1 << n); mask++) {
boolean add = true;
for(int k = 0; k < n; k++) {
if(rot(mask, k, n) < mask) add = false;
}
if(add) {
reps[n].add(mask);
index[n][mask] = ind; ind++;
}
}
nexts[n] = new ArrayList[reps[n].size()];
for(int i = 0; i < reps[n].size(); i++) {
int mask = reps[n].get(i);
for(int k = 0; k < n; k++) {
eqcl[n][rot(mask, k, n)] = i;
}
nexts[n][i] = new ArrayList<>();
for(int y = 0; y < (1 << n); y++) {
if((mask & y) == 0) {
nexts[n][i].add(y);
}
}
}
}
int T = Integer.parseInt(br.readLine());
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
for(int test = 0; test < T; test++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[][] arrt = new int[m][n];
for(int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
for(int j = 0; j < m; j++) {
arrt[j][i] = Integer.parseInt(st.nextToken());
}
}
Column[] cols = new Column[m];
for(int j = 0; j < m; j++) {
cols[j] = new Column(arrt[j]);
}
Arrays.sort(cols, Collections.reverseOrder());
m = Integer.min(n, m);
int[][] arr = new int[n][m];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
arr[i][j] = cols[j].arr[i];
}
}
int[][] max = new int[m][reps[n].size()];
for(int c = 0; c < m; c++) {
for(int mask = 0; mask < (1 << n); mask++) {
int curr = 0;
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) curr += arr[i][c];
}
int cl = eqcl[n][mask];
max[c][cl] = Integer.max(max[c][cl], curr);
}
}
int[][] dp = new int[m+1][reps[n].size()];
for(int c = 0; c < m; c++) {
for(int i = 0; i < reps[n].size(); i++) {
int mask = reps[n].get(i);
for(int next: nexts[n][i]) { //opt
int cl = eqcl[n][next];
int dl = eqcl[n][mask | next];
if(dp[c][i] + max[c][cl] > dp[c+1][dl]) { // el dp
dp[c+1][dl] = dp[c][i] + max[c][cl];
}
}
}
}
bw.write(dp[m][reps[n].size() - 1]+"\n");
}
bw.flush();
}
static int rot(int x, int k, int n) {
int a = x << k;
int b = x >> (n - k);
return (a + b) & ((1 << n) - 1);
}
static class Column implements Comparable<Column>{
int[] arr;
int max;
public Column(int[] arr) {
this.arr = arr;
max = 0;
for(int k: arr) {
max = Integer.max(max, k);
}
}
@Override
public int compareTo(Column col) {
return max - col.max;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class E1 {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
//optimizaciones que parece que solo son necesarias para java
ArrayList<Integer>[] reps = new ArrayList[13]; //representantes de las clases
int[][] index = new int[13][]; // mapea para cada representante un indice de 0 a |clases|-1
int[][] eqcl = new int[13][]; //mapea para cada mask, su clase
ArrayList<Integer>[][] nexts = new ArrayList[13][]; //para cada clase, los masks compatibles
for(int n = 1; n <= 12; n++) {
eqcl[n] = new int[(1 << n)];
reps[n] = new ArrayList<Integer>();
index[n] = new int[(1 << n)];
int ind = 0;
for(int mask = 0; mask < (1 << n); mask++) {
boolean add = true;
for(int k = 0; k < n; k++) {
if(rot(mask, k, n) < mask) add = false;
}
if(add) {
reps[n].add(mask);
index[n][mask] = ind; ind++;
}
}
nexts[n] = new ArrayList[reps[n].size()];
for(int i = 0; i < reps[n].size(); i++) {
int mask = reps[n].get(i);
for(int k = 0; k < n; k++) {
eqcl[n][rot(mask, k, n)] = i;
}
nexts[n][i] = new ArrayList<>();
for(int y = 0; y < (1 << n); y++) {
if((mask & y) == 0) {
nexts[n][i].add(y);
}
}
}
}
int T = Integer.parseInt(br.readLine());
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
for(int test = 0; test < T; test++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[][] arrt = new int[m][n];
for(int i = 0; i < n; i++) {
st = new StringTokenizer(br.readLine());
for(int j = 0; j < m; j++) {
arrt[j][i] = Integer.parseInt(st.nextToken());
}
}
Column[] cols = new Column[m];
for(int j = 0; j < m; j++) {
cols[j] = new Column(arrt[j]);
}
Arrays.sort(cols, Collections.reverseOrder());
m = Integer.min(n, m);
int[][] arr = new int[n][m];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
arr[i][j] = cols[j].arr[i];
}
}
int[][] max = new int[m][reps[n].size()];
for(int c = 0; c < m; c++) {
for(int mask = 0; mask < (1 << n); mask++) {
int curr = 0;
for(int i = 0; i < n; i++) {
if((mask & (1 << i)) > 0) curr += arr[i][c];
}
int cl = eqcl[n][mask];
max[c][cl] = Integer.max(max[c][cl], curr);
}
}
int[][] dp = new int[m+1][reps[n].size()];
for(int c = 0; c < m; c++) {
for(int i = 0; i < reps[n].size(); i++) {
int mask = reps[n].get(i);
for(int next: nexts[n][i]) { //opt
int cl = eqcl[n][next];
int dl = eqcl[n][mask | next];
if(dp[c][i] + max[c][cl] > dp[c+1][dl]) { // el dp
dp[c+1][dl] = dp[c][i] + max[c][cl];
}
}
}
}
bw.write(dp[m][reps[n].size() - 1]+"\n");
}
bw.flush();
}
static int rot(int x, int k, int n) {
int a = x << k;
int b = x >> (n - k);
return (a + b) & ((1 << n) - 1);
}
static class Column implements Comparable<Column>{
int[] arr;
int max;
public Column(int[] arr) {
this.arr = arr;
max = 0;
for(int k: arr) {
max = Integer.max(max, k);
}
}
@Override
public int compareTo(Column col) {
return max - col.max;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,494 | 4,461 |
3,077 |
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int in = sc.nextInt();
System.out.println(in/2 + in);
System.exit(0);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int in = sc.nextInt();
System.out.println(in/2 + in);
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int in = sc.nextInt();
System.out.println(in/2 + in);
System.exit(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 382 | 3,071 |
82 |
import java.util.*;
import static java.lang.Math.*;
import java.io.*;
public class SolutionB {
public static void main(String args[])throws IOException{
Scanner sc = new Scanner(System.in);
int a[] = new int[1501];
for(int i = 0; i < 3; i++){
a[sc.nextInt()]++;
}
if(a[1] > 0 || a[2] > 1 || a[3] > 2 || (a[4] == 2 && a[2] == 1)){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import java.io.*;
public class SolutionB {
public static void main(String args[])throws IOException{
Scanner sc = new Scanner(System.in);
int a[] = new int[1501];
for(int i = 0; i < 3; i++){
a[sc.nextInt()]++;
}
if(a[1] > 0 || a[2] > 1 || a[3] > 2 || (a[4] == 2 && a[2] == 1)){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import static java.lang.Math.*;
import java.io.*;
public class SolutionB {
public static void main(String args[])throws IOException{
Scanner sc = new Scanner(System.in);
int a[] = new int[1501];
for(int i = 0; i < 3; i++){
a[sc.nextInt()]++;
}
if(a[1] > 0 || a[2] > 1 || a[3] > 2 || (a[4] == 2 && a[2] == 1)){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 493 | 82 |
708 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Round1B {
public static void main(String[] args) throws Exception {
new Round1B().run();
}
private void run() throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int tc = Integer.parseInt(br.readLine().trim());
while (tc > 0) {
String s = br.readLine().trim();
if (s.matches("R[0-9]+C[0-9]+")) {
Pattern p = Pattern.compile("R([0-9]+)C([0-9]+)");
Matcher m = p.matcher(s);
if (m.matches()) {
int rows = Integer.parseInt(m.group(1));
int cols = Integer.parseInt(m.group(2));
String col = "";
while (cols > 0) {
int mod = (cols - 1) % 26;
col = (char)('A' + mod) + col;
cols = (cols - 1) / 26;
}
System.out.println(col + rows);
} else {
throw new Exception();
}
} else {
Pattern p = Pattern.compile("([A-Z]+)([0-9]+)");
Matcher m = p.matcher(s);
if (m.matches()) {
int rows = Integer.parseInt(m.group(2));
int cols = 0;
int mul = 1;
for (int i = m.group(1).length() - 1; i >= 0; i--) {
cols += mul * (m.group(1).charAt(i) - 'A' + 1);
mul *= 26;
}
System.out.printf("R%dC%d\n", rows, cols);
}
else {
throw new Exception();
}
}
tc--;
}
br.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Round1B {
public static void main(String[] args) throws Exception {
new Round1B().run();
}
private void run() throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int tc = Integer.parseInt(br.readLine().trim());
while (tc > 0) {
String s = br.readLine().trim();
if (s.matches("R[0-9]+C[0-9]+")) {
Pattern p = Pattern.compile("R([0-9]+)C([0-9]+)");
Matcher m = p.matcher(s);
if (m.matches()) {
int rows = Integer.parseInt(m.group(1));
int cols = Integer.parseInt(m.group(2));
String col = "";
while (cols > 0) {
int mod = (cols - 1) % 26;
col = (char)('A' + mod) + col;
cols = (cols - 1) / 26;
}
System.out.println(col + rows);
} else {
throw new Exception();
}
} else {
Pattern p = Pattern.compile("([A-Z]+)([0-9]+)");
Matcher m = p.matcher(s);
if (m.matches()) {
int rows = Integer.parseInt(m.group(2));
int cols = 0;
int mul = 1;
for (int i = m.group(1).length() - 1; i >= 0; i--) {
cols += mul * (m.group(1).charAt(i) - 'A' + 1);
mul *= 26;
}
System.out.printf("R%dC%d\n", rows, cols);
}
else {
throw new Exception();
}
}
tc--;
}
br.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class Round1B {
public static void main(String[] args) throws Exception {
new Round1B().run();
}
private void run() throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int tc = Integer.parseInt(br.readLine().trim());
while (tc > 0) {
String s = br.readLine().trim();
if (s.matches("R[0-9]+C[0-9]+")) {
Pattern p = Pattern.compile("R([0-9]+)C([0-9]+)");
Matcher m = p.matcher(s);
if (m.matches()) {
int rows = Integer.parseInt(m.group(1));
int cols = Integer.parseInt(m.group(2));
String col = "";
while (cols > 0) {
int mod = (cols - 1) % 26;
col = (char)('A' + mod) + col;
cols = (cols - 1) / 26;
}
System.out.println(col + rows);
} else {
throw new Exception();
}
} else {
Pattern p = Pattern.compile("([A-Z]+)([0-9]+)");
Matcher m = p.matcher(s);
if (m.matches()) {
int rows = Integer.parseInt(m.group(2));
int cols = 0;
int mul = 1;
for (int i = m.group(1).length() - 1; i >= 0; i--) {
cols += mul * (m.group(1).charAt(i) - 'A' + 1);
mul *= 26;
}
System.out.printf("R%dC%d\n", rows, cols);
}
else {
throw new Exception();
}
}
tc--;
}
br.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 786 | 707 |
3,534 |
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, uv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, uv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, uv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,964 | 3,527 |
3,642 |
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.ArrayDeque;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author MaxHeap
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FireAgain solver = new FireAgain();
solver.solve(1, in, out);
out.close();
}
static class FireAgain {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int INF = 10000000;
int[][] g = new int[n][m];
for (int[] temp : g) Arrays.fill(temp, -1);
ArrayDeque<IntPair> q = new ArrayDeque<>();
for (int i = 0; i < k; i++) {
int x = in.nextInt() - 1;
int y = in.nextInt() - 1;
g[x][y] = 0;
q.add(new IntPair(x, y));
}
while (!q.isEmpty()) {
IntPair cur = q.poll();
int x = cur.getFirst();
int y = cur.getSecond();
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
if (i == 0 && j == 0 || Math.abs(i) + Math.abs(j) != 1) continue;
int xx = x + i;
int yy = y + j;
if (xx < 0 || xx >= n || yy < 0 || yy >= m) continue;
if (g[xx][yy] != -1) continue;
g[xx][yy] = g[x][y] + 1;
q.add(new IntPair(xx, yy));
}
}
}
int ans = 0, x = -1, y = -1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (g[i][j] >= ans) {
ans = g[i][j];
x = i + 1;
y = j + 1;
}
}
}
out.println(x + " " + y);
}
}
static class IntPair implements Comparable<IntPair> {
int first;
int second;
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair a) {
if (second == a.second) {
return Integer.compare(first, a.first);
}
return Integer.compare(second, a.second);
}
public String toString() {
return "<" + first + ", " + second + ">";
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
IntPair a = (IntPair) o;
if (first != a.first) return false;
return second == a.second;
}
public int hashCode() {
int result = first;
result = 31 * result + second;
return result;
}
public int getFirst() {
return first;
}
public int getSecond() {
return second;
}
}
static class FastReader {
BufferedReader reader;
StringTokenizer st;
public FastReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.ArrayDeque;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author MaxHeap
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FireAgain solver = new FireAgain();
solver.solve(1, in, out);
out.close();
}
static class FireAgain {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int INF = 10000000;
int[][] g = new int[n][m];
for (int[] temp : g) Arrays.fill(temp, -1);
ArrayDeque<IntPair> q = new ArrayDeque<>();
for (int i = 0; i < k; i++) {
int x = in.nextInt() - 1;
int y = in.nextInt() - 1;
g[x][y] = 0;
q.add(new IntPair(x, y));
}
while (!q.isEmpty()) {
IntPair cur = q.poll();
int x = cur.getFirst();
int y = cur.getSecond();
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
if (i == 0 && j == 0 || Math.abs(i) + Math.abs(j) != 1) continue;
int xx = x + i;
int yy = y + j;
if (xx < 0 || xx >= n || yy < 0 || yy >= m) continue;
if (g[xx][yy] != -1) continue;
g[xx][yy] = g[x][y] + 1;
q.add(new IntPair(xx, yy));
}
}
}
int ans = 0, x = -1, y = -1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (g[i][j] >= ans) {
ans = g[i][j];
x = i + 1;
y = j + 1;
}
}
}
out.println(x + " " + y);
}
}
static class IntPair implements Comparable<IntPair> {
int first;
int second;
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair a) {
if (second == a.second) {
return Integer.compare(first, a.first);
}
return Integer.compare(second, a.second);
}
public String toString() {
return "<" + first + ", " + second + ">";
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
IntPair a = (IntPair) o;
if (first != a.first) return false;
return second == a.second;
}
public int hashCode() {
int result = first;
result = 31 * result + second;
return result;
}
public int getFirst() {
return first;
}
public int getSecond() {
return second;
}
}
static class FastReader {
BufferedReader reader;
StringTokenizer st;
public FastReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.util.ArrayDeque;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author MaxHeap
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream;
try {
inputStream = new FileInputStream("input.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
OutputStream outputStream;
try {
outputStream = new FileOutputStream("output.txt");
} catch (IOException e) {
throw new RuntimeException(e);
}
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
FireAgain solver = new FireAgain();
solver.solve(1, in, out);
out.close();
}
static class FireAgain {
public void solve(int testNumber, FastReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int INF = 10000000;
int[][] g = new int[n][m];
for (int[] temp : g) Arrays.fill(temp, -1);
ArrayDeque<IntPair> q = new ArrayDeque<>();
for (int i = 0; i < k; i++) {
int x = in.nextInt() - 1;
int y = in.nextInt() - 1;
g[x][y] = 0;
q.add(new IntPair(x, y));
}
while (!q.isEmpty()) {
IntPair cur = q.poll();
int x = cur.getFirst();
int y = cur.getSecond();
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
if (i == 0 && j == 0 || Math.abs(i) + Math.abs(j) != 1) continue;
int xx = x + i;
int yy = y + j;
if (xx < 0 || xx >= n || yy < 0 || yy >= m) continue;
if (g[xx][yy] != -1) continue;
g[xx][yy] = g[x][y] + 1;
q.add(new IntPair(xx, yy));
}
}
}
int ans = 0, x = -1, y = -1;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (g[i][j] >= ans) {
ans = g[i][j];
x = i + 1;
y = j + 1;
}
}
}
out.println(x + " " + y);
}
}
static class IntPair implements Comparable<IntPair> {
int first;
int second;
public IntPair(int first, int second) {
this.first = first;
this.second = second;
}
public int compareTo(IntPair a) {
if (second == a.second) {
return Integer.compare(first, a.first);
}
return Integer.compare(second, a.second);
}
public String toString() {
return "<" + first + ", " + second + ">";
}
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
IntPair a = (IntPair) o;
if (first != a.first) return false;
return second == a.second;
}
public int hashCode() {
int result = first;
result = 31 * result + second;
return result;
}
public int getFirst() {
return first;
}
public int getSecond() {
return second;
}
}
static class FastReader {
BufferedReader reader;
StringTokenizer st;
public FastReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
st = null;
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String line = reader.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,336 | 3,634 |
763 |
/**
* Created by ankeet on 7/22/16.
*/
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C701 {
static FastReader in = null;
static PrintWriter out = null;
public static void solve()
{
int n = in.nint();
String pk = in.next();
boolean[] occ = new boolean[52];
for(int i=0; i<n; i++)
{
char c = pk.charAt(i);
int val = Character.isUpperCase(c)? (int)(c-'A') : (int)(c-'a'+26);
occ[val] = true;
}
int[][] next = new int[n][52];
for(int i=0; i<n; i++) for(int j=0; j<52; j++) next[i][j] = -1;
for(int i= n-1; i>=0; i--) {
char c = pk.charAt(i);
int val = Character.isUpperCase(c)? (int)(c-'A') : (int)(c-'a'+26);
next[i][val] = i;
if(i<n-1)
for(int j=0; j<52; j++)
{
if(j!=val)
{
next[i][j] = next[i+1][j];
}
}
}
int min = Integer.MAX_VALUE;
for(int i=0; i<n; i++)
{
int maxd = 0;
boolean endearly = false;
for(int j=0; j<52; j++)
{
if(occ[j] && next[i][j] == -1)
{
endearly = true;
break;
}
else if(occ[j])
{
maxd = Math.max(maxd, next[i][j]-i+1);
}
}
if(endearly) break;
min = Math.min(min, maxd);
}
out.println(min);
}
public static void main(String[] args)
{
in = new FastReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
}
static class FastReader {
BufferedReader read;
StringTokenizer tokenizer;
public FastReader(InputStream in)
{
read = new BufferedReader(new InputStreamReader(in));
}
public String next()
{
while(tokenizer == null || !tokenizer.hasMoreTokens())
{
try{
tokenizer = new StringTokenizer(read.readLine());
}catch(Exception e){
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nint()
{
return Integer.parseInt(next());
}
public long nlong()
{
return Long.parseLong(next());
}
public double ndouble()
{
return Double.parseDouble(next());
}
public int[] narr(int n)
{
int[] a = new int[n];
for(int i=0; i<n; ++i)
{
a[i] = nint();
}
return a;
}
public long[] nlarr(int n)
{
long[] a = new long[n];
for(int i=0; i<n; ++i)
{
a[i] = nlong();
}
return a;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* Created by ankeet on 7/22/16.
*/
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C701 {
static FastReader in = null;
static PrintWriter out = null;
public static void solve()
{
int n = in.nint();
String pk = in.next();
boolean[] occ = new boolean[52];
for(int i=0; i<n; i++)
{
char c = pk.charAt(i);
int val = Character.isUpperCase(c)? (int)(c-'A') : (int)(c-'a'+26);
occ[val] = true;
}
int[][] next = new int[n][52];
for(int i=0; i<n; i++) for(int j=0; j<52; j++) next[i][j] = -1;
for(int i= n-1; i>=0; i--) {
char c = pk.charAt(i);
int val = Character.isUpperCase(c)? (int)(c-'A') : (int)(c-'a'+26);
next[i][val] = i;
if(i<n-1)
for(int j=0; j<52; j++)
{
if(j!=val)
{
next[i][j] = next[i+1][j];
}
}
}
int min = Integer.MAX_VALUE;
for(int i=0; i<n; i++)
{
int maxd = 0;
boolean endearly = false;
for(int j=0; j<52; j++)
{
if(occ[j] && next[i][j] == -1)
{
endearly = true;
break;
}
else if(occ[j])
{
maxd = Math.max(maxd, next[i][j]-i+1);
}
}
if(endearly) break;
min = Math.min(min, maxd);
}
out.println(min);
}
public static void main(String[] args)
{
in = new FastReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
}
static class FastReader {
BufferedReader read;
StringTokenizer tokenizer;
public FastReader(InputStream in)
{
read = new BufferedReader(new InputStreamReader(in));
}
public String next()
{
while(tokenizer == null || !tokenizer.hasMoreTokens())
{
try{
tokenizer = new StringTokenizer(read.readLine());
}catch(Exception e){
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nint()
{
return Integer.parseInt(next());
}
public long nlong()
{
return Long.parseLong(next());
}
public double ndouble()
{
return Double.parseDouble(next());
}
public int[] narr(int n)
{
int[] a = new int[n];
for(int i=0; i<n; ++i)
{
a[i] = nint();
}
return a;
}
public long[] nlarr(int n)
{
long[] a = new long[n];
for(int i=0; i<n; ++i)
{
a[i] = nlong();
}
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* Created by ankeet on 7/22/16.
*/
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class C701 {
static FastReader in = null;
static PrintWriter out = null;
public static void solve()
{
int n = in.nint();
String pk = in.next();
boolean[] occ = new boolean[52];
for(int i=0; i<n; i++)
{
char c = pk.charAt(i);
int val = Character.isUpperCase(c)? (int)(c-'A') : (int)(c-'a'+26);
occ[val] = true;
}
int[][] next = new int[n][52];
for(int i=0; i<n; i++) for(int j=0; j<52; j++) next[i][j] = -1;
for(int i= n-1; i>=0; i--) {
char c = pk.charAt(i);
int val = Character.isUpperCase(c)? (int)(c-'A') : (int)(c-'a'+26);
next[i][val] = i;
if(i<n-1)
for(int j=0; j<52; j++)
{
if(j!=val)
{
next[i][j] = next[i+1][j];
}
}
}
int min = Integer.MAX_VALUE;
for(int i=0; i<n; i++)
{
int maxd = 0;
boolean endearly = false;
for(int j=0; j<52; j++)
{
if(occ[j] && next[i][j] == -1)
{
endearly = true;
break;
}
else if(occ[j])
{
maxd = Math.max(maxd, next[i][j]-i+1);
}
}
if(endearly) break;
min = Math.min(min, maxd);
}
out.println(min);
}
public static void main(String[] args)
{
in = new FastReader(System.in);
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
}
static class FastReader {
BufferedReader read;
StringTokenizer tokenizer;
public FastReader(InputStream in)
{
read = new BufferedReader(new InputStreamReader(in));
}
public String next()
{
while(tokenizer == null || !tokenizer.hasMoreTokens())
{
try{
tokenizer = new StringTokenizer(read.readLine());
}catch(Exception e){
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nint()
{
return Integer.parseInt(next());
}
public long nlong()
{
return Long.parseLong(next());
}
public double ndouble()
{
return Double.parseDouble(next());
}
public int[] narr(int n)
{
int[] a = new int[n];
for(int i=0; i<n; ++i)
{
a[i] = nint();
}
return a;
}
public long[] nlarr(int n)
{
long[] a = new long[n];
for(int i=0; i<n; ++i)
{
a[i] = nlong();
}
return a;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,089 | 762 |
543 |
import java.io.*;
public class B14G {
public static void main(String[] args) throws IOException {
init_io();
int t = nint();
while(t-- > 0) {
int N = nint();
if (N % 2 != 0) {
out.println("NO"); continue;
}
N /= 2;
int sqrt = (int)(Math.round(Math.sqrt(N)));
int sqrt2 = (int)(Math.round(Math.sqrt(N/2)));
if (sqrt * sqrt == N || sqrt2 * sqrt2 * 2 == N) {
out.println("YES");
}
else {
out.println("NO");
}
}
out.close();
}
static StreamTokenizer in;
static PrintWriter out;
static BufferedReader br;
static int nint() throws IOException {
in.nextToken();
return (int) in.nval;
}
static void init_io() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
in = new StreamTokenizer(br);
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
public class B14G {
public static void main(String[] args) throws IOException {
init_io();
int t = nint();
while(t-- > 0) {
int N = nint();
if (N % 2 != 0) {
out.println("NO"); continue;
}
N /= 2;
int sqrt = (int)(Math.round(Math.sqrt(N)));
int sqrt2 = (int)(Math.round(Math.sqrt(N/2)));
if (sqrt * sqrt == N || sqrt2 * sqrt2 * 2 == N) {
out.println("YES");
}
else {
out.println("NO");
}
}
out.close();
}
static StreamTokenizer in;
static PrintWriter out;
static BufferedReader br;
static int nint() throws IOException {
in.nextToken();
return (int) in.nval;
}
static void init_io() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
in = new StreamTokenizer(br);
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
public class B14G {
public static void main(String[] args) throws IOException {
init_io();
int t = nint();
while(t-- > 0) {
int N = nint();
if (N % 2 != 0) {
out.println("NO"); continue;
}
N /= 2;
int sqrt = (int)(Math.round(Math.sqrt(N)));
int sqrt2 = (int)(Math.round(Math.sqrt(N/2)));
if (sqrt * sqrt == N || sqrt2 * sqrt2 * 2 == N) {
out.println("YES");
}
else {
out.println("NO");
}
}
out.close();
}
static StreamTokenizer in;
static PrintWriter out;
static BufferedReader br;
static int nint() throws IOException {
in.nextToken();
return (int) in.nval;
}
static void init_io() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
in = new StreamTokenizer(br);
out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 589 | 542 |
4,224 |
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class cf1209e1_2 {
public static void main(String[] args) throws IOException {
int t = ri();
while (t --> 0) {
int n = rni(), m = ni(), a[][] = new int[m][n], dp[] = new int[1 << n];
for (int i = 0; i < n; ++i) {
int[] row = ria(m);
for (int j = 0; j < m; ++j) {
a[j][i] = row[j];
}
}
for (int i = 0; i < m; ++i) {
for (int r = 0; r < 1 << n; ++r) {
for (int j = 0; j < n; ++j) {
if ((r & (1 << j)) == 0) {
continue;
}
dp[r] = max(dp[r], dp[r ^ (1 << j)] + a[i][j]);
}
}
for (int r = 0; r < 1 << n; ++r) {
int s = r;
for (int j = 0; j < n; ++j) {
if ((s & 1) != 0) {
s = (s >> 1) | (1 << (n - 1));
} else {
s >>= 1;
}
dp[s] = max(dp[s], dp[r]);
}
}
}
prln(dp[(1 << n) - 1]);
}
close();
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __rand = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int lcm(int a, int b) {return a * b / gcf(a, b);}
static long lcm(long a, long b) {return a * b / gcf(a, b);}
static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;};
static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;}
static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__out.flush();}
static void close() {__out.close();}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class cf1209e1_2 {
public static void main(String[] args) throws IOException {
int t = ri();
while (t --> 0) {
int n = rni(), m = ni(), a[][] = new int[m][n], dp[] = new int[1 << n];
for (int i = 0; i < n; ++i) {
int[] row = ria(m);
for (int j = 0; j < m; ++j) {
a[j][i] = row[j];
}
}
for (int i = 0; i < m; ++i) {
for (int r = 0; r < 1 << n; ++r) {
for (int j = 0; j < n; ++j) {
if ((r & (1 << j)) == 0) {
continue;
}
dp[r] = max(dp[r], dp[r ^ (1 << j)] + a[i][j]);
}
}
for (int r = 0; r < 1 << n; ++r) {
int s = r;
for (int j = 0; j < n; ++j) {
if ((s & 1) != 0) {
s = (s >> 1) | (1 << (n - 1));
} else {
s >>= 1;
}
dp[s] = max(dp[s], dp[r]);
}
}
}
prln(dp[(1 << n) - 1]);
}
close();
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __rand = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int lcm(int a, int b) {return a * b / gcf(a, b);}
static long lcm(long a, long b) {return a * b / gcf(a, b);}
static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;};
static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;}
static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__out.flush();}
static void close() {__out.close();}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class cf1209e1_2 {
public static void main(String[] args) throws IOException {
int t = ri();
while (t --> 0) {
int n = rni(), m = ni(), a[][] = new int[m][n], dp[] = new int[1 << n];
for (int i = 0; i < n; ++i) {
int[] row = ria(m);
for (int j = 0; j < m; ++j) {
a[j][i] = row[j];
}
}
for (int i = 0; i < m; ++i) {
for (int r = 0; r < 1 << n; ++r) {
for (int j = 0; j < n; ++j) {
if ((r & (1 << j)) == 0) {
continue;
}
dp[r] = max(dp[r], dp[r ^ (1 << j)] + a[i][j]);
}
}
for (int r = 0; r < 1 << n; ++r) {
int s = r;
for (int j = 0; j < n; ++j) {
if ((s & 1) != 0) {
s = (s >> 1) | (1 << (n - 1));
} else {
s >>= 1;
}
dp[s] = max(dp[s], dp[r]);
}
}
}
prln(dp[(1 << n) - 1]);
}
close();
}
static BufferedReader __in = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __out = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __rand = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int lcm(int a, int b) {return a * b / gcf(a, b);}
static long lcm(long a, long b) {return a * b / gcf(a, b);}
static int randInt(int min, int max) {return __rand.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __in.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
// output
static void pr(int i) {__out.print(i);}
static void prln(int i) {__out.println(i);}
static void pr(long l) {__out.print(l);}
static void prln(long l) {__out.println(l);}
static void pr(double d) {__out.print(d);}
static void prln(double d) {__out.println(d);}
static void pr(char c) {__out.print(c);}
static void prln(char c) {__out.println(c);}
static void pr(char[] s) {__out.print(new String(s));}
static void prln(char[] s) {__out.println(new String(s));}
static void pr(String s) {__out.print(s);}
static void prln(String s) {__out.println(s);}
static void pr(Object o) {__out.print(o);}
static void prln(Object o) {__out.println(o);}
static void prln() {__out.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;};
static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;}
static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__out.flush();}
static void close() {__out.close();}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 3,538 | 4,213 |
2,236 |
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class C {
static final long MOD = 1_000_000_007;
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt();
long[][] dp = new long[N][N];
dp[0][0] = 1L;
for(int i = 0; i < N-1; i++) {
char oper = sc.next().charAt(0);
if(oper == 'f') {
dp[i+1][0] = 0L;
for(int j = 1; j < N; j++) {
dp[i+1][j] = dp[i][j-1];
}
}
else {
dp[i+1][N-1] = dp[i][N-1];
for(int j = N-2; j >= 0; j--) {
dp[i+1][j] = (dp[i+1][j+1] + dp[i][j]) % MOD;
}
}
}
long res = 0;
for(int i = 0; i < N; i++) {
res += dp[N-1][i];
res %= MOD;
}
out.println(res);
out.flush();
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class C {
static final long MOD = 1_000_000_007;
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt();
long[][] dp = new long[N][N];
dp[0][0] = 1L;
for(int i = 0; i < N-1; i++) {
char oper = sc.next().charAt(0);
if(oper == 'f') {
dp[i+1][0] = 0L;
for(int j = 1; j < N; j++) {
dp[i+1][j] = dp[i][j-1];
}
}
else {
dp[i+1][N-1] = dp[i][N-1];
for(int j = N-2; j >= 0; j--) {
dp[i+1][j] = (dp[i+1][j+1] + dp[i][j]) % MOD;
}
}
}
long res = 0;
for(int i = 0; i < N; i++) {
res += dp[N-1][i];
res %= MOD;
}
out.println(res);
out.flush();
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
public class C {
static final long MOD = 1_000_000_007;
public static void main(String[] args) throws Exception {
FastScanner sc = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int N = sc.nextInt();
long[][] dp = new long[N][N];
dp[0][0] = 1L;
for(int i = 0; i < N-1; i++) {
char oper = sc.next().charAt(0);
if(oper == 'f') {
dp[i+1][0] = 0L;
for(int j = 1; j < N; j++) {
dp[i+1][j] = dp[i][j-1];
}
}
else {
dp[i+1][N-1] = dp[i][N-1];
for(int j = N-2; j >= 0; j--) {
dp[i+1][j] = (dp[i+1][j+1] + dp[i][j]) % MOD;
}
}
}
long res = 0;
for(int i = 0; i < N; i++) {
res += dp[N-1][i];
res %= MOD;
}
out.println(res);
out.flush();
}
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 840 | 2,232 |
3,276 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class Hexadecimaltheorem {
public static void main(String[] args) {
BufferedReader buf = new BufferedReader(
new InputStreamReader(System.in));
int x;
ArrayList<Integer> arr = new ArrayList<Integer>();
arr.add(0);
arr.add(1);
try {
while ((x = Integer.parseInt(buf.readLine())) != -1) {
if (x == 1) {
System.out.println(arr.get(0) + " " + arr.get(0) + " "
+ arr.get(1));
} else if (x == 0) {
System.out.println(arr.get(0) + " " + arr.get(0) + " "
+ arr.get(0));
} else {
int i = 1;
while (x > arr.get(arr.size() - 1)) {
arr.add(arr.get(i) + arr.get(i - 1));
i++;
}
System.out.println(arr.get(0) + " " + arr.get(i - 2) + " "
+ arr.get(i - 1));
}
}
} catch (NumberFormatException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class Hexadecimaltheorem {
public static void main(String[] args) {
BufferedReader buf = new BufferedReader(
new InputStreamReader(System.in));
int x;
ArrayList<Integer> arr = new ArrayList<Integer>();
arr.add(0);
arr.add(1);
try {
while ((x = Integer.parseInt(buf.readLine())) != -1) {
if (x == 1) {
System.out.println(arr.get(0) + " " + arr.get(0) + " "
+ arr.get(1));
} else if (x == 0) {
System.out.println(arr.get(0) + " " + arr.get(0) + " "
+ arr.get(0));
} else {
int i = 1;
while (x > arr.get(arr.size() - 1)) {
arr.add(arr.get(i) + arr.get(i - 1));
i++;
}
System.out.println(arr.get(0) + " " + arr.get(i - 2) + " "
+ arr.get(i - 1));
}
}
} catch (NumberFormatException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
public class Hexadecimaltheorem {
public static void main(String[] args) {
BufferedReader buf = new BufferedReader(
new InputStreamReader(System.in));
int x;
ArrayList<Integer> arr = new ArrayList<Integer>();
arr.add(0);
arr.add(1);
try {
while ((x = Integer.parseInt(buf.readLine())) != -1) {
if (x == 1) {
System.out.println(arr.get(0) + " " + arr.get(0) + " "
+ arr.get(1));
} else if (x == 0) {
System.out.println(arr.get(0) + " " + arr.get(0) + " "
+ arr.get(0));
} else {
int i = 1;
while (x > arr.get(arr.size() - 1)) {
arr.add(arr.get(i) + arr.get(i - 1));
i++;
}
System.out.println(arr.get(0) + " " + arr.get(i - 2) + " "
+ arr.get(i - 1));
}
}
} catch (NumberFormatException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 659 | 3,270 |
1,904 |
import java.util.*;
public class A {
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int n=in.nextInt(),s=0;
int[] a= new int[n];
for (int i=0;i<n;i++) {a[i]=in.nextInt(); s+=a[i];}
Arrays.sort(a); int k=0,ans=0;
for (int i=n-1;i>=0;i--)
if (k<=s/2) {k+=a[i];ans++;}
System.out.println(ans);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class A {
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int n=in.nextInt(),s=0;
int[] a= new int[n];
for (int i=0;i<n;i++) {a[i]=in.nextInt(); s+=a[i];}
Arrays.sort(a); int k=0,ans=0;
for (int i=n-1;i>=0;i--)
if (k<=s/2) {k+=a[i];ans++;}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class A {
public static void main(String args[]){
Scanner in = new Scanner(System.in);
int n=in.nextInt(),s=0;
int[] a= new int[n];
for (int i=0;i<n;i++) {a[i]=in.nextInt(); s+=a[i];}
Arrays.sort(a); int k=0,ans=0;
for (int i=n-1;i>=0;i--)
if (k<=s/2) {k+=a[i];ans++;}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 451 | 1,900 |
1,735 |
import java.util.*;
import java.io.*;
/**
* Created by HREN_VAM.
*/
public class A implements Runnable{
BufferedReader in;
PrintWriter out;
StringTokenizer st;
public static final String filename = "a";
class I implements Comparable<I>{
int x;
int a;
I(int x, int a){
this.x = x;
this.a = a;
}
public int compareTo(I o){
return Double.compare(x, o.x);
}
}
public void solve() throws IOException{
int n = nextInt();
int t = nextInt();
I[] a = new I[n];
for(int i = 0;i < n;i ++){
a[i] = new I(nextInt(), nextInt());
}
int res = 2;
Arrays.sort(a);
for(int i = 1;i < n;i ++){
if((a[i].x - a[i - 1].x - 1.0 * (a[i].a + a[i - 1].a) / 2) >= t)res ++;
if((a[i].x - a[i - 1].x - 1.0 * (a[i].a + a[i - 1].a) / 2) > t)res ++;
}
out.println(res);
}
public void run(){
try{
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader(filename + ".in"));
out = new PrintWriter(System.out);
//out = new PrintWriter(new FileWriter(filename + ".out"));
st = new StringTokenizer("");
solve();
out.close();
} catch(IOException e){
throw new RuntimeException(e);
}
}
public static void main(String[] args){
new Thread(new A()).start();
}
public String nextToken() throws IOException{
while(!st.hasMoreTokens()){
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws IOException{
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException{
return Double.parseDouble(nextToken());
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
/**
* Created by HREN_VAM.
*/
public class A implements Runnable{
BufferedReader in;
PrintWriter out;
StringTokenizer st;
public static final String filename = "a";
class I implements Comparable<I>{
int x;
int a;
I(int x, int a){
this.x = x;
this.a = a;
}
public int compareTo(I o){
return Double.compare(x, o.x);
}
}
public void solve() throws IOException{
int n = nextInt();
int t = nextInt();
I[] a = new I[n];
for(int i = 0;i < n;i ++){
a[i] = new I(nextInt(), nextInt());
}
int res = 2;
Arrays.sort(a);
for(int i = 1;i < n;i ++){
if((a[i].x - a[i - 1].x - 1.0 * (a[i].a + a[i - 1].a) / 2) >= t)res ++;
if((a[i].x - a[i - 1].x - 1.0 * (a[i].a + a[i - 1].a) / 2) > t)res ++;
}
out.println(res);
}
public void run(){
try{
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader(filename + ".in"));
out = new PrintWriter(System.out);
//out = new PrintWriter(new FileWriter(filename + ".out"));
st = new StringTokenizer("");
solve();
out.close();
} catch(IOException e){
throw new RuntimeException(e);
}
}
public static void main(String[] args){
new Thread(new A()).start();
}
public String nextToken() throws IOException{
while(!st.hasMoreTokens()){
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws IOException{
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException{
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
/**
* Created by HREN_VAM.
*/
public class A implements Runnable{
BufferedReader in;
PrintWriter out;
StringTokenizer st;
public static final String filename = "a";
class I implements Comparable<I>{
int x;
int a;
I(int x, int a){
this.x = x;
this.a = a;
}
public int compareTo(I o){
return Double.compare(x, o.x);
}
}
public void solve() throws IOException{
int n = nextInt();
int t = nextInt();
I[] a = new I[n];
for(int i = 0;i < n;i ++){
a[i] = new I(nextInt(), nextInt());
}
int res = 2;
Arrays.sort(a);
for(int i = 1;i < n;i ++){
if((a[i].x - a[i - 1].x - 1.0 * (a[i].a + a[i - 1].a) / 2) >= t)res ++;
if((a[i].x - a[i - 1].x - 1.0 * (a[i].a + a[i - 1].a) / 2) > t)res ++;
}
out.println(res);
}
public void run(){
try{
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
//in = new BufferedReader(new FileReader(filename + ".in"));
out = new PrintWriter(System.out);
//out = new PrintWriter(new FileWriter(filename + ".out"));
st = new StringTokenizer("");
solve();
out.close();
} catch(IOException e){
throw new RuntimeException(e);
}
}
public static void main(String[] args){
new Thread(new A()).start();
}
public String nextToken() throws IOException{
while(!st.hasMoreTokens()){
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
public int nextInt() throws IOException{
return Integer.parseInt(nextToken());
}
public double nextDouble() throws IOException{
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 812 | 1,731 |
1,255 |
import java.io.*;
import java.util.*;
public class A992{
long mod = 1000000007L;
private void solve() throws Exception {
long x = nextLong();
long k = nextLong();
if(x == 0) {
out.println(0);
return;
}
x = x%mod;
long res = (((x*pow(2,k+1))%mod + (mod-pow(2,k))%mod)%mod+1)%mod;
out.println(res);
}
long pow(long m, long n){
long res = 1;
while(n > 0){
if(n % 2 == 1)res = (res*m)%mod;
m = (m*m)%mod;
n = n/2;
}
return res;
}
public static void main(String[] args) {
(new A992()).run();
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private float nextFloat() throws IOException {
return Float.parseFloat(nextToken());
}
private String nextLine() throws IOException {
return new String(in.readLine());
}
private String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A992{
long mod = 1000000007L;
private void solve() throws Exception {
long x = nextLong();
long k = nextLong();
if(x == 0) {
out.println(0);
return;
}
x = x%mod;
long res = (((x*pow(2,k+1))%mod + (mod-pow(2,k))%mod)%mod+1)%mod;
out.println(res);
}
long pow(long m, long n){
long res = 1;
while(n > 0){
if(n % 2 == 1)res = (res*m)%mod;
m = (m*m)%mod;
n = n/2;
}
return res;
}
public static void main(String[] args) {
(new A992()).run();
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private float nextFloat() throws IOException {
return Float.parseFloat(nextToken());
}
private String nextLine() throws IOException {
return new String(in.readLine());
}
private String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A992{
long mod = 1000000007L;
private void solve() throws Exception {
long x = nextLong();
long k = nextLong();
if(x == 0) {
out.println(0);
return;
}
x = x%mod;
long res = (((x*pow(2,k+1))%mod + (mod-pow(2,k))%mod)%mod+1)%mod;
out.println(res);
}
long pow(long m, long n){
long res = 1;
while(n > 0){
if(n % 2 == 1)res = (res*m)%mod;
m = (m*m)%mod;
n = n/2;
}
return res;
}
public static void main(String[] args) {
(new A992()).run();
}
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tokenizer;
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
tokenizer = null;
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Exception e) {
e.printStackTrace();
System.exit(1);
}
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private float nextFloat() throws IOException {
return Float.parseFloat(nextToken());
}
private String nextLine() throws IOException {
return new String(in.readLine());
}
private String nextToken() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 730 | 1,254 |
2,057 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
public class One {
InputStreamReader inp = new InputStreamReader(System.in);
BufferedReader in = new BufferedReader(inp);
boolean test = false;
// String[] inData = { "4", "A", "B", "C", "D", "A-B 1:1", "A-C 2:2",
// "A-D 1:0", "B-C 1:0", "B-D 0:3", "C-D 0:3" };
String[] inData = { "4","1 1 2" };
static int id = -1;
public String readLine() throws IOException {
id++;
if (test)
return inData[id];
else
return in.readLine();
}
public void solve() throws Exception {
readLine();
String readLine = readLine();
String[] split = readLine.split(" ");
List<Integer> ints = new ArrayList<Integer>();
for (int i = 0; i < split.length; i++) {
ints.add(Integer.valueOf(split[i]));
}
Collections.sort(ints);
Integer object = ints.get(0);
for (int i = 0; i < split.length; i++) {
if(ints.get(i).compareTo(object) > 0){
System.out.println(ints.get(i));
return;
}
}
System.out.println("NO");
}
public static void main(String[] args) throws Exception {
new One().solve();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
public class One {
InputStreamReader inp = new InputStreamReader(System.in);
BufferedReader in = new BufferedReader(inp);
boolean test = false;
// String[] inData = { "4", "A", "B", "C", "D", "A-B 1:1", "A-C 2:2",
// "A-D 1:0", "B-C 1:0", "B-D 0:3", "C-D 0:3" };
String[] inData = { "4","1 1 2" };
static int id = -1;
public String readLine() throws IOException {
id++;
if (test)
return inData[id];
else
return in.readLine();
}
public void solve() throws Exception {
readLine();
String readLine = readLine();
String[] split = readLine.split(" ");
List<Integer> ints = new ArrayList<Integer>();
for (int i = 0; i < split.length; i++) {
ints.add(Integer.valueOf(split[i]));
}
Collections.sort(ints);
Integer object = ints.get(0);
for (int i = 0; i < split.length; i++) {
if(ints.get(i).compareTo(object) > 0){
System.out.println(ints.get(i));
return;
}
}
System.out.println("NO");
}
public static void main(String[] args) throws Exception {
new One().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
public class One {
InputStreamReader inp = new InputStreamReader(System.in);
BufferedReader in = new BufferedReader(inp);
boolean test = false;
// String[] inData = { "4", "A", "B", "C", "D", "A-B 1:1", "A-C 2:2",
// "A-D 1:0", "B-C 1:0", "B-D 0:3", "C-D 0:3" };
String[] inData = { "4","1 1 2" };
static int id = -1;
public String readLine() throws IOException {
id++;
if (test)
return inData[id];
else
return in.readLine();
}
public void solve() throws Exception {
readLine();
String readLine = readLine();
String[] split = readLine.split(" ");
List<Integer> ints = new ArrayList<Integer>();
for (int i = 0; i < split.length; i++) {
ints.add(Integer.valueOf(split[i]));
}
Collections.sort(ints);
Integer object = ints.get(0);
for (int i = 0; i < split.length; i++) {
if(ints.get(i).compareTo(object) > 0){
System.out.println(ints.get(i));
return;
}
}
System.out.println("NO");
}
public static void main(String[] args) throws Exception {
new One().solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 705 | 2,053 |
2,631 |
import java.util.*;
public class paintTheNumbers {
public static void main (String [] args){
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int [] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = scanner.nextInt();
}
System.out.print(paint(arr));
}
public static int paint(int [] arr){
Arrays.sort(arr);
HashSet<Integer> set = new HashSet<>();
int num = arr[0];
set.add(num);
for(int i = 1; i < arr.length; i++){
if(!divBySet(set, arr[i])){
set.add(arr[i]);
}
}
return set.size();
}
/**
*
* @param set
* @param a
* @return
*/
public static boolean divBySet(HashSet<Integer> set, int a){
for(int s: set){
if(a % s == 0){
return true;
}
}
return false;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class paintTheNumbers {
public static void main (String [] args){
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int [] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = scanner.nextInt();
}
System.out.print(paint(arr));
}
public static int paint(int [] arr){
Arrays.sort(arr);
HashSet<Integer> set = new HashSet<>();
int num = arr[0];
set.add(num);
for(int i = 1; i < arr.length; i++){
if(!divBySet(set, arr[i])){
set.add(arr[i]);
}
}
return set.size();
}
/**
*
* @param set
* @param a
* @return
*/
public static boolean divBySet(HashSet<Integer> set, int a){
for(int s: set){
if(a % s == 0){
return true;
}
}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class paintTheNumbers {
public static void main (String [] args){
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int [] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = scanner.nextInt();
}
System.out.print(paint(arr));
}
public static int paint(int [] arr){
Arrays.sort(arr);
HashSet<Integer> set = new HashSet<>();
int num = arr[0];
set.add(num);
for(int i = 1; i < arr.length; i++){
if(!divBySet(set, arr[i])){
set.add(arr[i]);
}
}
return set.size();
}
/**
*
* @param set
* @param a
* @return
*/
public static boolean divBySet(HashSet<Integer> set, int a){
for(int s: set){
if(a % s == 0){
return true;
}
}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 579 | 2,625 |
3,610 |
import java.util.*;
import java.io.*;
import java.math.*;
public class Main1
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
}
///////////////////////////////////////////////////////////////////////////////////////////
// RRRRRRRRR AAA HHH HHH IIIIIIIIIIIII LLL //
// RR RRR AAAAA HHH HHH IIIIIIIIIII LLL //
// RR RRR AAAAAAA HHH HHH III LLL //
// RR RRR AAA AAA HHHHHHHHHHH III LLL //
// RRRRRR AAA AAA HHHHHHHHHHH III LLL //
// RR RRR AAAAAAAAAAAAA HHH HHH III LLL //
// RR RRR AAA AAA HHH HHH IIIIIIIIIII LLLLLLLLLLLL //
// RR RRR AAA AAA HHH HHH IIIIIIIIIIIII LLLLLLLLLLLL //
///////////////////////////////////////////////////////////////////////////////////////////
static class pair
{
int x;
int y;
public pair (int k, int p)
{
x = k;
y = p;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
pair pair = (pair) o;
return x == pair.x && y == pair.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
public static void main(String[] args)throws IOException
{
/*PrintWriter out= new PrintWriter(new File("input.txt"));
Reader sc=new Reader();*/
Scanner sc = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter("output.txt");
Queue<pair> q=new LinkedList<>();
int n=sc.nextInt();
int m=sc.nextInt();
int t=sc.nextInt();
int mark[][]=new int[n+2][m+2];
while(t-->0)
{
int a=sc.nextInt();int b=sc.nextInt();
mark[a][b]=1;
q.add(new pair(a,b));
}
int ansx=1;int ansy=1;
while(q.size()!=0)
{
pair p=q.remove();
if(mark[Math.max(1,p.x-1)][p.y]==0)
{
q.add(new pair(Math.max(1,p.x-1),p.y));
mark[Math.max(1,p.x-1)][p.y]=1;
ansx=Math.max(1,p.x-1);
ansy=p.y;
}
if(mark[Math.min(n,p.x+1)][p.y]==0)
{
q.add(new pair(Math.min(n,p.x+1),p.y));
mark[Math.min(n,p.x+1)][p.y]=1;
ansx=Math.min(n,p.x+1);
ansy=p.y;
}
if(mark[p.x][Math.max(1,p.y-1)]==0)
{
q.add(new pair(p.x,Math.max(1,p.y-1)));
mark[p.x][Math.max(1,p.y-1)]=1;
ansx=p.x;
ansy=Math.max(1,p.y-1);
}
if(mark[p.x][Math.min(m,p.y+1)]==0)
{
q.add(new pair(p.x,Math.min(m,p.y+1)));
mark[p.x][Math.min(m,p.y+1)]=1;
ansx=p.x;
ansy=Math.min(m,p.y+1);
}
}
out.println(ansx+" "+ansy);
out.flush();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main1
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
}
///////////////////////////////////////////////////////////////////////////////////////////
// RRRRRRRRR AAA HHH HHH IIIIIIIIIIIII LLL //
// RR RRR AAAAA HHH HHH IIIIIIIIIII LLL //
// RR RRR AAAAAAA HHH HHH III LLL //
// RR RRR AAA AAA HHHHHHHHHHH III LLL //
// RRRRRR AAA AAA HHHHHHHHHHH III LLL //
// RR RRR AAAAAAAAAAAAA HHH HHH III LLL //
// RR RRR AAA AAA HHH HHH IIIIIIIIIII LLLLLLLLLLLL //
// RR RRR AAA AAA HHH HHH IIIIIIIIIIIII LLLLLLLLLLLL //
///////////////////////////////////////////////////////////////////////////////////////////
static class pair
{
int x;
int y;
public pair (int k, int p)
{
x = k;
y = p;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
pair pair = (pair) o;
return x == pair.x && y == pair.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
public static void main(String[] args)throws IOException
{
/*PrintWriter out= new PrintWriter(new File("input.txt"));
Reader sc=new Reader();*/
Scanner sc = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter("output.txt");
Queue<pair> q=new LinkedList<>();
int n=sc.nextInt();
int m=sc.nextInt();
int t=sc.nextInt();
int mark[][]=new int[n+2][m+2];
while(t-->0)
{
int a=sc.nextInt();int b=sc.nextInt();
mark[a][b]=1;
q.add(new pair(a,b));
}
int ansx=1;int ansy=1;
while(q.size()!=0)
{
pair p=q.remove();
if(mark[Math.max(1,p.x-1)][p.y]==0)
{
q.add(new pair(Math.max(1,p.x-1),p.y));
mark[Math.max(1,p.x-1)][p.y]=1;
ansx=Math.max(1,p.x-1);
ansy=p.y;
}
if(mark[Math.min(n,p.x+1)][p.y]==0)
{
q.add(new pair(Math.min(n,p.x+1),p.y));
mark[Math.min(n,p.x+1)][p.y]=1;
ansx=Math.min(n,p.x+1);
ansy=p.y;
}
if(mark[p.x][Math.max(1,p.y-1)]==0)
{
q.add(new pair(p.x,Math.max(1,p.y-1)));
mark[p.x][Math.max(1,p.y-1)]=1;
ansx=p.x;
ansy=Math.max(1,p.y-1);
}
if(mark[p.x][Math.min(m,p.y+1)]==0)
{
q.add(new pair(p.x,Math.min(m,p.y+1)));
mark[p.x][Math.min(m,p.y+1)]=1;
ansx=p.x;
ansy=Math.min(m,p.y+1);
}
}
out.println(ansx+" "+ansy);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Main1
{
static class Reader
{
private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public Reader() { this(System.in); }public Reader(InputStream is) { mIs = is;}
public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];}
public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;}
public String s(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();}
public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;}
public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;}
public double d() throws IOException {return Double.parseDouble(s()) ;}
public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; }
public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; }
}
///////////////////////////////////////////////////////////////////////////////////////////
// RRRRRRRRR AAA HHH HHH IIIIIIIIIIIII LLL //
// RR RRR AAAAA HHH HHH IIIIIIIIIII LLL //
// RR RRR AAAAAAA HHH HHH III LLL //
// RR RRR AAA AAA HHHHHHHHHHH III LLL //
// RRRRRR AAA AAA HHHHHHHHHHH III LLL //
// RR RRR AAAAAAAAAAAAA HHH HHH III LLL //
// RR RRR AAA AAA HHH HHH IIIIIIIIIII LLLLLLLLLLLL //
// RR RRR AAA AAA HHH HHH IIIIIIIIIIIII LLLLLLLLLLLL //
///////////////////////////////////////////////////////////////////////////////////////////
static class pair
{
int x;
int y;
public pair (int k, int p)
{
x = k;
y = p;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
pair pair = (pair) o;
return x == pair.x && y == pair.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
public static void main(String[] args)throws IOException
{
/*PrintWriter out= new PrintWriter(new File("input.txt"));
Reader sc=new Reader();*/
Scanner sc = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter("output.txt");
Queue<pair> q=new LinkedList<>();
int n=sc.nextInt();
int m=sc.nextInt();
int t=sc.nextInt();
int mark[][]=new int[n+2][m+2];
while(t-->0)
{
int a=sc.nextInt();int b=sc.nextInt();
mark[a][b]=1;
q.add(new pair(a,b));
}
int ansx=1;int ansy=1;
while(q.size()!=0)
{
pair p=q.remove();
if(mark[Math.max(1,p.x-1)][p.y]==0)
{
q.add(new pair(Math.max(1,p.x-1),p.y));
mark[Math.max(1,p.x-1)][p.y]=1;
ansx=Math.max(1,p.x-1);
ansy=p.y;
}
if(mark[Math.min(n,p.x+1)][p.y]==0)
{
q.add(new pair(Math.min(n,p.x+1),p.y));
mark[Math.min(n,p.x+1)][p.y]=1;
ansx=Math.min(n,p.x+1);
ansy=p.y;
}
if(mark[p.x][Math.max(1,p.y-1)]==0)
{
q.add(new pair(p.x,Math.max(1,p.y-1)));
mark[p.x][Math.max(1,p.y-1)]=1;
ansx=p.x;
ansy=Math.max(1,p.y-1);
}
if(mark[p.x][Math.min(m,p.y+1)]==0)
{
q.add(new pair(p.x,Math.min(m,p.y+1)));
mark[p.x][Math.min(m,p.y+1)]=1;
ansx=p.x;
ansy=Math.min(m,p.y+1);
}
}
out.println(ansx+" "+ansy);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,729 | 3,602 |
296 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E solver = new E();
solver.solve(1, in, out);
out.close();
}
static class E {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.ni(), K = in.ni();
long mod = 998244353;
long[][] dp = new long[n + 1][n + 1];
for (int lim = 1; lim <= n; lim++) {
long sum = 1;
dp[0][lim] = 1;
for (int i = 1; i <= n; i++) {
dp[i][lim] = (dp[i][lim] + sum) % mod;
sum = (sum + dp[i][lim]) % mod;
if (i >= lim)
sum = (sum - dp[i - lim][lim] + mod) % mod;
}
}
long ans = 0;
for (int k = 1; k < Math.min(K, n + 1); k++) {
long h = dp[n][k] - dp[n][k - 1];
int lim = K / k;
if (K % k == 0)
lim--;
if (lim > n)
lim = n;
ans += dp[n][lim] * h % mod;
}
out.println(2 * ans % mod);
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String ns() {
while (st == null || !st.hasMoreTokens()) {
try {
String rl = in.readLine();
if (rl == null) {
return null;
}
st = new StringTokenizer(rl);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(ns());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E solver = new E();
solver.solve(1, in, out);
out.close();
}
static class E {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.ni(), K = in.ni();
long mod = 998244353;
long[][] dp = new long[n + 1][n + 1];
for (int lim = 1; lim <= n; lim++) {
long sum = 1;
dp[0][lim] = 1;
for (int i = 1; i <= n; i++) {
dp[i][lim] = (dp[i][lim] + sum) % mod;
sum = (sum + dp[i][lim]) % mod;
if (i >= lim)
sum = (sum - dp[i - lim][lim] + mod) % mod;
}
}
long ans = 0;
for (int k = 1; k < Math.min(K, n + 1); k++) {
long h = dp[n][k] - dp[n][k - 1];
int lim = K / k;
if (K % k == 0)
lim--;
if (lim > n)
lim = n;
ans += dp[n][lim] * h % mod;
}
out.println(2 * ans % mod);
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String ns() {
while (st == null || !st.hasMoreTokens()) {
try {
String rl = in.readLine();
if (rl == null) {
return null;
}
st = new StringTokenizer(rl);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(ns());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
E solver = new E();
solver.solve(1, in, out);
out.close();
}
static class E {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int n = in.ni(), K = in.ni();
long mod = 998244353;
long[][] dp = new long[n + 1][n + 1];
for (int lim = 1; lim <= n; lim++) {
long sum = 1;
dp[0][lim] = 1;
for (int i = 1; i <= n; i++) {
dp[i][lim] = (dp[i][lim] + sum) % mod;
sum = (sum + dp[i][lim]) % mod;
if (i >= lim)
sum = (sum - dp[i - lim][lim] + mod) % mod;
}
}
long ans = 0;
for (int k = 1; k < Math.min(K, n + 1); k++) {
long h = dp[n][k] - dp[n][k - 1];
int lim = K / k;
if (K % k == 0)
lim--;
if (lim > n)
lim = n;
ans += dp[n][lim] * h % mod;
}
out.println(2 * ans % mod);
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
in = new BufferedReader(new InputStreamReader(stream));
}
public String ns() {
while (st == null || !st.hasMoreTokens()) {
try {
String rl = in.readLine();
if (rl == null) {
return null;
}
st = new StringTokenizer(rl);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int ni() {
return Integer.parseInt(ns());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 881 | 296 |
1,850 |
// discussed with rainboy
import java.io.*;
import java.util.*;
public class CF915E {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int n = Integer.parseInt(br.readLine());
int q = Integer.parseInt(br.readLine());
TreeMap<Integer, Integer> mp = new TreeMap<>();
int ans = 0;
while (q-- > 0) {
StringTokenizer st = new StringTokenizer(br.readLine());
int l = Integer.parseInt(st.nextToken()) - 1;
int r = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
Map.Entry<Integer, Integer> e;
int l_, r_;
if (t == 1) {
if ((e = mp.floorEntry(l)) != null && (r_ = e.getValue()) >= l) {
l_ = e.getKey();
ans -= r_ - l_;
l = l_;
r = Math.max(r, r_);
}
while ((e = mp.higherEntry(l)) != null && (l_ = e.getKey()) <= r) {
r_ = e.getValue();
ans -= r_ - l_;
r = Math.max(r, r_);
mp.remove(l_);
}
ans += r - l;
mp.put(l, r);
} else {
r_ = l;
if ((e = mp.floorEntry(l)) != null && (r_ = e.getValue()) > l) {
l_ = e.getKey();
if (l_ < l)
mp.put(l_, l);
else
mp.remove(l_);
ans -= r_ - l;
}
while ((e = mp.higherEntry(l)) != null && (l_ = e.getKey()) < r) {
r_ = e.getValue();
mp.remove(l_);
ans -= r_ - l_;
}
if (r_ > r) {
mp.put(r, r_);
ans += r_ - r;
}
}
pw.println(n - ans);
}
pw.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// discussed with rainboy
import java.io.*;
import java.util.*;
public class CF915E {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int n = Integer.parseInt(br.readLine());
int q = Integer.parseInt(br.readLine());
TreeMap<Integer, Integer> mp = new TreeMap<>();
int ans = 0;
while (q-- > 0) {
StringTokenizer st = new StringTokenizer(br.readLine());
int l = Integer.parseInt(st.nextToken()) - 1;
int r = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
Map.Entry<Integer, Integer> e;
int l_, r_;
if (t == 1) {
if ((e = mp.floorEntry(l)) != null && (r_ = e.getValue()) >= l) {
l_ = e.getKey();
ans -= r_ - l_;
l = l_;
r = Math.max(r, r_);
}
while ((e = mp.higherEntry(l)) != null && (l_ = e.getKey()) <= r) {
r_ = e.getValue();
ans -= r_ - l_;
r = Math.max(r, r_);
mp.remove(l_);
}
ans += r - l;
mp.put(l, r);
} else {
r_ = l;
if ((e = mp.floorEntry(l)) != null && (r_ = e.getValue()) > l) {
l_ = e.getKey();
if (l_ < l)
mp.put(l_, l);
else
mp.remove(l_);
ans -= r_ - l;
}
while ((e = mp.higherEntry(l)) != null && (l_ = e.getKey()) < r) {
r_ = e.getValue();
mp.remove(l_);
ans -= r_ - l_;
}
if (r_ > r) {
mp.put(r, r_);
ans += r_ - r;
}
}
pw.println(n - ans);
}
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// discussed with rainboy
import java.io.*;
import java.util.*;
public class CF915E {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int n = Integer.parseInt(br.readLine());
int q = Integer.parseInt(br.readLine());
TreeMap<Integer, Integer> mp = new TreeMap<>();
int ans = 0;
while (q-- > 0) {
StringTokenizer st = new StringTokenizer(br.readLine());
int l = Integer.parseInt(st.nextToken()) - 1;
int r = Integer.parseInt(st.nextToken());
int t = Integer.parseInt(st.nextToken());
Map.Entry<Integer, Integer> e;
int l_, r_;
if (t == 1) {
if ((e = mp.floorEntry(l)) != null && (r_ = e.getValue()) >= l) {
l_ = e.getKey();
ans -= r_ - l_;
l = l_;
r = Math.max(r, r_);
}
while ((e = mp.higherEntry(l)) != null && (l_ = e.getKey()) <= r) {
r_ = e.getValue();
ans -= r_ - l_;
r = Math.max(r, r_);
mp.remove(l_);
}
ans += r - l;
mp.put(l, r);
} else {
r_ = l;
if ((e = mp.floorEntry(l)) != null && (r_ = e.getValue()) > l) {
l_ = e.getKey();
if (l_ < l)
mp.put(l_, l);
else
mp.remove(l_);
ans -= r_ - l;
}
while ((e = mp.higherEntry(l)) != null && (l_ = e.getKey()) < r) {
r_ = e.getValue();
mp.remove(l_);
ans -= r_ - l_;
}
if (r_ > r) {
mp.put(r, r_);
ans += r_ - r;
}
}
pw.println(n - ans);
}
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 797 | 1,846 |
1,483 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class LittleGirlAndXor {
static long L, R;
static Long[][][][][] dp = new Long[64][2][2][2][2];
public static long go(int index, int low1, int high1, int low2, int high2) {
if (index == -1) {
return 0;
}
if (dp[index][low1][high1][low2][high2] != null)
return dp[index][low1][high1][low2][high2];
int bit1 = (L & (1L << index)) == 0 ? 0 : 1;
int bit2 = (R & (1L << index)) == 0 ? 0 : 1;
long res = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
int nl1 = low1, nh1 = high1, nl2 = low2, nh2 = high2;
boolean can = true;
if (low1 == 0) {
if (i == bit1) {
nl1 = 0;
} else if (i < bit1) {
can = false;
} else if (i > bit1) {
nl1 = 1;
}
}
if (high1 == 0) {
if (i == bit2) {
nh1 = 0;
} else if (i < bit2) {
nh1 = 1;
} else if (i > bit2) {
can = false;
}
}
if (low2 == 0) {
if (j == bit1) {
nl2 = 0;
} else if (j < bit1) {
can = false;
} else if (j > bit1) {
nl2 = 1;
}
}
if (high2 == 0) {
if (j == bit2) {
nh2 = 0;
} else if (j < bit2) {
nh2 = 1;
} else if (j > bit2) {
can = false;
}
}
if (can){
long xor = i^j;
res = Math.max(res, (xor<<index)+go(index - 1, nl1, nh1, nl2, nh2));
}
}
}
return dp[index][low1][high1][low2][high2] = res;
}
public static void main(String[] args) {
InputReader r = new InputReader(System.in);
L = r.nextLong();
R = r.nextLong();
System.out.println(go(63,0,0,0,0));
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
return null;
}
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class LittleGirlAndXor {
static long L, R;
static Long[][][][][] dp = new Long[64][2][2][2][2];
public static long go(int index, int low1, int high1, int low2, int high2) {
if (index == -1) {
return 0;
}
if (dp[index][low1][high1][low2][high2] != null)
return dp[index][low1][high1][low2][high2];
int bit1 = (L & (1L << index)) == 0 ? 0 : 1;
int bit2 = (R & (1L << index)) == 0 ? 0 : 1;
long res = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
int nl1 = low1, nh1 = high1, nl2 = low2, nh2 = high2;
boolean can = true;
if (low1 == 0) {
if (i == bit1) {
nl1 = 0;
} else if (i < bit1) {
can = false;
} else if (i > bit1) {
nl1 = 1;
}
}
if (high1 == 0) {
if (i == bit2) {
nh1 = 0;
} else if (i < bit2) {
nh1 = 1;
} else if (i > bit2) {
can = false;
}
}
if (low2 == 0) {
if (j == bit1) {
nl2 = 0;
} else if (j < bit1) {
can = false;
} else if (j > bit1) {
nl2 = 1;
}
}
if (high2 == 0) {
if (j == bit2) {
nh2 = 0;
} else if (j < bit2) {
nh2 = 1;
} else if (j > bit2) {
can = false;
}
}
if (can){
long xor = i^j;
res = Math.max(res, (xor<<index)+go(index - 1, nl1, nh1, nl2, nh2));
}
}
}
return dp[index][low1][high1][low2][high2] = res;
}
public static void main(String[] args) {
InputReader r = new InputReader(System.in);
L = r.nextLong();
R = r.nextLong();
System.out.println(go(63,0,0,0,0));
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
return null;
}
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class LittleGirlAndXor {
static long L, R;
static Long[][][][][] dp = new Long[64][2][2][2][2];
public static long go(int index, int low1, int high1, int low2, int high2) {
if (index == -1) {
return 0;
}
if (dp[index][low1][high1][low2][high2] != null)
return dp[index][low1][high1][low2][high2];
int bit1 = (L & (1L << index)) == 0 ? 0 : 1;
int bit2 = (R & (1L << index)) == 0 ? 0 : 1;
long res = 0;
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
int nl1 = low1, nh1 = high1, nl2 = low2, nh2 = high2;
boolean can = true;
if (low1 == 0) {
if (i == bit1) {
nl1 = 0;
} else if (i < bit1) {
can = false;
} else if (i > bit1) {
nl1 = 1;
}
}
if (high1 == 0) {
if (i == bit2) {
nh1 = 0;
} else if (i < bit2) {
nh1 = 1;
} else if (i > bit2) {
can = false;
}
}
if (low2 == 0) {
if (j == bit1) {
nl2 = 0;
} else if (j < bit1) {
can = false;
} else if (j > bit1) {
nl2 = 1;
}
}
if (high2 == 0) {
if (j == bit2) {
nh2 = 0;
} else if (j < bit2) {
nh2 = 1;
} else if (j > bit2) {
can = false;
}
}
if (can){
long xor = i^j;
res = Math.max(res, (xor<<index)+go(index - 1, nl1, nh1, nl2, nh2));
}
}
}
return dp[index][low1][high1][low2][high2] = res;
}
public static void main(String[] args) {
InputReader r = new InputReader(System.in);
L = r.nextLong();
R = r.nextLong();
System.out.println(go(63,0,0,0,0));
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
return null;
}
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,171 | 1,481 |
2,245 |
import java.util.*;
import java.io.*;
public class PythonIndentation {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int N = Integer.parseInt(in.readLine());
int[][] dp = new int[N][N];
dp[0][0] = 1;
for(int i = 1; i < N; ++i) {
char lastCmd = in.readLine().charAt(0);
int[] sum = new int[N];
sum[N - 1] = dp[i - 1][N - 1];
for(int j = N - 2; j >= 0; --j)
sum[j] = (sum[j + 1] + dp[i - 1][j]) % 1000000007;
for(int j = 0; j < N; ++j) {
if(lastCmd == 'f' && j > 0)
dp[i][j] = dp[i - 1][j - 1];
else if(lastCmd == 's')
dp[i][j] = sum[j];
}
}
int ans = 0;
for(int i = 0; i < N; ++i)
ans = (ans + dp[N - 1][i]) % 1000000007;
System.out.println(ans);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class PythonIndentation {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int N = Integer.parseInt(in.readLine());
int[][] dp = new int[N][N];
dp[0][0] = 1;
for(int i = 1; i < N; ++i) {
char lastCmd = in.readLine().charAt(0);
int[] sum = new int[N];
sum[N - 1] = dp[i - 1][N - 1];
for(int j = N - 2; j >= 0; --j)
sum[j] = (sum[j + 1] + dp[i - 1][j]) % 1000000007;
for(int j = 0; j < N; ++j) {
if(lastCmd == 'f' && j > 0)
dp[i][j] = dp[i - 1][j - 1];
else if(lastCmd == 's')
dp[i][j] = sum[j];
}
}
int ans = 0;
for(int i = 0; i < N; ++i)
ans = (ans + dp[N - 1][i]) % 1000000007;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class PythonIndentation {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int N = Integer.parseInt(in.readLine());
int[][] dp = new int[N][N];
dp[0][0] = 1;
for(int i = 1; i < N; ++i) {
char lastCmd = in.readLine().charAt(0);
int[] sum = new int[N];
sum[N - 1] = dp[i - 1][N - 1];
for(int j = N - 2; j >= 0; --j)
sum[j] = (sum[j + 1] + dp[i - 1][j]) % 1000000007;
for(int j = 0; j < N; ++j) {
if(lastCmd == 'f' && j > 0)
dp[i][j] = dp[i - 1][j - 1];
else if(lastCmd == 's')
dp[i][j] = sum[j];
}
}
int ans = 0;
for(int i = 0; i < N; ++i)
ans = (ans + dp[N - 1][i]) % 1000000007;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 635 | 2,240 |
4,199 |
/**
* Created by IntelliJ IDEA.
* User: aircube
* Date: 11.01.11
* Time: 4:14
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.concurrent.Exchanger;
public class Template {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
public static void main(String[] args) throws IOException {
new Template().run();
}
void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
st = null;
out = new PrintWriter(System.out);
solve();
br.close();
out.close();
}
double dm[];
double a[][];
boolean fil[];
int p[];
int n;
// x & (x - 1)
// 10
//
void solve() throws IOException {
n = nextInt();
a = new double[n][n];
for(int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j) {
a[i][j] = nextDouble();
}
dm = new double[1 << n];
fil = new boolean[1 << n];
for(int i = 0; i < n; ++i) {
out.print(brute((1 << i)) + " ");
}
}
private double brute(int mask) {
if (Integer.bitCount(mask) == n) return 1;
if (fil[mask]) return dm[mask];
int c = Integer.bitCount(mask);
double res = 0;
double p = 2.0 / (double) (c + 1) / (double)(c ) ;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
if ((mask & (1 << i)) == 0 && (mask & (1 << j)) > 0) {
res += a[j][i] * brute(mask ^ (1 << i));
}
}
}
res *= p;
dm[mask] = res;
fil[mask] = true;
return dm[mask];
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: aircube
* Date: 11.01.11
* Time: 4:14
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.concurrent.Exchanger;
public class Template {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
public static void main(String[] args) throws IOException {
new Template().run();
}
void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
st = null;
out = new PrintWriter(System.out);
solve();
br.close();
out.close();
}
double dm[];
double a[][];
boolean fil[];
int p[];
int n;
// x & (x - 1)
// 10
//
void solve() throws IOException {
n = nextInt();
a = new double[n][n];
for(int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j) {
a[i][j] = nextDouble();
}
dm = new double[1 << n];
fil = new boolean[1 << n];
for(int i = 0; i < n; ++i) {
out.print(brute((1 << i)) + " ");
}
}
private double brute(int mask) {
if (Integer.bitCount(mask) == n) return 1;
if (fil[mask]) return dm[mask];
int c = Integer.bitCount(mask);
double res = 0;
double p = 2.0 / (double) (c + 1) / (double)(c ) ;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
if ((mask & (1 << i)) == 0 && (mask & (1 << j)) > 0) {
res += a[j][i] * brute(mask ^ (1 << i));
}
}
}
res *= p;
dm[mask] = res;
fil[mask] = true;
return dm[mask];
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: aircube
* Date: 11.01.11
* Time: 4:14
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.util.concurrent.Exchanger;
public class Template {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
public static void main(String[] args) throws IOException {
new Template().run();
}
void run() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
st = null;
out = new PrintWriter(System.out);
solve();
br.close();
out.close();
}
double dm[];
double a[][];
boolean fil[];
int p[];
int n;
// x & (x - 1)
// 10
//
void solve() throws IOException {
n = nextInt();
a = new double[n][n];
for(int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j) {
a[i][j] = nextDouble();
}
dm = new double[1 << n];
fil = new boolean[1 << n];
for(int i = 0; i < n; ++i) {
out.print(brute((1 << i)) + " ");
}
}
private double brute(int mask) {
if (Integer.bitCount(mask) == n) return 1;
if (fil[mask]) return dm[mask];
int c = Integer.bitCount(mask);
double res = 0;
double p = 2.0 / (double) (c + 1) / (double)(c ) ;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
if ((mask & (1 << i)) == 0 && (mask & (1 << j)) > 0) {
res += a[j][i] * brute(mask ^ (1 << i));
}
}
}
res *= p;
dm[mask] = res;
fil[mask] = true;
return dm[mask];
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 912 | 4,188 |
1,414 |
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Dzmitry Paulenka
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long n = in.nextLong();
long k = in.nextLong();
if (n == 1) {
out.println(0);
return;
}
if (k * (k - 1) < 2 * (n - 1)) {
out.println(-1);
return;
}
long sq2 = 4 * k * k - 4 * k + 1 - 4 * (2 * n - 2);
long km = Math.max(2, (long) ((Math.sqrt(sq2) + 3) / 2.0) - 3);
while (((km + k - 2)*(k - km + 1) >= 2*(n-1))) {
++km;
}
out.println(k - km + 2);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Dzmitry Paulenka
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long n = in.nextLong();
long k = in.nextLong();
if (n == 1) {
out.println(0);
return;
}
if (k * (k - 1) < 2 * (n - 1)) {
out.println(-1);
return;
}
long sq2 = 4 * k * k - 4 * k + 1 - 4 * (2 * n - 2);
long km = Math.max(2, (long) ((Math.sqrt(sq2) + 3) / 2.0) - 3);
while (((km + k - 2)*(k - km + 1) >= 2*(n-1))) {
++km;
}
out.println(k - km + 2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author Dzmitry Paulenka
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
}
class TaskB {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long n = in.nextLong();
long k = in.nextLong();
if (n == 1) {
out.println(0);
return;
}
if (k * (k - 1) < 2 * (n - 1)) {
out.println(-1);
return;
}
long sq2 = 4 * k * k - 4 * k + 1 - 4 * (2 * n - 2);
long km = Math.max(2, (long) ((Math.sqrt(sq2) + 3) / 2.0) - 3);
while (((km + k - 2)*(k - km + 1) >= 2*(n-1))) {
++km;
}
out.println(k - km + 2);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 653 | 1,412 |
4,032 |
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int();
int k=Int();
int A[][]=new int[n][2];
for(int i=0;i<A.length;i++){
A[i][0]=Int();
A[i][1]=Int()-1;
}
Arrays.sort(A,(a,b)->{
return a[1]-b[1];
});
Solution sol=new Solution(out);
sol.solution(A,k);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
int mod=1000000007;
long dp3[][][][];
public void solution(int A[][],int T){
long res=0;
int n=A.length;
long dp1[][]=new long[n+1][T+1];//a
long dp2[][][]=new long[n+1][n+1][T+1];//bc
dp3=new long[n+1][n+1][n+1][3];
//init
long f[]=new long[n+1];
f[0]=f[1]=1;
for(int i=2;i<f.length;i++){
f[i]=f[i-1]*i;
f[i]%=mod;
}
for(int i=0;i<dp3.length;i++){
for(int j=0;j<dp3[0].length;j++){
for(int k=0;k<dp3[0][0].length;k++){
Arrays.fill(dp3[i][j][k],-1);
}
}
}
dp1[0][0]=1;
for(int i=0;i<A.length;i++){//a
int p=A[i][0],type=A[i][1];
if(type==0){
long newdp[][]=new long[dp1.length][dp1[0].length];
for(int cnt=1;cnt<=n;cnt++){
for(int j=1;j<dp1[0].length;j++){
if(j>=p){
newdp[cnt][j]+=dp1[cnt-1][j-p];
newdp[cnt][j]%=mod;
}
}
}
for(int cnt=0;cnt<=n;cnt++){
for(int j=0;j<dp1[0].length;j++){
newdp[cnt][j]+=dp1[cnt][j];
newdp[cnt][j]%=mod;
}
}
dp1=newdp;
}
else{
break;
}
}
dp2[0][0][0]=1;
for(int i=0;i<A.length;i++){//b c
int p=A[i][0],type=A[i][1];
if(type!=0){
long newdp[][][]=new long[dp2.length][dp2[0].length][dp2[0][0].length];
for(int a=0;a<dp2.length;a++){
for(int b=0;b<dp2[0].length;b++){
for(int j=0;j<dp2[0][0].length;j++){
if(j>=p){
if(type==1){
if(a-1>=0){
newdp[a][b][j]+=dp2[a-1][b][j-p];
}
}
else{
if(b-1>=0) {
newdp[a][b][j]+=dp2[a][b-1][j-p];
}
}
}
newdp[a][b][j]%=mod;
}
}
}
for(int a=0;a<dp2.length;a++){
for(int b=0;b<dp2[0].length;b++){
for(int j=0;j<dp2[0][0].length;j++){
newdp[a][b][j]+=dp2[a][b][j];
newdp[a][b][j]%=mod;
}
}
}
dp2=newdp;
}
}
dp3[1][0][0][0]=1;
dp3[0][1][0][1]=1;
dp3[0][0][1][2]=1;
dfs(n,n,n,0);dfs(n,n,n,1);dfs(n,n,n,2);
for(int i=0;i<dp3.length;i++){
for(int j=0;j<dp3[0].length;j++){
for(int k=0;k<dp3[0][0].length;k++){
for(int cur=0;cur<3;cur++){
for(int t=0;t<=T;t++){//price
int aprice=t;
int bcprice=T-t;
long cnt1=dp1[i][aprice];
long cnt2=dp2[j][k][bcprice];
long combination=dp3[i][j][k][cur];
long p1=(cnt1*f[i])%mod;
long p2=(((f[j]*f[k])%mod)*cnt2)%mod;
long p3=(p1*p2)%mod;
res+=(p3*combination)%mod;
res%=mod;
}
}
}
}
}
/*System.out.println(dp3[1][0][0][0]+" "+dp2[0][0][0]);
for(long p[]:dp1){
System.out.println(Arrays.toString(p));
}*/
out.println(res);
}
public long dfs(int a,int b,int c,int cur){
if(a<0||b<0||c<0){
return 0;
}
if(a==0&&b==0&&c==0){
return 0;
}
if(dp3[a][b][c][cur]!=-1)return dp3[a][b][c][cur];
long res=0;
if(cur==0){
res+=dfs(a-1,b,c,1);
res%=mod;
res+=dfs(a-1,b,c,2);
res%=mod;
}
else if(cur==1){
res+=dfs(a,b-1,c,0);
res%=mod;
res+=dfs(a,b-1,c,2);
res%=mod;
}
else{
res+=dfs(a,b,c-1,0);
res%=mod;
res+=dfs(a,b,c-1,1);
res%=mod;
}
res%=mod;
dp3[a][b][c][cur]=res;
return res;
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int();
int k=Int();
int A[][]=new int[n][2];
for(int i=0;i<A.length;i++){
A[i][0]=Int();
A[i][1]=Int()-1;
}
Arrays.sort(A,(a,b)->{
return a[1]-b[1];
});
Solution sol=new Solution(out);
sol.solution(A,k);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
int mod=1000000007;
long dp3[][][][];
public void solution(int A[][],int T){
long res=0;
int n=A.length;
long dp1[][]=new long[n+1][T+1];//a
long dp2[][][]=new long[n+1][n+1][T+1];//bc
dp3=new long[n+1][n+1][n+1][3];
//init
long f[]=new long[n+1];
f[0]=f[1]=1;
for(int i=2;i<f.length;i++){
f[i]=f[i-1]*i;
f[i]%=mod;
}
for(int i=0;i<dp3.length;i++){
for(int j=0;j<dp3[0].length;j++){
for(int k=0;k<dp3[0][0].length;k++){
Arrays.fill(dp3[i][j][k],-1);
}
}
}
dp1[0][0]=1;
for(int i=0;i<A.length;i++){//a
int p=A[i][0],type=A[i][1];
if(type==0){
long newdp[][]=new long[dp1.length][dp1[0].length];
for(int cnt=1;cnt<=n;cnt++){
for(int j=1;j<dp1[0].length;j++){
if(j>=p){
newdp[cnt][j]+=dp1[cnt-1][j-p];
newdp[cnt][j]%=mod;
}
}
}
for(int cnt=0;cnt<=n;cnt++){
for(int j=0;j<dp1[0].length;j++){
newdp[cnt][j]+=dp1[cnt][j];
newdp[cnt][j]%=mod;
}
}
dp1=newdp;
}
else{
break;
}
}
dp2[0][0][0]=1;
for(int i=0;i<A.length;i++){//b c
int p=A[i][0],type=A[i][1];
if(type!=0){
long newdp[][][]=new long[dp2.length][dp2[0].length][dp2[0][0].length];
for(int a=0;a<dp2.length;a++){
for(int b=0;b<dp2[0].length;b++){
for(int j=0;j<dp2[0][0].length;j++){
if(j>=p){
if(type==1){
if(a-1>=0){
newdp[a][b][j]+=dp2[a-1][b][j-p];
}
}
else{
if(b-1>=0) {
newdp[a][b][j]+=dp2[a][b-1][j-p];
}
}
}
newdp[a][b][j]%=mod;
}
}
}
for(int a=0;a<dp2.length;a++){
for(int b=0;b<dp2[0].length;b++){
for(int j=0;j<dp2[0][0].length;j++){
newdp[a][b][j]+=dp2[a][b][j];
newdp[a][b][j]%=mod;
}
}
}
dp2=newdp;
}
}
dp3[1][0][0][0]=1;
dp3[0][1][0][1]=1;
dp3[0][0][1][2]=1;
dfs(n,n,n,0);dfs(n,n,n,1);dfs(n,n,n,2);
for(int i=0;i<dp3.length;i++){
for(int j=0;j<dp3[0].length;j++){
for(int k=0;k<dp3[0][0].length;k++){
for(int cur=0;cur<3;cur++){
for(int t=0;t<=T;t++){//price
int aprice=t;
int bcprice=T-t;
long cnt1=dp1[i][aprice];
long cnt2=dp2[j][k][bcprice];
long combination=dp3[i][j][k][cur];
long p1=(cnt1*f[i])%mod;
long p2=(((f[j]*f[k])%mod)*cnt2)%mod;
long p3=(p1*p2)%mod;
res+=(p3*combination)%mod;
res%=mod;
}
}
}
}
}
/*System.out.println(dp3[1][0][0][0]+" "+dp2[0][0][0]);
for(long p[]:dp1){
System.out.println(Arrays.toString(p));
}*/
out.println(res);
}
public long dfs(int a,int b,int c,int cur){
if(a<0||b<0||c<0){
return 0;
}
if(a==0&&b==0&&c==0){
return 0;
}
if(dp3[a][b][c][cur]!=-1)return dp3[a][b][c][cur];
long res=0;
if(cur==0){
res+=dfs(a-1,b,c,1);
res%=mod;
res+=dfs(a-1,b,c,2);
res%=mod;
}
else if(cur==1){
res+=dfs(a,b-1,c,0);
res%=mod;
res+=dfs(a,b-1,c,2);
res%=mod;
}
else{
res+=dfs(a,b,c-1,0);
res%=mod;
res+=dfs(a,b,c-1,1);
res%=mod;
}
res%=mod;
dp3[a][b][c][cur]=res;
return res;
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// Don't place your source in a package
import javax.swing.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
import java.util.stream.Stream;
// Please name your class Main
public class Main {
static FastScanner fs=new FastScanner();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int Int() {
return Integer.parseInt(next());
}
long Long() {
return Long.parseLong(next());
}
String Str(){
return next();
}
}
public static void main (String[] args) throws java.lang.Exception {
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int T=1;
for(int t=0;t<T;t++){
int n=Int();
int k=Int();
int A[][]=new int[n][2];
for(int i=0;i<A.length;i++){
A[i][0]=Int();
A[i][1]=Int()-1;
}
Arrays.sort(A,(a,b)->{
return a[1]-b[1];
});
Solution sol=new Solution(out);
sol.solution(A,k);
}
out.close();
}
public static int Int(){
return fs.Int();
}
public static long Long(){
return fs.Long();
}
public static String Str(){
return fs.Str();
}
}
class Solution{
PrintWriter out;
public Solution(PrintWriter out){
this.out=out;
}
int mod=1000000007;
long dp3[][][][];
public void solution(int A[][],int T){
long res=0;
int n=A.length;
long dp1[][]=new long[n+1][T+1];//a
long dp2[][][]=new long[n+1][n+1][T+1];//bc
dp3=new long[n+1][n+1][n+1][3];
//init
long f[]=new long[n+1];
f[0]=f[1]=1;
for(int i=2;i<f.length;i++){
f[i]=f[i-1]*i;
f[i]%=mod;
}
for(int i=0;i<dp3.length;i++){
for(int j=0;j<dp3[0].length;j++){
for(int k=0;k<dp3[0][0].length;k++){
Arrays.fill(dp3[i][j][k],-1);
}
}
}
dp1[0][0]=1;
for(int i=0;i<A.length;i++){//a
int p=A[i][0],type=A[i][1];
if(type==0){
long newdp[][]=new long[dp1.length][dp1[0].length];
for(int cnt=1;cnt<=n;cnt++){
for(int j=1;j<dp1[0].length;j++){
if(j>=p){
newdp[cnt][j]+=dp1[cnt-1][j-p];
newdp[cnt][j]%=mod;
}
}
}
for(int cnt=0;cnt<=n;cnt++){
for(int j=0;j<dp1[0].length;j++){
newdp[cnt][j]+=dp1[cnt][j];
newdp[cnt][j]%=mod;
}
}
dp1=newdp;
}
else{
break;
}
}
dp2[0][0][0]=1;
for(int i=0;i<A.length;i++){//b c
int p=A[i][0],type=A[i][1];
if(type!=0){
long newdp[][][]=new long[dp2.length][dp2[0].length][dp2[0][0].length];
for(int a=0;a<dp2.length;a++){
for(int b=0;b<dp2[0].length;b++){
for(int j=0;j<dp2[0][0].length;j++){
if(j>=p){
if(type==1){
if(a-1>=0){
newdp[a][b][j]+=dp2[a-1][b][j-p];
}
}
else{
if(b-1>=0) {
newdp[a][b][j]+=dp2[a][b-1][j-p];
}
}
}
newdp[a][b][j]%=mod;
}
}
}
for(int a=0;a<dp2.length;a++){
for(int b=0;b<dp2[0].length;b++){
for(int j=0;j<dp2[0][0].length;j++){
newdp[a][b][j]+=dp2[a][b][j];
newdp[a][b][j]%=mod;
}
}
}
dp2=newdp;
}
}
dp3[1][0][0][0]=1;
dp3[0][1][0][1]=1;
dp3[0][0][1][2]=1;
dfs(n,n,n,0);dfs(n,n,n,1);dfs(n,n,n,2);
for(int i=0;i<dp3.length;i++){
for(int j=0;j<dp3[0].length;j++){
for(int k=0;k<dp3[0][0].length;k++){
for(int cur=0;cur<3;cur++){
for(int t=0;t<=T;t++){//price
int aprice=t;
int bcprice=T-t;
long cnt1=dp1[i][aprice];
long cnt2=dp2[j][k][bcprice];
long combination=dp3[i][j][k][cur];
long p1=(cnt1*f[i])%mod;
long p2=(((f[j]*f[k])%mod)*cnt2)%mod;
long p3=(p1*p2)%mod;
res+=(p3*combination)%mod;
res%=mod;
}
}
}
}
}
/*System.out.println(dp3[1][0][0][0]+" "+dp2[0][0][0]);
for(long p[]:dp1){
System.out.println(Arrays.toString(p));
}*/
out.println(res);
}
public long dfs(int a,int b,int c,int cur){
if(a<0||b<0||c<0){
return 0;
}
if(a==0&&b==0&&c==0){
return 0;
}
if(dp3[a][b][c][cur]!=-1)return dp3[a][b][c][cur];
long res=0;
if(cur==0){
res+=dfs(a-1,b,c,1);
res%=mod;
res+=dfs(a-1,b,c,2);
res%=mod;
}
else if(cur==1){
res+=dfs(a,b-1,c,0);
res%=mod;
res+=dfs(a,b-1,c,2);
res%=mod;
}
else{
res+=dfs(a,b,c-1,0);
res%=mod;
res+=dfs(a,b,c-1,1);
res%=mod;
}
res%=mod;
dp3[a][b][c][cur]=res;
return res;
}
}
/*
;\
|' \
_ ; : ;
/ `-. /: : |
| ,-.`-. ,': : |
\ : `. `. ,'-. : |
\ ; ; `-.__,' `-.|
\ ; ; ::: ,::'`:. `.
\ `-. : ` :. `. \
\ \ , ; ,: (\
\ :., :. ,'o)): ` `-.
,/,' ;' ,::"'`.`---' `. `-._
,/ : ; '" `;' ,--`.
;/ :; ; ,:' ( ,:)
,.,:. ; ,:., ,-._ `. \""'/
'::' `:'` ,'( \`._____.-'"'
;, ; `. `. `._`-. \\
;:. ;: `-._`-.\ \`.
'`:. : |' `. `\ ) \
-hrr- ` ;: | `--\__,'
'` ,'
,-'
free bug dog
*/
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,301 | 4,021 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.