id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
3,167
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class BankAccount { /** * @param args * @throws IOException */ public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = in.readLine(); int n = Integer.parseInt(s); if (s.charAt(0) == '-') if (Integer.parseInt(s.substring(0, s.length()-1))>Integer.parseInt(s.substring(0, s.length()-2)+s.charAt(s.length()-1))) s=s.substring(0, s.length()-1); else s=s.substring(0, s.length()-2)+s.charAt(s.length()-1); System.out.println(Integer.parseInt(s)); in.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class BankAccount { /** * @param args * @throws IOException */ public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = in.readLine(); int n = Integer.parseInt(s); if (s.charAt(0) == '-') if (Integer.parseInt(s.substring(0, s.length()-1))>Integer.parseInt(s.substring(0, s.length()-2)+s.charAt(s.length()-1))) s=s.substring(0, s.length()-1); else s=s.substring(0, s.length()-2)+s.charAt(s.length()-1); System.out.println(Integer.parseInt(s)); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class BankAccount { /** * @param args * @throws IOException */ public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String s = in.readLine(); int n = Integer.parseInt(s); if (s.charAt(0) == '-') if (Integer.parseInt(s.substring(0, s.length()-1))>Integer.parseInt(s.substring(0, s.length()-2)+s.charAt(s.length()-1))) s=s.substring(0, s.length()-1); else s=s.substring(0, s.length()-2)+s.charAt(s.length()-1); System.out.println(Integer.parseInt(s)); in.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
496
3,161
644
/* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author Saransh */ import java.util.*; import java.io.*; import java.math.*; import java.lang.*; public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try { Parserdoubt pd=new Parserdoubt(System.in); int t=pd.nextInt(); int inde=0,indo=0,o=0,e=0; for(int i=0;i<t;i++) { if(pd.nextInt()%2==0) { inde=i; e++; } else { o++; indo=i; } } if(o==1) { System.out.println(indo+1); } else { System.out.println(inde+1); } } catch(Exception e){} } } class Parserdoubt { final private int BUFFER_SIZE = 1 << 17; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Parserdoubt(InputStream in) { din = new DataInputStream(in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextString() throws Exception { StringBuffer sb=new StringBuffer(""); byte c = read(); while (c <= ' ') c = read(); do { sb.append((char)c); c=read(); }while(c>' '); return sb.toString(); } public char nextChar() throws Exception { byte c=read(); while(c<=' ') c= read(); return (char)c; } public int nextInt() throws Exception { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; c = read(); } while (c > ' '); if (neg) return -ret; return ret; } public long nextLong() throws Exception { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; c = read(); } while (c > ' '); if (neg) return -ret; return ret; } private void fillBuffer() throws Exception { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws Exception { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author Saransh */ import java.util.*; import java.io.*; import java.math.*; import java.lang.*; public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try { Parserdoubt pd=new Parserdoubt(System.in); int t=pd.nextInt(); int inde=0,indo=0,o=0,e=0; for(int i=0;i<t;i++) { if(pd.nextInt()%2==0) { inde=i; e++; } else { o++; indo=i; } } if(o==1) { System.out.println(indo+1); } else { System.out.println(inde+1); } } catch(Exception e){} } } class Parserdoubt { final private int BUFFER_SIZE = 1 << 17; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Parserdoubt(InputStream in) { din = new DataInputStream(in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextString() throws Exception { StringBuffer sb=new StringBuffer(""); byte c = read(); while (c <= ' ') c = read(); do { sb.append((char)c); c=read(); }while(c>' '); return sb.toString(); } public char nextChar() throws Exception { byte c=read(); while(c<=' ') c= read(); return (char)c; } public int nextInt() throws Exception { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; c = read(); } while (c > ' '); if (neg) return -ret; return ret; } public long nextLong() throws Exception { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; c = read(); } while (c > ' '); if (neg) return -ret; return ret; } private void fillBuffer() throws Exception { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws Exception { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author Saransh */ import java.util.*; import java.io.*; import java.math.*; import java.lang.*; public class Main { /** * @param args the command line arguments */ public static void main(String[] args) { // TODO code application logic here try { Parserdoubt pd=new Parserdoubt(System.in); int t=pd.nextInt(); int inde=0,indo=0,o=0,e=0; for(int i=0;i<t;i++) { if(pd.nextInt()%2==0) { inde=i; e++; } else { o++; indo=i; } } if(o==1) { System.out.println(indo+1); } else { System.out.println(inde+1); } } catch(Exception e){} } } class Parserdoubt { final private int BUFFER_SIZE = 1 << 17; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Parserdoubt(InputStream in) { din = new DataInputStream(in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String nextString() throws Exception { StringBuffer sb=new StringBuffer(""); byte c = read(); while (c <= ' ') c = read(); do { sb.append((char)c); c=read(); }while(c>' '); return sb.toString(); } public char nextChar() throws Exception { byte c=read(); while(c<=' ') c= read(); return (char)c; } public int nextInt() throws Exception { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; c = read(); } while (c > ' '); if (neg) return -ret; return ret; } public long nextLong() throws Exception { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; c = read(); } while (c > ' '); if (neg) return -ret; return ret; } private void fillBuffer() throws Exception { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws Exception { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,004
643
1,420
import java.util.*; public class Main{ public static void main(String[]args){ Scanner cin=new Scanner(System.in); long z=cin.nextLong()-1<<1,n=cin.nextInt(),l=-1,r=1+n,m; while(l<(m=l+r>>1)) if(z>(m+n-1)*(n-m)) r=m;else l=m; if(0<l) l=n-l; System.out.print(l); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Main{ public static void main(String[]args){ Scanner cin=new Scanner(System.in); long z=cin.nextLong()-1<<1,n=cin.nextInt(),l=-1,r=1+n,m; while(l<(m=l+r>>1)) if(z>(m+n-1)*(n-m)) r=m;else l=m; if(0<l) l=n-l; System.out.print(l); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class Main{ public static void main(String[]args){ Scanner cin=new Scanner(System.in); long z=cin.nextLong()-1<<1,n=cin.nextInt(),l=-1,r=1+n,m; while(l<(m=l+r>>1)) if(z>(m+n-1)*(n-m)) r=m;else l=m; if(0<l) l=n-l; System.out.print(l); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
428
1,418
3,286
import java.io.*; import java.util.StringTokenizer; /** * Author: Maksim Novik * Date: 30.06.12 * Time: 22:34 */ public class Round125ProblemA { public static void main(String[] args) { InputStream in = System.in; OutputStream out = System.out; InputReader reader = new InputReader(in); PrintWriter writer = new PrintWriter(out); solve(reader, writer); writer.close(); } static void solve(InputReader in, PrintWriter out) { long fib = in.nextLong(); out.write("" + 0 + " " + 0 + " " + fib); } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; /** * Author: Maksim Novik * Date: 30.06.12 * Time: 22:34 */ public class Round125ProblemA { public static void main(String[] args) { InputStream in = System.in; OutputStream out = System.out; InputReader reader = new InputReader(in); PrintWriter writer = new PrintWriter(out); solve(reader, writer); writer.close(); } static void solve(InputReader in, PrintWriter out) { long fib = in.nextLong(); out.write("" + 0 + " " + 0 + " " + fib); } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.StringTokenizer; /** * Author: Maksim Novik * Date: 30.06.12 * Time: 22:34 */ public class Round125ProblemA { public static void main(String[] args) { InputStream in = System.in; OutputStream out = System.out; InputReader reader = new InputReader(in); PrintWriter writer = new PrintWriter(out); solve(reader, writer); writer.close(); } static void solve(InputReader in, PrintWriter out) { long fib = in.nextLong(); out.write("" + 0 + " " + 0 + " " + fib); } static class InputReader { private BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
609
3,280
4,118
import java.util.*; public class c8 { static int n; static int[] ds; static int[][] g; public static void main(String[] args) { Scanner input = new Scanner(System.in); int x = input.nextInt(), y = input.nextInt(); n = input.nextInt(); int[] xs = new int[n], ys = new int[n]; for(int i = 0; i<n; i++) { xs[i] = input.nextInt(); ys[i] = input.nextInt(); } ds = new int[n]; g = new int[n][n]; for(int i = 0; i<n; i++) { ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]); for(int j = 0; j<n; j++) { g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]); } } int[] dp = new int[1<<n]; Arrays.fill(dp, 987654321); dp[0] = 0; for(int i = 0; i<(1<<n); i++) { if(dp[i] == 987654321) continue; for(int a = 0; a<n; a++) { if((i & (1<<a)) > 0) continue; dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]); for(int b = a+1; b<n; b++) { if((i & (1<<b)) > 0) continue; dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]); } break; } } Stack<Integer> stk = new Stack<Integer>(); stk.add(0); int i = (1<<n) - 1; //System.out.println(Arrays.toString(dp)); trace: while(i > 0) { //System.out.println(i); for(int a = 0; a<n; a++) { if((i & (1<<a)) == 0) continue; if( dp[i] == dp[i - (1<<a)] + 2*ds[a]) { stk.add(a+1); stk.add(0); i -= (1<<a); continue trace; } for(int b = a+1; b<n; b++) { if((i & (1<<b)) == 0) continue; if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b]) { stk.add(a+1); stk.add(b+1); stk.add(0); i -= (1<<a) + (1<<b); continue trace; } } //break; } } System.out.println(dp[(1<<n) - 1]); while(!stk.isEmpty()) System.out.print(stk.pop()+" "); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class c8 { static int n; static int[] ds; static int[][] g; public static void main(String[] args) { Scanner input = new Scanner(System.in); int x = input.nextInt(), y = input.nextInt(); n = input.nextInt(); int[] xs = new int[n], ys = new int[n]; for(int i = 0; i<n; i++) { xs[i] = input.nextInt(); ys[i] = input.nextInt(); } ds = new int[n]; g = new int[n][n]; for(int i = 0; i<n; i++) { ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]); for(int j = 0; j<n; j++) { g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]); } } int[] dp = new int[1<<n]; Arrays.fill(dp, 987654321); dp[0] = 0; for(int i = 0; i<(1<<n); i++) { if(dp[i] == 987654321) continue; for(int a = 0; a<n; a++) { if((i & (1<<a)) > 0) continue; dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]); for(int b = a+1; b<n; b++) { if((i & (1<<b)) > 0) continue; dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]); } break; } } Stack<Integer> stk = new Stack<Integer>(); stk.add(0); int i = (1<<n) - 1; //System.out.println(Arrays.toString(dp)); trace: while(i > 0) { //System.out.println(i); for(int a = 0; a<n; a++) { if((i & (1<<a)) == 0) continue; if( dp[i] == dp[i - (1<<a)] + 2*ds[a]) { stk.add(a+1); stk.add(0); i -= (1<<a); continue trace; } for(int b = a+1; b<n; b++) { if((i & (1<<b)) == 0) continue; if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b]) { stk.add(a+1); stk.add(b+1); stk.add(0); i -= (1<<a) + (1<<b); continue trace; } } //break; } } System.out.println(dp[(1<<n) - 1]); while(!stk.isEmpty()) System.out.print(stk.pop()+" "); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class c8 { static int n; static int[] ds; static int[][] g; public static void main(String[] args) { Scanner input = new Scanner(System.in); int x = input.nextInt(), y = input.nextInt(); n = input.nextInt(); int[] xs = new int[n], ys = new int[n]; for(int i = 0; i<n; i++) { xs[i] = input.nextInt(); ys[i] = input.nextInt(); } ds = new int[n]; g = new int[n][n]; for(int i = 0; i<n; i++) { ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]); for(int j = 0; j<n; j++) { g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]); } } int[] dp = new int[1<<n]; Arrays.fill(dp, 987654321); dp[0] = 0; for(int i = 0; i<(1<<n); i++) { if(dp[i] == 987654321) continue; for(int a = 0; a<n; a++) { if((i & (1<<a)) > 0) continue; dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]); for(int b = a+1; b<n; b++) { if((i & (1<<b)) > 0) continue; dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]); } break; } } Stack<Integer> stk = new Stack<Integer>(); stk.add(0); int i = (1<<n) - 1; //System.out.println(Arrays.toString(dp)); trace: while(i > 0) { //System.out.println(i); for(int a = 0; a<n; a++) { if((i & (1<<a)) == 0) continue; if( dp[i] == dp[i - (1<<a)] + 2*ds[a]) { stk.add(a+1); stk.add(0); i -= (1<<a); continue trace; } for(int b = a+1; b<n; b++) { if((i & (1<<b)) == 0) continue; if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b]) { stk.add(a+1); stk.add(b+1); stk.add(0); i -= (1<<a) + (1<<b); continue trace; } } //break; } } System.out.println(dp[(1<<n) - 1]); while(!stk.isEmpty()) System.out.print(stk.pop()+" "); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,080
4,107
3,468
import static java.lang.Math.max; import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class GivenString implements Runnable { public static void main(String[] args) throws Exception { new GivenString().run(); } private void solve() throws Exception { String s = nextToken(); int len = s.length(); KMP kmp = new KMP(); int r = 0; for (int i = 0; i < len; i++) { for (int j = i + 1; j <= len; j++) { String cur = s.substring(i, j); int count = kmp.search(s, cur); if (count >= 2) r = max(r, cur.length()); } } out.println(r); } class KMP { public int search(String text, String pattern) { int count = 0; int n = text.length(), m = pattern.length(), matchPoint = -1; char pat[] = pattern.toCharArray(), t[] = text.toCharArray(); int p[] = prefixTable(pattern); int j = 0; for (int i = 0; i < n; i++) { while (j > 0 && pat[j] != t[i]) j = p[j - 1]; if (pat[j] == t[i]) j++; if (j == m) { matchPoint = i - m + 1; j = p[j - 1]; count++; } } return count; } private int[] prefixTable(String pat) { int m = pat.length(), p[] = new int[m]; char s[] = pat.toCharArray(); int j = 0; for (int i = 1; i < m; i++) { while (j > 0 && s[j] != s[i]) j = p[j - 1]; if (s[j] == s[i]) j++; p[i] = j; } return p; } } // -------------- Input/Output routines below ---------------// private BufferedReader in; PrintWriter out; StringTokenizer tokenizer; public void run() { // String problem = this.getClass().getName(); try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new BufferedOutputStream(System.out)); solve(); out.flush(); in.close(); out.close(); } catch (Exception e) { e.printStackTrace(); // System.exit(1); } } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(in.readLine()); } return tokenizer.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Math.max; import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class GivenString implements Runnable { public static void main(String[] args) throws Exception { new GivenString().run(); } private void solve() throws Exception { String s = nextToken(); int len = s.length(); KMP kmp = new KMP(); int r = 0; for (int i = 0; i < len; i++) { for (int j = i + 1; j <= len; j++) { String cur = s.substring(i, j); int count = kmp.search(s, cur); if (count >= 2) r = max(r, cur.length()); } } out.println(r); } class KMP { public int search(String text, String pattern) { int count = 0; int n = text.length(), m = pattern.length(), matchPoint = -1; char pat[] = pattern.toCharArray(), t[] = text.toCharArray(); int p[] = prefixTable(pattern); int j = 0; for (int i = 0; i < n; i++) { while (j > 0 && pat[j] != t[i]) j = p[j - 1]; if (pat[j] == t[i]) j++; if (j == m) { matchPoint = i - m + 1; j = p[j - 1]; count++; } } return count; } private int[] prefixTable(String pat) { int m = pat.length(), p[] = new int[m]; char s[] = pat.toCharArray(); int j = 0; for (int i = 1; i < m; i++) { while (j > 0 && s[j] != s[i]) j = p[j - 1]; if (s[j] == s[i]) j++; p[i] = j; } return p; } } // -------------- Input/Output routines below ---------------// private BufferedReader in; PrintWriter out; StringTokenizer tokenizer; public void run() { // String problem = this.getClass().getName(); try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new BufferedOutputStream(System.out)); solve(); out.flush(); in.close(); out.close(); } catch (Exception e) { e.printStackTrace(); // System.exit(1); } } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(in.readLine()); } return tokenizer.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import static java.lang.Math.max; import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class GivenString implements Runnable { public static void main(String[] args) throws Exception { new GivenString().run(); } private void solve() throws Exception { String s = nextToken(); int len = s.length(); KMP kmp = new KMP(); int r = 0; for (int i = 0; i < len; i++) { for (int j = i + 1; j <= len; j++) { String cur = s.substring(i, j); int count = kmp.search(s, cur); if (count >= 2) r = max(r, cur.length()); } } out.println(r); } class KMP { public int search(String text, String pattern) { int count = 0; int n = text.length(), m = pattern.length(), matchPoint = -1; char pat[] = pattern.toCharArray(), t[] = text.toCharArray(); int p[] = prefixTable(pattern); int j = 0; for (int i = 0; i < n; i++) { while (j > 0 && pat[j] != t[i]) j = p[j - 1]; if (pat[j] == t[i]) j++; if (j == m) { matchPoint = i - m + 1; j = p[j - 1]; count++; } } return count; } private int[] prefixTable(String pat) { int m = pat.length(), p[] = new int[m]; char s[] = pat.toCharArray(); int j = 0; for (int i = 1; i < m; i++) { while (j > 0 && s[j] != s[i]) j = p[j - 1]; if (s[j] == s[i]) j++; p[i] = j; } return p; } } // -------------- Input/Output routines below ---------------// private BufferedReader in; PrintWriter out; StringTokenizer tokenizer; public void run() { // String problem = this.getClass().getName(); try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new BufferedOutputStream(System.out)); solve(); out.flush(); in.close(); out.close(); } catch (Exception e) { e.printStackTrace(); // System.exit(1); } } String nextToken() throws IOException { while (tokenizer == null || !tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(in.readLine()); } return tokenizer.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,016
3,462
272
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author sumit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); CChessboard solver = new CChessboard(); solver.solve(1, in, out); out.close(); } static class CChessboard { int[] nextPermutation(int[] array) { int i = array.length - 1; while (i > 0 && array[i - 1] >= array[i]) { i--; } if (i <= 0) { return null; } int j = array.length - 1; while (array[j] <= array[i - 1]) { j--; } int temp = array[i - 1]; array[i - 1] = array[j]; array[j] = temp; j = array.length - 1; while (i < j) { temp = array[i]; array[i] = array[j]; array[j] = temp; i++; j--; } return array; } public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); int arr[][][] = new int[4][n][n]; int sum[] = new int[4]; for (int k = 0; k < 4; k++) { for (int i = 0; i < n; i++) { String str = in.next(); for (int j = 0; j < n; j++) { arr[k][i][j] = (str.charAt(j) - '0'); } } } for (int k = 0; k < 4; k++) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if ((i + j) % 2 == arr[k][i][j]) sum[k]++; } } } int perm[] = new int[4]; for (int i = 0; i < 4; i++) perm[i] = i; int min = Integer.MAX_VALUE; while (true) { perm = nextPermutation(perm); if (perm == null) break; int sm = 0; for (int j = 0; j < 4; j++) { if (j % 2 == 0) { sm += (sum[perm[j]]); } else { sm += (n * n - sum[perm[j]]); } } min = Math.min(min, sm); sm = 0; for (int j = 0; j < 4; j++) { if (j % 2 == 0) { sm += (n * n - sum[perm[j]]); } else { sm += (sum[perm[j]]); } } min = Math.min(sm, min); } out.printLine(min); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c & 15; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author sumit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); CChessboard solver = new CChessboard(); solver.solve(1, in, out); out.close(); } static class CChessboard { int[] nextPermutation(int[] array) { int i = array.length - 1; while (i > 0 && array[i - 1] >= array[i]) { i--; } if (i <= 0) { return null; } int j = array.length - 1; while (array[j] <= array[i - 1]) { j--; } int temp = array[i - 1]; array[i - 1] = array[j]; array[j] = temp; j = array.length - 1; while (i < j) { temp = array[i]; array[i] = array[j]; array[j] = temp; i++; j--; } return array; } public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); int arr[][][] = new int[4][n][n]; int sum[] = new int[4]; for (int k = 0; k < 4; k++) { for (int i = 0; i < n; i++) { String str = in.next(); for (int j = 0; j < n; j++) { arr[k][i][j] = (str.charAt(j) - '0'); } } } for (int k = 0; k < 4; k++) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if ((i + j) % 2 == arr[k][i][j]) sum[k]++; } } } int perm[] = new int[4]; for (int i = 0; i < 4; i++) perm[i] = i; int min = Integer.MAX_VALUE; while (true) { perm = nextPermutation(perm); if (perm == null) break; int sm = 0; for (int j = 0; j < 4; j++) { if (j % 2 == 0) { sm += (sum[perm[j]]); } else { sm += (n * n - sum[perm[j]]); } } min = Math.min(min, sm); sm = 0; for (int j = 0; j < 4; j++) { if (j % 2 == 0) { sm += (n * n - sum[perm[j]]); } else { sm += (sum[perm[j]]); } } min = Math.min(sm, min); } out.printLine(min); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c & 15; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author sumit */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); CChessboard solver = new CChessboard(); solver.solve(1, in, out); out.close(); } static class CChessboard { int[] nextPermutation(int[] array) { int i = array.length - 1; while (i > 0 && array[i - 1] >= array[i]) { i--; } if (i <= 0) { return null; } int j = array.length - 1; while (array[j] <= array[i - 1]) { j--; } int temp = array[i - 1]; array[i - 1] = array[j]; array[j] = temp; j = array.length - 1; while (i < j) { temp = array[i]; array[i] = array[j]; array[j] = temp; i++; j--; } return array; } public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); int arr[][][] = new int[4][n][n]; int sum[] = new int[4]; for (int k = 0; k < 4; k++) { for (int i = 0; i < n; i++) { String str = in.next(); for (int j = 0; j < n; j++) { arr[k][i][j] = (str.charAt(j) - '0'); } } } for (int k = 0; k < 4; k++) { for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if ((i + j) % 2 == arr[k][i][j]) sum[k]++; } } } int perm[] = new int[4]; for (int i = 0; i < 4; i++) perm[i] = i; int min = Integer.MAX_VALUE; while (true) { perm = nextPermutation(perm); if (perm == null) break; int sm = 0; for (int j = 0; j < 4; j++) { if (j % 2 == 0) { sm += (sum[perm[j]]); } else { sm += (n * n - sum[perm[j]]); } } min = Math.min(min, sm); sm = 0; for (int j = 0; j < 4; j++) { if (j % 2 == 0) { sm += (n * n - sum[perm[j]]); } else { sm += (sum[perm[j]]); } } min = Math.min(sm, min); } out.printLine(min); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void printLine(int i) { writer.println(i); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c & 15; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,582
272
1,954
import java.util.*; import java.io.*; public class C{ public static void main(String args[]) { Scanner in = new Scanner(System.in); int n=in.nextInt(),key=in.nextInt(),ans=0; int[] a = new int[101], b = new int[101]; for (int i=1;i<=n;i++) {a[i]=in.nextInt();b[i]=in.nextInt();} for (int i=1;i<n;i++) for (int j=i+1;j<=n;j++) if (a[i]<a[j] || (a[i]==a[j] && b[i]>b[j])) { int yed = a[i];a[i]=a[j]; a[j]=yed; yed = b[i];b[i]=b[j];b[j]=yed; } int k=0; for (int i=1;i<=n;i++) { if (a[i]==a[i-1] && b[i]==b[i-1]) k++; else {if (i>key && ans==0) ans = k;k=1;} } if (ans == 0) ans = k; System.out.println(ans); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class C{ public static void main(String args[]) { Scanner in = new Scanner(System.in); int n=in.nextInt(),key=in.nextInt(),ans=0; int[] a = new int[101], b = new int[101]; for (int i=1;i<=n;i++) {a[i]=in.nextInt();b[i]=in.nextInt();} for (int i=1;i<n;i++) for (int j=i+1;j<=n;j++) if (a[i]<a[j] || (a[i]==a[j] && b[i]>b[j])) { int yed = a[i];a[i]=a[j]; a[j]=yed; yed = b[i];b[i]=b[j];b[j]=yed; } int k=0; for (int i=1;i<=n;i++) { if (a[i]==a[i-1] && b[i]==b[i-1]) k++; else {if (i>key && ans==0) ans = k;k=1;} } if (ans == 0) ans = k; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C{ public static void main(String args[]) { Scanner in = new Scanner(System.in); int n=in.nextInt(),key=in.nextInt(),ans=0; int[] a = new int[101], b = new int[101]; for (int i=1;i<=n;i++) {a[i]=in.nextInt();b[i]=in.nextInt();} for (int i=1;i<n;i++) for (int j=i+1;j<=n;j++) if (a[i]<a[j] || (a[i]==a[j] && b[i]>b[j])) { int yed = a[i];a[i]=a[j]; a[j]=yed; yed = b[i];b[i]=b[j];b[j]=yed; } int k=0; for (int i=1;i<=n;i++) { if (a[i]==a[i-1] && b[i]==b[i-1]) k++; else {if (i>key && ans==0) ans = k;k=1;} } if (ans == 0) ans = k; System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
624
1,950
3,323
import java.io.*; import java.util.*; public class CF387D { static class A { ArrayList<Integer> list = new ArrayList<>(); int u, v, d; } static int INF = Integer.MAX_VALUE; static boolean bfs(A[] aa, int n) { LinkedList<Integer> q = new LinkedList<>(); for (int u = 1; u <= n; u++) if (aa[u].v > 0) aa[u].d = INF; else { aa[u].d = 0; q.addLast(u); } aa[0].d = INF; while (!q.isEmpty()) { int u = q.removeFirst(); for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == INF) { aa[w].d = aa[u].d + 1; if (w == 0) return true; q.addLast(w); } } } return false; } static boolean dfs(A[] aa, int n, int u) { if (u == 0) return true; for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) { aa[u].v = v; aa[v].u = u; return true; } } aa[u].d = INF; return false; } static int matchings(A[] aa, int n) { int cnt = 0; while (bfs(aa, n)) for (int u = 1; u <= n; u++) if (aa[u].v == 0 && dfs(aa, n, u)) cnt++; return cnt; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[] eu = new int[m]; int[] ev = new int[m]; for (int j = 0; j < m; j++) { st = new StringTokenizer(br.readLine()); eu[j] = Integer.parseInt(st.nextToken()); ev[j] = Integer.parseInt(st.nextToken()); } A[] aa = new A[n + 1]; int min = m + n * 3; for (int ctr = 1; ctr <= n; ctr++) { boolean loop = false; boolean[] ci = new boolean[n + 1]; boolean[] co = new boolean[n + 1]; for (int i = 0; i <= n; i++) aa[i] = new A(); int m_ = 0; for (int j = 0; j < m; j++) { int u = eu[j]; int v = ev[j]; if (u == ctr && v == ctr) loop = true; else if (u == ctr && v != ctr) ci[v] = true; else if (u != ctr && v == ctr) co[u] = true; else { aa[u].list.add(v); m_++; } } int cnt = loop ? 0 : 1; for (int i = 1; i <= n; i++) if (i != ctr) { if (!ci[i]) cnt++; if (!co[i]) cnt++; } int m2 = matchings(aa, n); cnt += (m_ - m2) + (n - 1 - m2); if (min > cnt) min = cnt; } System.out.println(min); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF387D { static class A { ArrayList<Integer> list = new ArrayList<>(); int u, v, d; } static int INF = Integer.MAX_VALUE; static boolean bfs(A[] aa, int n) { LinkedList<Integer> q = new LinkedList<>(); for (int u = 1; u <= n; u++) if (aa[u].v > 0) aa[u].d = INF; else { aa[u].d = 0; q.addLast(u); } aa[0].d = INF; while (!q.isEmpty()) { int u = q.removeFirst(); for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == INF) { aa[w].d = aa[u].d + 1; if (w == 0) return true; q.addLast(w); } } } return false; } static boolean dfs(A[] aa, int n, int u) { if (u == 0) return true; for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) { aa[u].v = v; aa[v].u = u; return true; } } aa[u].d = INF; return false; } static int matchings(A[] aa, int n) { int cnt = 0; while (bfs(aa, n)) for (int u = 1; u <= n; u++) if (aa[u].v == 0 && dfs(aa, n, u)) cnt++; return cnt; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[] eu = new int[m]; int[] ev = new int[m]; for (int j = 0; j < m; j++) { st = new StringTokenizer(br.readLine()); eu[j] = Integer.parseInt(st.nextToken()); ev[j] = Integer.parseInt(st.nextToken()); } A[] aa = new A[n + 1]; int min = m + n * 3; for (int ctr = 1; ctr <= n; ctr++) { boolean loop = false; boolean[] ci = new boolean[n + 1]; boolean[] co = new boolean[n + 1]; for (int i = 0; i <= n; i++) aa[i] = new A(); int m_ = 0; for (int j = 0; j < m; j++) { int u = eu[j]; int v = ev[j]; if (u == ctr && v == ctr) loop = true; else if (u == ctr && v != ctr) ci[v] = true; else if (u != ctr && v == ctr) co[u] = true; else { aa[u].list.add(v); m_++; } } int cnt = loop ? 0 : 1; for (int i = 1; i <= n; i++) if (i != ctr) { if (!ci[i]) cnt++; if (!co[i]) cnt++; } int m2 = matchings(aa, n); cnt += (m_ - m2) + (n - 1 - m2); if (min > cnt) min = cnt; } System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class CF387D { static class A { ArrayList<Integer> list = new ArrayList<>(); int u, v, d; } static int INF = Integer.MAX_VALUE; static boolean bfs(A[] aa, int n) { LinkedList<Integer> q = new LinkedList<>(); for (int u = 1; u <= n; u++) if (aa[u].v > 0) aa[u].d = INF; else { aa[u].d = 0; q.addLast(u); } aa[0].d = INF; while (!q.isEmpty()) { int u = q.removeFirst(); for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == INF) { aa[w].d = aa[u].d + 1; if (w == 0) return true; q.addLast(w); } } } return false; } static boolean dfs(A[] aa, int n, int u) { if (u == 0) return true; for (int v : aa[u].list) { int w = aa[v].u; if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) { aa[u].v = v; aa[v].u = u; return true; } } aa[u].d = INF; return false; } static int matchings(A[] aa, int n) { int cnt = 0; while (bfs(aa, n)) for (int u = 1; u <= n; u++) if (aa[u].v == 0 && dfs(aa, n, u)) cnt++; return cnt; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int m = Integer.parseInt(st.nextToken()); int[] eu = new int[m]; int[] ev = new int[m]; for (int j = 0; j < m; j++) { st = new StringTokenizer(br.readLine()); eu[j] = Integer.parseInt(st.nextToken()); ev[j] = Integer.parseInt(st.nextToken()); } A[] aa = new A[n + 1]; int min = m + n * 3; for (int ctr = 1; ctr <= n; ctr++) { boolean loop = false; boolean[] ci = new boolean[n + 1]; boolean[] co = new boolean[n + 1]; for (int i = 0; i <= n; i++) aa[i] = new A(); int m_ = 0; for (int j = 0; j < m; j++) { int u = eu[j]; int v = ev[j]; if (u == ctr && v == ctr) loop = true; else if (u == ctr && v != ctr) ci[v] = true; else if (u != ctr && v == ctr) co[u] = true; else { aa[u].list.add(v); m_++; } } int cnt = loop ? 0 : 1; for (int i = 1; i <= n; i++) if (i != ctr) { if (!ci[i]) cnt++; if (!co[i]) cnt++; } int m2 = matchings(aa, n); cnt += (m_ - m2) + (n - 1 - m2); if (min > cnt) min = cnt; } System.out.println(min); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,201
3,317
2,161
import java.util.*; import java.io.*; public class probC { static int r; static ArrayList<Circ> curr = new ArrayList<Circ>(); public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); r = sc.nextInt(); int[] xC = new int[n]; for(int i = 0; i < n; i++) xC[i] = sc.nextInt(); double ans[] = new double[n]; ans[0] = r; curr.add(new Circ(xC[0], r)); for(int i = 1; i < n; i++) { double max = r; for(int k = 0; k < curr.size(); k++) { double cur = curr.get(k).y+ Math.sqrt(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x)); //System.out.println(cur + " " + max); if(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x) >= 0) max = Math.max(cur, max); } ans[i] = max; curr.add(new Circ(xC[i], max)); //System.out.println(); } for(int i = 0; i < n; i++) System.out.print(ans[i] + " "); sc.close(); } static class Circ { double x, y; public Circ(double a, double b) { x=a; y=b; } public boolean isNT(Circ b) { double dist = Math.sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y)); return dist > 2*r; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class probC { static int r; static ArrayList<Circ> curr = new ArrayList<Circ>(); public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); r = sc.nextInt(); int[] xC = new int[n]; for(int i = 0; i < n; i++) xC[i] = sc.nextInt(); double ans[] = new double[n]; ans[0] = r; curr.add(new Circ(xC[0], r)); for(int i = 1; i < n; i++) { double max = r; for(int k = 0; k < curr.size(); k++) { double cur = curr.get(k).y+ Math.sqrt(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x)); //System.out.println(cur + " " + max); if(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x) >= 0) max = Math.max(cur, max); } ans[i] = max; curr.add(new Circ(xC[i], max)); //System.out.println(); } for(int i = 0; i < n; i++) System.out.print(ans[i] + " "); sc.close(); } static class Circ { double x, y; public Circ(double a, double b) { x=a; y=b; } public boolean isNT(Circ b) { double dist = Math.sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y)); return dist > 2*r; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class probC { static int r; static ArrayList<Circ> curr = new ArrayList<Circ>(); public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); r = sc.nextInt(); int[] xC = new int[n]; for(int i = 0; i < n; i++) xC[i] = sc.nextInt(); double ans[] = new double[n]; ans[0] = r; curr.add(new Circ(xC[0], r)); for(int i = 1; i < n; i++) { double max = r; for(int k = 0; k < curr.size(); k++) { double cur = curr.get(k).y+ Math.sqrt(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x)); //System.out.println(cur + " " + max); if(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x) >= 0) max = Math.max(cur, max); } ans[i] = max; curr.add(new Circ(xC[i], max)); //System.out.println(); } for(int i = 0; i < n; i++) System.out.print(ans[i] + " "); sc.close(); } static class Circ { double x, y; public Circ(double a, double b) { x=a; y=b; } public boolean isNT(Circ b) { double dist = Math.sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y)); return dist > 2*r; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
723
2,157
463
import java.util.*; import java.lang.*; import java.io.*; public class CodehorsesTShirt { public static void main(String args[]) throws IOException { FastReader in = new FastReader(); OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); Task.solve(in, out); out.close(); } static class Task { public static void solve(FastReader in, PrintWriter out) { int n = in.nextInt(); HashMap<String , Integer> hm1 = new HashMap<>(); HashMap<String , Integer> hm2 = new HashMap<>(); for(int i=0;i<n;i++){ String val = in.next(); if(hm1.containsKey(val)){ hm1.put(val, hm1.get(val)+1); }else{ hm1.put(val,1); } } for(int i=0;i<n;i++){ String val = in.next(); if(hm1.containsKey(val)){ int x = hm1.get(val); if(x==1){ hm1.remove(val); }else{ hm1.put(val,hm1.get(val)-1); } }else{ if(hm2.containsKey(val)){ hm2.put(val, hm2.get(val)+1); }else{ hm2.put(val,1); } } } int ans = 0; for(Map.Entry<String , Integer> row: hm1.entrySet()){ ans += row.getValue(); } System.out.println(ans); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class CodehorsesTShirt { public static void main(String args[]) throws IOException { FastReader in = new FastReader(); OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); Task.solve(in, out); out.close(); } static class Task { public static void solve(FastReader in, PrintWriter out) { int n = in.nextInt(); HashMap<String , Integer> hm1 = new HashMap<>(); HashMap<String , Integer> hm2 = new HashMap<>(); for(int i=0;i<n;i++){ String val = in.next(); if(hm1.containsKey(val)){ hm1.put(val, hm1.get(val)+1); }else{ hm1.put(val,1); } } for(int i=0;i<n;i++){ String val = in.next(); if(hm1.containsKey(val)){ int x = hm1.get(val); if(x==1){ hm1.remove(val); }else{ hm1.put(val,hm1.get(val)-1); } }else{ if(hm2.containsKey(val)){ hm2.put(val, hm2.get(val)+1); }else{ hm2.put(val,1); } } } int ans = 0; for(Map.Entry<String , Integer> row: hm1.entrySet()){ ans += row.getValue(); } System.out.println(ans); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.io.*; public class CodehorsesTShirt { public static void main(String args[]) throws IOException { FastReader in = new FastReader(); OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); Task.solve(in, out); out.close(); } static class Task { public static void solve(FastReader in, PrintWriter out) { int n = in.nextInt(); HashMap<String , Integer> hm1 = new HashMap<>(); HashMap<String , Integer> hm2 = new HashMap<>(); for(int i=0;i<n;i++){ String val = in.next(); if(hm1.containsKey(val)){ hm1.put(val, hm1.get(val)+1); }else{ hm1.put(val,1); } } for(int i=0;i<n;i++){ String val = in.next(); if(hm1.containsKey(val)){ int x = hm1.get(val); if(x==1){ hm1.remove(val); }else{ hm1.put(val,hm1.get(val)-1); } }else{ if(hm2.containsKey(val)){ hm2.put(val, hm2.get(val)+1); }else{ hm2.put(val,1); } } } int ans = 0; for(Map.Entry<String , Integer> row: hm1.entrySet()){ ans += row.getValue(); } System.out.println(ans); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
824
462
3,679
import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class Main { public static void main(String args[]) throws IOException { File f = new File("input.txt"); Scanner sc = new Scanner(f); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); int n = sc.nextInt(); int m = sc.nextInt(); boolean[][] grid = new boolean[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) grid[i][j] = false; Queue<Pair> q = new LinkedList<>(); int cnt = sc.nextInt(); for (int i = 0; i < cnt; i++) { int x = sc.nextInt(); int y = sc.nextInt(); x--; y--; grid[x][y] = true; q.add(new Pair(x, y)); } Pair last = new Pair(-1, -1); while (!q.isEmpty()) { Pair current = q.poll(); last = current; for (int i = -1; i <= 1; i++) { for (int j = -1; j <= 1; j++) { if (i != 0 && j != 0) continue; if (inside(current.x + i, current.y + j, n, m) && !grid[current.x + i][current.y + j]) { grid[current.x + i][current.y + j] = true; q.add(new Pair(current.x + i, current.y + j)); //bw.append((current.x + i) + " " + (current.y + j) + "\n"); } } } } bw.append((last.x + 1) + " " + (last.y + 1) + "\n"); bw.flush(); bw.close(); sc.close(); } static class Pair { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } } private static boolean inside(int a, int b, int n, int m) { return (a >= 0 && a < n && b >= 0 && b < m); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class Main { public static void main(String args[]) throws IOException { File f = new File("input.txt"); Scanner sc = new Scanner(f); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); int n = sc.nextInt(); int m = sc.nextInt(); boolean[][] grid = new boolean[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) grid[i][j] = false; Queue<Pair> q = new LinkedList<>(); int cnt = sc.nextInt(); for (int i = 0; i < cnt; i++) { int x = sc.nextInt(); int y = sc.nextInt(); x--; y--; grid[x][y] = true; q.add(new Pair(x, y)); } Pair last = new Pair(-1, -1); while (!q.isEmpty()) { Pair current = q.poll(); last = current; for (int i = -1; i <= 1; i++) { for (int j = -1; j <= 1; j++) { if (i != 0 && j != 0) continue; if (inside(current.x + i, current.y + j, n, m) && !grid[current.x + i][current.y + j]) { grid[current.x + i][current.y + j] = true; q.add(new Pair(current.x + i, current.y + j)); //bw.append((current.x + i) + " " + (current.y + j) + "\n"); } } } } bw.append((last.x + 1) + " " + (last.y + 1) + "\n"); bw.flush(); bw.close(); sc.close(); } static class Pair { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } } private static boolean inside(int a, int b, int n, int m) { return (a >= 0 && a < n && b >= 0 && b < m); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class Main { public static void main(String args[]) throws IOException { File f = new File("input.txt"); Scanner sc = new Scanner(f); BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt"))); int n = sc.nextInt(); int m = sc.nextInt(); boolean[][] grid = new boolean[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) grid[i][j] = false; Queue<Pair> q = new LinkedList<>(); int cnt = sc.nextInt(); for (int i = 0; i < cnt; i++) { int x = sc.nextInt(); int y = sc.nextInt(); x--; y--; grid[x][y] = true; q.add(new Pair(x, y)); } Pair last = new Pair(-1, -1); while (!q.isEmpty()) { Pair current = q.poll(); last = current; for (int i = -1; i <= 1; i++) { for (int j = -1; j <= 1; j++) { if (i != 0 && j != 0) continue; if (inside(current.x + i, current.y + j, n, m) && !grid[current.x + i][current.y + j]) { grid[current.x + i][current.y + j] = true; q.add(new Pair(current.x + i, current.y + j)); //bw.append((current.x + i) + " " + (current.y + j) + "\n"); } } } } bw.append((last.x + 1) + " " + (last.y + 1) + "\n"); bw.flush(); bw.close(); sc.close(); } static class Pair { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } } private static boolean inside(int a, int b, int n, int m) { return (a >= 0 && a < n && b >= 0 && b < m); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
864
3,671
38
import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); long x=Long.parseLong(s1[1]); long y=Long.parseLong(s1[2]); long S=0; long mod=1000000007; B a[]=new B[n]; TreeMap<Long,Long> tm=new TreeMap<Long,Long>(); long ans[]=new long[n]; for(int i=0;i<n;i++) { String s2[]=br.readLine().split(" "); long l=Long.parseLong(s2[0]); long r=Long.parseLong(s2[1]); B b1=new B(l,r); a[i]=b1; } Arrays.sort(a,new The_Comp()); for(int i=0;i<n;i++) { long l=a[i].x; long r=a[i].y; if(tm.floorKey(l-1)!=null) { long u=tm.floorKey(l-1); long v=l; if((v-u)*y<x) { ans[i]=((r-u)*y)%mod; if(tm.get(u)>1) tm.put(u,tm.get(u)-1); else tm.remove(u); } else { ans[i]=(x+(r-l)*y)%mod; } } else ans[i]=(x+(r-l)*y)%mod; S=(S+ans[i])%mod; if(tm.containsKey(r)) tm.put(r,1+tm.get(r)); else tm.put(r,(long)1); } System.out.println(S); } } class The_Comp implements Comparator<B> { public int compare(B b1,B b2) { if(b1.x>b2.x) return 1; else if(b1.x==b2.x) { if(b1.y>b2.y) return 1; else if(b1.y==b2.y) return 0; else return -1; } else return -1; } } class B { long x=(long)1; long y=(long)1; public B(long l1,long l2) { x=l1; y=l2; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); long x=Long.parseLong(s1[1]); long y=Long.parseLong(s1[2]); long S=0; long mod=1000000007; B a[]=new B[n]; TreeMap<Long,Long> tm=new TreeMap<Long,Long>(); long ans[]=new long[n]; for(int i=0;i<n;i++) { String s2[]=br.readLine().split(" "); long l=Long.parseLong(s2[0]); long r=Long.parseLong(s2[1]); B b1=new B(l,r); a[i]=b1; } Arrays.sort(a,new The_Comp()); for(int i=0;i<n;i++) { long l=a[i].x; long r=a[i].y; if(tm.floorKey(l-1)!=null) { long u=tm.floorKey(l-1); long v=l; if((v-u)*y<x) { ans[i]=((r-u)*y)%mod; if(tm.get(u)>1) tm.put(u,tm.get(u)-1); else tm.remove(u); } else { ans[i]=(x+(r-l)*y)%mod; } } else ans[i]=(x+(r-l)*y)%mod; S=(S+ans[i])%mod; if(tm.containsKey(r)) tm.put(r,1+tm.get(r)); else tm.put(r,(long)1); } System.out.println(S); } } class The_Comp implements Comparator<B> { public int compare(B b1,B b2) { if(b1.x>b2.x) return 1; else if(b1.x==b2.x) { if(b1.y>b2.y) return 1; else if(b1.y==b2.y) return 0; else return -1; } else return -1; } } class B { long x=(long)1; long y=(long)1; public B(long l1,long l2) { x=l1; y=l2; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); long x=Long.parseLong(s1[1]); long y=Long.parseLong(s1[2]); long S=0; long mod=1000000007; B a[]=new B[n]; TreeMap<Long,Long> tm=new TreeMap<Long,Long>(); long ans[]=new long[n]; for(int i=0;i<n;i++) { String s2[]=br.readLine().split(" "); long l=Long.parseLong(s2[0]); long r=Long.parseLong(s2[1]); B b1=new B(l,r); a[i]=b1; } Arrays.sort(a,new The_Comp()); for(int i=0;i<n;i++) { long l=a[i].x; long r=a[i].y; if(tm.floorKey(l-1)!=null) { long u=tm.floorKey(l-1); long v=l; if((v-u)*y<x) { ans[i]=((r-u)*y)%mod; if(tm.get(u)>1) tm.put(u,tm.get(u)-1); else tm.remove(u); } else { ans[i]=(x+(r-l)*y)%mod; } } else ans[i]=(x+(r-l)*y)%mod; S=(S+ans[i])%mod; if(tm.containsKey(r)) tm.put(r,1+tm.get(r)); else tm.put(r,(long)1); } System.out.println(S); } } class The_Comp implements Comparator<B> { public int compare(B b1,B b2) { if(b1.x>b2.x) return 1; else if(b1.x==b2.x) { if(b1.y>b2.y) return 1; else if(b1.y==b2.y) return 0; else return -1; } else return -1; } } class B { long x=(long)1; long y=(long)1; public B(long l1,long l2) { x=l1; y=l2; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
893
38
824
import java.util.Arrays; import java.util.Scanner; public class Main { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner entrada = new Scanner (System.in); int Primos []= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, 71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149, 151,157,163,167,173,179,181,191,193,197,199,211,223,227,229, 233,239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 }; boolean sw=true; int Indices [] = new int [Primos.length]; int cantidad = 0; for(int i=0;i<Primos.length-1 && sw;i++) { int suma=Primos[i]+Primos[i+1]+1; int posicion = Arrays.binarySearch(Primos,suma); if(posicion>-1) Indices[posicion]=1; } while(entrada.hasNextInt()) { int N = entrada.nextInt(); int K = entrada.nextInt(); int contador=0; for(int i=0;Primos[i]<=N && i<Primos.length-1;i++) contador+=Indices[i]; if(contador>=K) System.out.println("YES"); else System.out.println("NO"); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Main { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner entrada = new Scanner (System.in); int Primos []= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, 71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149, 151,157,163,167,173,179,181,191,193,197,199,211,223,227,229, 233,239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 }; boolean sw=true; int Indices [] = new int [Primos.length]; int cantidad = 0; for(int i=0;i<Primos.length-1 && sw;i++) { int suma=Primos[i]+Primos[i+1]+1; int posicion = Arrays.binarySearch(Primos,suma); if(posicion>-1) Indices[posicion]=1; } while(entrada.hasNextInt()) { int N = entrada.nextInt(); int K = entrada.nextInt(); int contador=0; for(int i=0;Primos[i]<=N && i<Primos.length-1;i++) contador+=Indices[i]; if(contador>=K) System.out.println("YES"); else System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Main { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub Scanner entrada = new Scanner (System.in); int Primos []= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67, 71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149, 151,157,163,167,173,179,181,191,193,197,199,211,223,227,229, 233,239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 }; boolean sw=true; int Indices [] = new int [Primos.length]; int cantidad = 0; for(int i=0;i<Primos.length-1 && sw;i++) { int suma=Primos[i]+Primos[i+1]+1; int posicion = Arrays.binarySearch(Primos,suma); if(posicion>-1) Indices[posicion]=1; } while(entrada.hasNextInt()) { int N = entrada.nextInt(); int K = entrada.nextInt(); int contador=0; for(int i=0;Primos[i]<=N && i<Primos.length-1;i++) contador+=Indices[i]; if(contador>=K) System.out.println("YES"); else System.out.println("NO"); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,467
823
261
import java.io.*; import java.util.*; public class LectureSleep { static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public float nextFloat() { return Float.parseFloat(next()); } } static InputReader r = new InputReader(System.in); static PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) { int n = r.nextInt(); // duration of lecture int k = r.nextInt(); // number of minutes keep mishka awake int[] theorems = new int[n+1]; for(int i = 1; i <= n; i++){ theorems[i] = r.nextInt(); } int[] mishka = new int[n+1]; for(int i = 1; i <= n; i++){ mishka[i] = r.nextInt(); } int[] sums = new int[n+1]; for(int i = 1; i <= n; i++){ if(mishka[i] == 0){ sums[i] = sums[i-1] + theorems[i]; } else{ sums[i] = sums[i-1]; } } int max = 0; for(int i = 1; i <= n-k+1; i++){ int sum = sums[i+k-1] - sums[i-1]; max = Math.max(max, sum); } int totalSum = 0; for(int i = 1; i <= n; i++){ if(mishka[i] == 1){ totalSum += theorems[i]; } } pw.println(totalSum + max); pw.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class LectureSleep { static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public float nextFloat() { return Float.parseFloat(next()); } } static InputReader r = new InputReader(System.in); static PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) { int n = r.nextInt(); // duration of lecture int k = r.nextInt(); // number of minutes keep mishka awake int[] theorems = new int[n+1]; for(int i = 1; i <= n; i++){ theorems[i] = r.nextInt(); } int[] mishka = new int[n+1]; for(int i = 1; i <= n; i++){ mishka[i] = r.nextInt(); } int[] sums = new int[n+1]; for(int i = 1; i <= n; i++){ if(mishka[i] == 0){ sums[i] = sums[i-1] + theorems[i]; } else{ sums[i] = sums[i-1]; } } int max = 0; for(int i = 1; i <= n-k+1; i++){ int sum = sums[i+k-1] - sums[i-1]; max = Math.max(max, sum); } int totalSum = 0; for(int i = 1; i <= n; i++){ if(mishka[i] == 1){ totalSum += theorems[i]; } } pw.println(totalSum + max); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class LectureSleep { static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public float nextFloat() { return Float.parseFloat(next()); } } static InputReader r = new InputReader(System.in); static PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) { int n = r.nextInt(); // duration of lecture int k = r.nextInt(); // number of minutes keep mishka awake int[] theorems = new int[n+1]; for(int i = 1; i <= n; i++){ theorems[i] = r.nextInt(); } int[] mishka = new int[n+1]; for(int i = 1; i <= n; i++){ mishka[i] = r.nextInt(); } int[] sums = new int[n+1]; for(int i = 1; i <= n; i++){ if(mishka[i] == 0){ sums[i] = sums[i-1] + theorems[i]; } else{ sums[i] = sums[i-1]; } } int max = 0; for(int i = 1; i <= n-k+1; i++){ int sum = sums[i+k-1] - sums[i-1]; max = Math.max(max, sum); } int totalSum = 0; for(int i = 1; i <= n; i++){ if(mishka[i] == 1){ totalSum += theorems[i]; } } pw.println(totalSum + max); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
821
261
2,670
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author anand.oza */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); APaintTheNumbers solver = new APaintTheNumbers(); solver.solve(1, in, out); out.close(); } static class APaintTheNumbers { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.readIntArray(n); Arrays.sort(a); int answer = 0; for (int i = 0; i < n; i++) { if (a[i] == 0) continue; answer++; for (int j = 0; j < n; j++) { if (j == i) continue; if (a[j] % a[i] == 0) { a[j] = 0; } } a[i] = 0; } out.println(answer); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] readIntArray(int n) { int[] x = new int[n]; for (int i = 0; i < n; i++) { x[i] = nextInt(); } return x; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author anand.oza */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); APaintTheNumbers solver = new APaintTheNumbers(); solver.solve(1, in, out); out.close(); } static class APaintTheNumbers { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.readIntArray(n); Arrays.sort(a); int answer = 0; for (int i = 0; i < n; i++) { if (a[i] == 0) continue; answer++; for (int j = 0; j < n; j++) { if (j == i) continue; if (a[j] % a[i] == 0) { a[j] = 0; } } a[i] = 0; } out.println(answer); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] readIntArray(int n) { int[] x = new int[n]; for (int i = 0; i < n; i++) { x[i] = nextInt(); } return x; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author anand.oza */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); APaintTheNumbers solver = new APaintTheNumbers(); solver.solve(1, in, out); out.close(); } static class APaintTheNumbers { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] a = in.readIntArray(n); Arrays.sort(a); int answer = 0; for (int i = 0; i < n; i++) { if (a[i] == 0) continue; answer++; for (int j = 0; j < n; j++) { if (j == i) continue; if (a[j] % a[i] == 0) { a[j] = 0; } } a[i] = 0; } out.println(answer); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] readIntArray(int n) { int[] x = new int[n]; for (int i = 0; i < n; i++) { x[i] = nextInt(); } return x; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
811
2,664
239
import java.util.*; import java.lang.*; import java.math.*; import java.io.*; /* spar5h */ public class cf1 implements Runnable{ public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = s.nextInt(), m = s.nextInt(); int[] a = new int[n + 1]; for(int i = 1; i <= n; i++) a[i] = s.nextInt(); int[] b = new int[n + 1]; for(int i = 1; i <= n; i++) b[i] = s.nextInt(); ArrayList<Integer> list = new ArrayList<Integer>(); list.add(a[1]); for(int i = 2; i <= n; i++) { list.add(b[i]); list.add(a[i]); } list.add(b[1]); double wt = m; boolean check = true; for(int i = list.size() - 1; i >= 0; i--) { if(list.get(i) <= 1) { check = false; break; } double x = wt / (list.get(i) - 1); wt += x; } if(check) w.println(wt - m); else w.println(-1); } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.math.*; import java.io.*; /* spar5h */ public class cf1 implements Runnable{ public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = s.nextInt(), m = s.nextInt(); int[] a = new int[n + 1]; for(int i = 1; i <= n; i++) a[i] = s.nextInt(); int[] b = new int[n + 1]; for(int i = 1; i <= n; i++) b[i] = s.nextInt(); ArrayList<Integer> list = new ArrayList<Integer>(); list.add(a[1]); for(int i = 2; i <= n; i++) { list.add(b[i]); list.add(a[i]); } list.add(b[1]); double wt = m; boolean check = true; for(int i = list.size() - 1; i >= 0; i--) { if(list.get(i) <= 1) { check = false; break; } double x = wt / (list.get(i) - 1); wt += x; } if(check) w.println(wt - m); else w.println(-1); } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.math.*; import java.io.*; /* spar5h */ public class cf1 implements Runnable{ public void run() { InputReader s = new InputReader(System.in); PrintWriter w = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = s.nextInt(), m = s.nextInt(); int[] a = new int[n + 1]; for(int i = 1; i <= n; i++) a[i] = s.nextInt(); int[] b = new int[n + 1]; for(int i = 1; i <= n; i++) b[i] = s.nextInt(); ArrayList<Integer> list = new ArrayList<Integer>(); list.add(a[1]); for(int i = 2; i <= n; i++) { list.add(b[i]); list.add(a[i]); } list.add(b[1]); double wt = m; boolean check = true; for(int i = list.size() - 1; i >= 0; i--) { if(list.get(i) <= 1) { check = false; break; } double x = wt / (list.get(i) - 1); wt += x; } if(check) w.println(wt - m); else w.println(-1); } w.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new cf1(),"cf1",1<<26).start(); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,664
239
2,769
import java.util.Scanner; import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author BSRK Aditya (bsrkaditya@gmail.com) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, Scanner in, PrintWriter out) { long n = in.nextLong(); if(n == 1) out.println("1"); else if(n == 2) out.println("2"); else if(n%2 == 1) out.println(n*(n-1)*(n-2)); else if(n%6 == 0) out.println((n-1)*(n-2)*(n-3)); else out.println(n*(n-1)*(n-3)); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author BSRK Aditya (bsrkaditya@gmail.com) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, Scanner in, PrintWriter out) { long n = in.nextLong(); if(n == 1) out.println("1"); else if(n == 2) out.println("2"); else if(n%2 == 1) out.println(n*(n-1)*(n-2)); else if(n%6 == 0) out.println((n-1)*(n-2)*(n-3)); else out.println(n*(n-1)*(n-3)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; import java.io.OutputStream; import java.io.IOException; import java.io.PrintWriter; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author BSRK Aditya (bsrkaditya@gmail.com) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, Scanner in, PrintWriter out) { long n = in.nextLong(); if(n == 1) out.println("1"); else if(n == 2) out.println("2"); else if(n%2 == 1) out.println(n*(n-1)*(n-2)); else if(n%6 == 0) out.println((n-1)*(n-2)*(n-3)); else out.println(n*(n-1)*(n-3)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
578
2,763
1,245
import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigDecimal; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class _____A implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new _____A(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ int x = readInt(); int y = readInt(); return new Point(x, y); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// List<Integer>[] readGraph(int vertexNumber, int edgeNumber) throws IOException{ List<Integer>[] graph = new List[vertexNumber]; for (int index = 0; index < vertexNumber; ++index){ graph[index] = new ArrayList<Integer>(); } while (edgeNumber-- > 0){ int from = readInt() - 1; int to = readInt() - 1; graph[from].add(to); graph[to].add(from); } return graph; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; int[][] steps8 = { {-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, 1}, {1, -1}, {-1, 1} }; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// boolean checkBit(int mask, int bitNumber){ return (mask & (1 << bitNumber)) != 0; } ///////////////////////////////////////////////////////////////////// long md = (1000 * 1000 * 1000 + 9); void solve() throws IOException{ int n = readInt(); int m = readInt(); int k = readInt(); long count = n / k; long mod = n % k; long maxM = count * (k - 1) + mod; if (maxM >= m) { out.println(m % md); return; } long d = m - maxM; long mul = (binpow(2, d) - 1 + md) % md * 2 % md; long ans = (mul * k) % md; ans = (ans + ((count - d) * (k - 1) % md + md) % md + mod) % md; out.println(ans); } long binpow(long a, long n) { if (n == 0) return 1; if ((n & 1) == 0) { long b = binpow(a, n >> 1); return (b * b) % md; } else { return binpow(a, n - 1) * a % md; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigDecimal; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class _____A implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new _____A(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ int x = readInt(); int y = readInt(); return new Point(x, y); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// List<Integer>[] readGraph(int vertexNumber, int edgeNumber) throws IOException{ List<Integer>[] graph = new List[vertexNumber]; for (int index = 0; index < vertexNumber; ++index){ graph[index] = new ArrayList<Integer>(); } while (edgeNumber-- > 0){ int from = readInt() - 1; int to = readInt() - 1; graph[from].add(to); graph[to].add(from); } return graph; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; int[][] steps8 = { {-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, 1}, {1, -1}, {-1, 1} }; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// boolean checkBit(int mask, int bitNumber){ return (mask & (1 << bitNumber)) != 0; } ///////////////////////////////////////////////////////////////////// long md = (1000 * 1000 * 1000 + 9); void solve() throws IOException{ int n = readInt(); int m = readInt(); int k = readInt(); long count = n / k; long mod = n % k; long maxM = count * (k - 1) + mod; if (maxM >= m) { out.println(m % md); return; } long d = m - maxM; long mul = (binpow(2, d) - 1 + md) % md * 2 % md; long ans = (mul * k) % md; ans = (ans + ((count - d) * (k - 1) % md + md) % md + mod) % md; out.println(ans); } long binpow(long a, long n) { if (n == 0) return 1; if ((n & 1) == 0) { long b = binpow(a, n >> 1); return (b * b) % md; } else { return binpow(a, n - 1) * a % md; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.awt.Point; import java.math.BigDecimal; import java.math.BigInteger; import static java.lang.Math.*; // Solution is at the bottom of code public class _____A implements Runnable{ final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; BufferedReader in; OutputWriter out; StringTokenizer tok = new StringTokenizer(""); public static void main(String[] args){ new Thread(null, new _____A(), "", 128 * (1L << 20)).start(); } ///////////////////////////////////////////////////////////////////// void init() throws FileNotFoundException{ Locale.setDefault(Locale.US); if (ONLINE_JUDGE){ in = new BufferedReader(new InputStreamReader(System.in)); out = new OutputWriter(System.out); }else{ in = new BufferedReader(new FileReader("input.txt")); out = new OutputWriter("output.txt"); } } //////////////////////////////////////////////////////////////// long timeBegin, timeEnd; void time(){ timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } void debug(Object... objects){ if (ONLINE_JUDGE){ for (Object o: objects){ System.err.println(o.toString()); } } } ///////////////////////////////////////////////////////////////////// public void run(){ try{ timeBegin = System.currentTimeMillis(); Locale.setDefault(Locale.US); init(); solve(); out.close(); time(); }catch (Exception e){ e.printStackTrace(System.err); System.exit(-1); } } ///////////////////////////////////////////////////////////////////// String delim = " "; String readString() throws IOException{ while(!tok.hasMoreTokens()){ try{ tok = new StringTokenizer(in.readLine()); }catch (Exception e){ return null; } } return tok.nextToken(delim); } String readLine() throws IOException{ return in.readLine(); } ///////////////////////////////////////////////////////////////// final char NOT_A_SYMBOL = '\0'; char readChar() throws IOException{ int intValue = in.read(); if (intValue == -1){ return NOT_A_SYMBOL; } return (char) intValue; } char[] readCharArray() throws IOException{ return readLine().toCharArray(); } ///////////////////////////////////////////////////////////////// int readInt() throws IOException{ return Integer.parseInt(readString()); } int[] readIntArray(int size) throws IOException{ int[] array = new int[size]; for (int index = 0; index < size; ++index){ array[index] = readInt(); } return array; } /////////////////////////////////////////////////////////////////// long readLong() throws IOException{ return Long.parseLong(readString()); } long[] readLongArray(int size) throws IOException{ long[] array = new long[size]; for (int index = 0; index < size; ++index){ array[index] = readLong(); } return array; } //////////////////////////////////////////////////////////////////// double readDouble() throws IOException{ return Double.parseDouble(readString()); } double[] readDoubleArray(int size) throws IOException{ double[] array = new double[size]; for (int index = 0; index < size; ++index){ array[index] = readDouble(); } return array; } ///////////////////////////////////////////////////////////////////// Point readPoint() throws IOException{ int x = readInt(); int y = readInt(); return new Point(x, y); } Point[] readPointArray(int size) throws IOException{ Point[] array = new Point[size]; for (int index = 0; index < size; ++index){ array[index] = readPoint(); } return array; } ///////////////////////////////////////////////////////////////////// List<Integer>[] readGraph(int vertexNumber, int edgeNumber) throws IOException{ List<Integer>[] graph = new List[vertexNumber]; for (int index = 0; index < vertexNumber; ++index){ graph[index] = new ArrayList<Integer>(); } while (edgeNumber-- > 0){ int from = readInt() - 1; int to = readInt() - 1; graph[from].add(to); graph[to].add(from); } return graph; } ///////////////////////////////////////////////////////////////////// class OutputWriter extends PrintWriter{ final int DEFAULT_PRECISION = 12; int precision; String format, formatWithSpace; { precision = DEFAULT_PRECISION; format = createFormat(precision); formatWithSpace = format + " "; } public OutputWriter(OutputStream out) { super(out); } public OutputWriter(String fileName) throws FileNotFoundException { super(fileName); } public int getPrecision() { return precision; } public void setPrecision(int precision) { this.precision = precision; format = createFormat(precision); formatWithSpace = format + " "; } private String createFormat(int precision){ return "%." + precision + "f"; } @Override public void print(double d){ printf(format, d); } public void printWithSpace(double d){ printf(formatWithSpace, d); } public void printAll(double...d){ for (int i = 0; i < d.length - 1; ++i){ printWithSpace(d[i]); } print(d[d.length - 1]); } @Override public void println(double d){ printlnAll(d); } public void printlnAll(double... d){ printAll(d); println(); } } ///////////////////////////////////////////////////////////////////// int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; int[][] steps8 = { {-1, 0}, {1, 0}, {0, -1}, {0, 1}, {-1, -1}, {1, 1}, {1, -1}, {-1, 1} }; boolean check(int index, int lim){ return (0 <= index && index < lim); } ///////////////////////////////////////////////////////////////////// boolean checkBit(int mask, int bitNumber){ return (mask & (1 << bitNumber)) != 0; } ///////////////////////////////////////////////////////////////////// long md = (1000 * 1000 * 1000 + 9); void solve() throws IOException{ int n = readInt(); int m = readInt(); int k = readInt(); long count = n / k; long mod = n % k; long maxM = count * (k - 1) + mod; if (maxM >= m) { out.println(m % md); return; } long d = m - maxM; long mul = (binpow(2, d) - 1 + md) % md * 2 % md; long ans = (mul * k) % md; ans = (ans + ((count - d) * (k - 1) % md + md) % md + mod) % md; out.println(ans); } long binpow(long a, long n) { if (n == 0) return 1; if ((n & 1) == 0) { long b = binpow(a, n >> 1); return (b * b) % md; } else { return binpow(a, n - 1) * a % md; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,031
1,244
969
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Main { static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st = new StringTokenizer(""); static PrintWriter pw = new PrintWriter(System.out); public static String next() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(next()); } public static long nextLong() throws IOException { return Long.parseLong(next()); } public static void main(String[] args) throws IOException { new Main().run(); } void run() throws IOException { long n = nextInt(); long k = nextInt(); long d = 9 + 8 * (n + k); pw.print(n - (-3 + (int)Math.sqrt(d)) / 2); pw.close(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Main { static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st = new StringTokenizer(""); static PrintWriter pw = new PrintWriter(System.out); public static String next() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(next()); } public static long nextLong() throws IOException { return Long.parseLong(next()); } public static void main(String[] args) throws IOException { new Main().run(); } void run() throws IOException { long n = nextInt(); long k = nextInt(); long d = 9 + 8 * (n + k); pw.print(n - (-3 + (int)Math.sqrt(d)) / 2); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Main { static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st = new StringTokenizer(""); static PrintWriter pw = new PrintWriter(System.out); public static String next() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(next()); } public static long nextLong() throws IOException { return Long.parseLong(next()); } public static void main(String[] args) throws IOException { new Main().run(); } void run() throws IOException { long n = nextInt(); long k = nextInt(); long d = 9 + 8 * (n + k); pw.print(n - (-3 + (int)Math.sqrt(d)) / 2); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
562
968
3,822
import java.io.*; import java.util.*; public class a{ static BufferedReader br; static PrintWriter pw; static int N, M, K; static ArrayList<Integer> graph[][]; public static void main(String args[]) throws IOException{ br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); N = Integer.parseInt(st.nextToken()); M = Integer.parseInt(st.nextToken()); K = Integer.parseInt(st.nextToken()); if(K % 2 == 1){ for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ pw.print("-1 "); } pw.println(); } br.close(); pw.close(); return; } graph = new ArrayList[N][M]; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ graph[i][j] = new ArrayList<Integer>(); } } for(int i = 0; i < N; i++){ st = new StringTokenizer(br.readLine()); for(int j = 0; j < M-1; j++){ int w = Integer.parseInt(st.nextToken()); graph[i][j].add(w); } } for(int i = 0; i < N; i++){ graph[i][M-1].add(0); } for(int i = 0; i < N-1; i++){ st = new StringTokenizer(br.readLine()); for(int j = 0; j < M; j++){ int w = Integer.parseInt(st.nextToken()); graph[i][j].add(w); } } K /= 2; for(int i = 0; i < M; i++) graph[N-1][i].add(0); long ans[][][] = new long[K+1][N][M]; for(int i = 0; i < N; i++){ Arrays.fill(ans[0][i], 0); } for(int i = 1; i <= K; i++){ for(int x = 0; x < N; x++){ for(int y = 0; y < M; y++){ long cur = (long)1e17; if(x < N-1){ cur = (long)Math.min(cur, graph[x][y].get(1) + ans[i-1][x+1][y]); } if(y < M-1){ cur = (long)Math.min(cur, graph[x][y].get(0) + ans[i-1][x][y+1]); } if(x > 0){ cur = (long)Math.min(cur, graph[x-1][y].get(1) + ans[i-1][x-1][y]); //pw.println("CUR: " + cur + " X: " + x + " Y: " + y + " get = " + graph[x-1][y].get(0)); } if(y > 0){ cur = (long)Math.min(cur, graph[x][y-1].get(0) + ans[i-1][x][y-1]); } ans[i][x][y] = cur; } } } for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ pw.print(ans[K][i][j] * 2 + " "); } pw.println(); } br.close(); pw.close(); } static class pii implements Comparable<pii>{ int f, s, k; pii(int f, int s, int k){ this.f = f; this.s = s; this.k = k; } public int compareTo(pii x){ return Integer.compare(f, x.f); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class a{ static BufferedReader br; static PrintWriter pw; static int N, M, K; static ArrayList<Integer> graph[][]; public static void main(String args[]) throws IOException{ br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); N = Integer.parseInt(st.nextToken()); M = Integer.parseInt(st.nextToken()); K = Integer.parseInt(st.nextToken()); if(K % 2 == 1){ for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ pw.print("-1 "); } pw.println(); } br.close(); pw.close(); return; } graph = new ArrayList[N][M]; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ graph[i][j] = new ArrayList<Integer>(); } } for(int i = 0; i < N; i++){ st = new StringTokenizer(br.readLine()); for(int j = 0; j < M-1; j++){ int w = Integer.parseInt(st.nextToken()); graph[i][j].add(w); } } for(int i = 0; i < N; i++){ graph[i][M-1].add(0); } for(int i = 0; i < N-1; i++){ st = new StringTokenizer(br.readLine()); for(int j = 0; j < M; j++){ int w = Integer.parseInt(st.nextToken()); graph[i][j].add(w); } } K /= 2; for(int i = 0; i < M; i++) graph[N-1][i].add(0); long ans[][][] = new long[K+1][N][M]; for(int i = 0; i < N; i++){ Arrays.fill(ans[0][i], 0); } for(int i = 1; i <= K; i++){ for(int x = 0; x < N; x++){ for(int y = 0; y < M; y++){ long cur = (long)1e17; if(x < N-1){ cur = (long)Math.min(cur, graph[x][y].get(1) + ans[i-1][x+1][y]); } if(y < M-1){ cur = (long)Math.min(cur, graph[x][y].get(0) + ans[i-1][x][y+1]); } if(x > 0){ cur = (long)Math.min(cur, graph[x-1][y].get(1) + ans[i-1][x-1][y]); //pw.println("CUR: " + cur + " X: " + x + " Y: " + y + " get = " + graph[x-1][y].get(0)); } if(y > 0){ cur = (long)Math.min(cur, graph[x][y-1].get(0) + ans[i-1][x][y-1]); } ans[i][x][y] = cur; } } } for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ pw.print(ans[K][i][j] * 2 + " "); } pw.println(); } br.close(); pw.close(); } static class pii implements Comparable<pii>{ int f, s, k; pii(int f, int s, int k){ this.f = f; this.s = s; this.k = k; } public int compareTo(pii x){ return Integer.compare(f, x.f); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class a{ static BufferedReader br; static PrintWriter pw; static int N, M, K; static ArrayList<Integer> graph[][]; public static void main(String args[]) throws IOException{ br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); N = Integer.parseInt(st.nextToken()); M = Integer.parseInt(st.nextToken()); K = Integer.parseInt(st.nextToken()); if(K % 2 == 1){ for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ pw.print("-1 "); } pw.println(); } br.close(); pw.close(); return; } graph = new ArrayList[N][M]; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ graph[i][j] = new ArrayList<Integer>(); } } for(int i = 0; i < N; i++){ st = new StringTokenizer(br.readLine()); for(int j = 0; j < M-1; j++){ int w = Integer.parseInt(st.nextToken()); graph[i][j].add(w); } } for(int i = 0; i < N; i++){ graph[i][M-1].add(0); } for(int i = 0; i < N-1; i++){ st = new StringTokenizer(br.readLine()); for(int j = 0; j < M; j++){ int w = Integer.parseInt(st.nextToken()); graph[i][j].add(w); } } K /= 2; for(int i = 0; i < M; i++) graph[N-1][i].add(0); long ans[][][] = new long[K+1][N][M]; for(int i = 0; i < N; i++){ Arrays.fill(ans[0][i], 0); } for(int i = 1; i <= K; i++){ for(int x = 0; x < N; x++){ for(int y = 0; y < M; y++){ long cur = (long)1e17; if(x < N-1){ cur = (long)Math.min(cur, graph[x][y].get(1) + ans[i-1][x+1][y]); } if(y < M-1){ cur = (long)Math.min(cur, graph[x][y].get(0) + ans[i-1][x][y+1]); } if(x > 0){ cur = (long)Math.min(cur, graph[x-1][y].get(1) + ans[i-1][x-1][y]); //pw.println("CUR: " + cur + " X: " + x + " Y: " + y + " get = " + graph[x-1][y].get(0)); } if(y > 0){ cur = (long)Math.min(cur, graph[x][y-1].get(0) + ans[i-1][x][y-1]); } ans[i][x][y] = cur; } } } for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ pw.print(ans[K][i][j] * 2 + " "); } pw.println(); } br.close(); pw.close(); } static class pii implements Comparable<pii>{ int f, s, k; pii(int f, int s, int k){ this.f = f; this.s = s; this.k = k; } public int compareTo(pii x){ return Integer.compare(f, x.f); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,196
3,812
3,609
import java.io.*; import java.util.*; import java.math.*; public class C implements Runnable { BufferedReader in; PrintWriter out; StringTokenizer st; Random rnd; short[] qx, qy; boolean[][] used; final int[] dx = {1, -1, 0, 0}; final int[] dy = {0, 0, 1, -1}; void solve() throws IOException { int n = nextInt(), m = nextInt(); qx = new short[n * m]; qy = new short[n * m]; used = new boolean[n][m]; int k = nextInt(), qs = 0, qt = 0; for(int i = 0; i < k; i++) { int x = nextInt() - 1, y = nextInt() - 1; used[x][y] = true; qx[qt] = (short) x; qy[qt] = (short) y; ++qt; } int rx = 0, ry = 0; while(qs < qt) { int cx = qx[qs], cy = qy[qs]; ++qs; rx = cx; ry = cy; for(int z = 0; z < 4; z++) { int nx = cx + dx[z], ny = cy + dy[z]; if(nx >= 0 && ny >= 0 && nx < n && ny < m && !used[nx][ny]) { used[nx][ny] = true; qx[qt] = (short) nx; qy[qt] = (short) ny; ++qt; } } } out.println((rx + 1) + " " + (ry + 1)); } public static void main(String[] args) { final boolean oldChecker = false; if(oldChecker) { new Thread(null, new C(), "yarrr", 1 << 24).start(); } else { new C().run(); } } public void run() { try { try { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(new FileWriter("output.txt")); } catch (FileNotFoundException e) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } rnd = new Random(); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(42); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class C implements Runnable { BufferedReader in; PrintWriter out; StringTokenizer st; Random rnd; short[] qx, qy; boolean[][] used; final int[] dx = {1, -1, 0, 0}; final int[] dy = {0, 0, 1, -1}; void solve() throws IOException { int n = nextInt(), m = nextInt(); qx = new short[n * m]; qy = new short[n * m]; used = new boolean[n][m]; int k = nextInt(), qs = 0, qt = 0; for(int i = 0; i < k; i++) { int x = nextInt() - 1, y = nextInt() - 1; used[x][y] = true; qx[qt] = (short) x; qy[qt] = (short) y; ++qt; } int rx = 0, ry = 0; while(qs < qt) { int cx = qx[qs], cy = qy[qs]; ++qs; rx = cx; ry = cy; for(int z = 0; z < 4; z++) { int nx = cx + dx[z], ny = cy + dy[z]; if(nx >= 0 && ny >= 0 && nx < n && ny < m && !used[nx][ny]) { used[nx][ny] = true; qx[qt] = (short) nx; qy[qt] = (short) ny; ++qt; } } } out.println((rx + 1) + " " + (ry + 1)); } public static void main(String[] args) { final boolean oldChecker = false; if(oldChecker) { new Thread(null, new C(), "yarrr", 1 << 24).start(); } else { new C().run(); } } public void run() { try { try { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(new FileWriter("output.txt")); } catch (FileNotFoundException e) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } rnd = new Random(); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(42); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; public class C implements Runnable { BufferedReader in; PrintWriter out; StringTokenizer st; Random rnd; short[] qx, qy; boolean[][] used; final int[] dx = {1, -1, 0, 0}; final int[] dy = {0, 0, 1, -1}; void solve() throws IOException { int n = nextInt(), m = nextInt(); qx = new short[n * m]; qy = new short[n * m]; used = new boolean[n][m]; int k = nextInt(), qs = 0, qt = 0; for(int i = 0; i < k; i++) { int x = nextInt() - 1, y = nextInt() - 1; used[x][y] = true; qx[qt] = (short) x; qy[qt] = (short) y; ++qt; } int rx = 0, ry = 0; while(qs < qt) { int cx = qx[qs], cy = qy[qs]; ++qs; rx = cx; ry = cy; for(int z = 0; z < 4; z++) { int nx = cx + dx[z], ny = cy + dy[z]; if(nx >= 0 && ny >= 0 && nx < n && ny < m && !used[nx][ny]) { used[nx][ny] = true; qx[qt] = (short) nx; qy[qt] = (short) ny; ++qt; } } } out.println((rx + 1) + " " + (ry + 1)); } public static void main(String[] args) { final boolean oldChecker = false; if(oldChecker) { new Thread(null, new C(), "yarrr", 1 << 24).start(); } else { new C().run(); } } public void run() { try { try { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter(new FileWriter("output.txt")); } catch (FileNotFoundException e) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } rnd = new Random(); solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(42); } } String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } st = new StringTokenizer(line); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,013
3,601
600
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ankur */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); long k = in.nextLong(); HashMap<Long, Integer> hm = new HashMap<>(); long ar[] = in.nextLongArray(n); for (int i = 0; i < n; i++) { long dist = ar[i] + k; long min = k; for (int j = 0; j < n; j++) { min = Math.min(min, Math.abs(ar[j] - dist)); } if (min == k) { hm.put(dist, 1); } dist = ar[i] - k; min = k; for (int j = 0; j < n; j++) { min = Math.min(min, Math.abs(ar[j] - dist)); } if (min == k) { hm.put(dist, 1); } } out.print(hm.size()); } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar; private int snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { //*-*------clare------ //remeber while comparing 2 non primitive data type not to use == //remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort //again silly mistakes ,yr kb tk krta rhega ye mistakes //try to write simple codes ,break it into simple things //knowledge>rating /* public class Main implements Runnable{ public static void main(String[] args) { new Thread(null,new Main(),"Main",1<<26).start(); } public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC();//chenge the name of task solver.solve(1, in, out); out.close(); } */ if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ankur */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); long k = in.nextLong(); HashMap<Long, Integer> hm = new HashMap<>(); long ar[] = in.nextLongArray(n); for (int i = 0; i < n; i++) { long dist = ar[i] + k; long min = k; for (int j = 0; j < n; j++) { min = Math.min(min, Math.abs(ar[j] - dist)); } if (min == k) { hm.put(dist, 1); } dist = ar[i] - k; min = k; for (int j = 0; j < n; j++) { min = Math.min(min, Math.abs(ar[j] - dist)); } if (min == k) { hm.put(dist, 1); } } out.print(hm.size()); } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar; private int snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { //*-*------clare------ //remeber while comparing 2 non primitive data type not to use == //remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort //again silly mistakes ,yr kb tk krta rhega ye mistakes //try to write simple codes ,break it into simple things //knowledge>rating /* public class Main implements Runnable{ public static void main(String[] args) { new Thread(null,new Main(),"Main",1<<26).start(); } public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC();//chenge the name of task solver.solve(1, in, out); out.close(); } */ if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.HashMap; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author ankur */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); long k = in.nextLong(); HashMap<Long, Integer> hm = new HashMap<>(); long ar[] = in.nextLongArray(n); for (int i = 0; i < n; i++) { long dist = ar[i] + k; long min = k; for (int j = 0; j < n; j++) { min = Math.min(min, Math.abs(ar[j] - dist)); } if (min == k) { hm.put(dist, 1); } dist = ar[i] - k; min = k; for (int j = 0; j < n; j++) { min = Math.min(min, Math.abs(ar[j] - dist)); } if (min == k) { hm.put(dist, 1); } } out.print(hm.size()); } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar; private int snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { //*-*------clare------ //remeber while comparing 2 non primitive data type not to use == //remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort //again silly mistakes ,yr kb tk krta rhega ye mistakes //try to write simple codes ,break it into simple things //knowledge>rating /* public class Main implements Runnable{ public static void main(String[] args) { new Thread(null,new Main(),"Main",1<<26).start(); } public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC();//chenge the name of task solver.solve(1, in, out); out.close(); } */ if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long[] nextLongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,344
599
4,036
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG1 solver = new TaskG1(); solver.solve(1, in, out); out.close(); } static class TaskG1 { final int mod = (int) 1e9 + 7; int[][][] dp; int rec(int mask, int time, int T, int genre, int[] ts, int[] gs) { if (time > T) return 0; if (time == T) return 1; if (mask == (1 << ts.length) - 1) return 0; int res = dp[genre][time][mask]; if (res != -1) return res; res = 0; for (int i = 0; i < ts.length; i++) { if ((mask & (1 << i)) == 0 && (mask == 0 || gs[i] != genre)) { res += rec(mask | (1 << i), time + ts[i], T, gs[i], ts, gs); if (res >= mod) res -= mod; } } return dp[genre][time][mask] = res; } public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] ts = new int[n]; int[] gs = new int[n]; int T = in.nextInt(); for (int i = 0; i < n; i++) { ts[i] = in.nextInt(); gs[i] = in.nextInt() - 1; } dp = new int[3][T][1 << n]; for (int[][] aux : dp) { for (int[] aux2 : aux) Arrays.fill(aux2, -1); } int ans = rec(0, 0, T, 0, ts, gs); out.println(ans); } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG1 solver = new TaskG1(); solver.solve(1, in, out); out.close(); } static class TaskG1 { final int mod = (int) 1e9 + 7; int[][][] dp; int rec(int mask, int time, int T, int genre, int[] ts, int[] gs) { if (time > T) return 0; if (time == T) return 1; if (mask == (1 << ts.length) - 1) return 0; int res = dp[genre][time][mask]; if (res != -1) return res; res = 0; for (int i = 0; i < ts.length; i++) { if ((mask & (1 << i)) == 0 && (mask == 0 || gs[i] != genre)) { res += rec(mask | (1 << i), time + ts[i], T, gs[i], ts, gs); if (res >= mod) res -= mod; } } return dp[genre][time][mask] = res; } public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] ts = new int[n]; int[] gs = new int[n]; int T = in.nextInt(); for (int i = 0; i < n; i++) { ts[i] = in.nextInt(); gs[i] = in.nextInt() - 1; } dp = new int[3][T][1 << n]; for (int[][] aux : dp) { for (int[] aux2 : aux) Arrays.fill(aux2, -1); } int ans = rec(0, 0, T, 0, ts, gs); out.println(ans); } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG1 solver = new TaskG1(); solver.solve(1, in, out); out.close(); } static class TaskG1 { final int mod = (int) 1e9 + 7; int[][][] dp; int rec(int mask, int time, int T, int genre, int[] ts, int[] gs) { if (time > T) return 0; if (time == T) return 1; if (mask == (1 << ts.length) - 1) return 0; int res = dp[genre][time][mask]; if (res != -1) return res; res = 0; for (int i = 0; i < ts.length; i++) { if ((mask & (1 << i)) == 0 && (mask == 0 || gs[i] != genre)) { res += rec(mask | (1 << i), time + ts[i], T, gs[i], ts, gs); if (res >= mod) res -= mod; } } return dp[genre][time][mask] = res; } public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int[] ts = new int[n]; int[] gs = new int[n]; int T = in.nextInt(); for (int i = 0; i < n; i++) { ts[i] = in.nextInt(); gs[i] = in.nextInt() - 1; } dp = new int[3][T][1 << n]; for (int[][] aux : dp) { for (int[] aux2 : aux) Arrays.fill(aux2, -1); } int ans = rec(0, 0, T, 0, ts, gs); out.println(ans); } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,170
4,025
1,595
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; public class C { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = null; PrintWriter out; public void solution() throws IOException { int n = nextInt(); int a[] = new int[n]; int b[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); b[i] = a[i]; } Arrays.sort(a); int ans = 0; for (int i = 0; i < n; i++) { if (a[i] != b[i]) { ans++; } } if (ans == 2 || ans == 0) { System.out.println("YES"); } else { System.out.println("NO"); } } public String nextToken() throws IOException { if (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(bf.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } public void print(int a[]) { for (int i = 0; i < a.length; i++) { System.out.print(a[i] + " "); } } public static void main(String args[]) throws IOException { new C().solution(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; public class C { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = null; PrintWriter out; public void solution() throws IOException { int n = nextInt(); int a[] = new int[n]; int b[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); b[i] = a[i]; } Arrays.sort(a); int ans = 0; for (int i = 0; i < n; i++) { if (a[i] != b[i]) { ans++; } } if (ans == 2 || ans == 0) { System.out.println("YES"); } else { System.out.println("NO"); } } public String nextToken() throws IOException { if (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(bf.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } public void print(int a[]) { for (int i = 0; i < a.length; i++) { System.out.print(a[i] + " "); } } public static void main(String args[]) throws IOException { new C().solution(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; public class C { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = null; PrintWriter out; public void solution() throws IOException { int n = nextInt(); int a[] = new int[n]; int b[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); b[i] = a[i]; } Arrays.sort(a); int ans = 0; for (int i = 0; i < n; i++) { if (a[i] != b[i]) { ans++; } } if (ans == 2 || ans == 0) { System.out.println("YES"); } else { System.out.println("NO"); } } public String nextToken() throws IOException { if (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(bf.readLine()); } return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } public void print(int a[]) { for (int i = 0; i < a.length; i++) { System.out.print(a[i] + " "); } } public static void main(String args[]) throws IOException { new C().solution(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
699
1,592
1,839
import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); long totalBlocks = 0; long a[] = new long[n]; for(int i = 0; i < n; ++i) { a[i] = sc.nextLong(); totalBlocks += a[i]; } Arrays.sort(a); long selected = 0; for(int i = 0; i < n; ++i) { if(a[i] > selected) selected++; } long leftCols = a[n - 1] - selected; long remBlocks = totalBlocks - leftCols - n; System.out.print(remBlocks); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); long totalBlocks = 0; long a[] = new long[n]; for(int i = 0; i < n; ++i) { a[i] = sc.nextLong(); totalBlocks += a[i]; } Arrays.sort(a); long selected = 0; for(int i = 0; i < n; ++i) { if(a[i] > selected) selected++; } long leftCols = a[n - 1] - selected; long remBlocks = totalBlocks - leftCols - n; System.out.print(remBlocks); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int m = sc.nextInt(); long totalBlocks = 0; long a[] = new long[n]; for(int i = 0; i < n; ++i) { a[i] = sc.nextLong(); totalBlocks += a[i]; } Arrays.sort(a); long selected = 0; for(int i = 0; i < n; ++i) { if(a[i] > selected) selected++; } long leftCols = a[n - 1] - selected; long remBlocks = totalBlocks - leftCols - n; System.out.print(remBlocks); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
499
1,835
3,550
// upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, kk, bb; int[] uu, vv, cost, cost_; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; kk = new int[n_]; bb = new int[n_]; uu = new int[m_]; vv = new int[m_]; cost = new int[m_]; cost_ = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } void dijkstra(int s) { Arrays.fill(pi, INF); pi[s] = 0; TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v); pq.add(s); Integer first; while ((first = pq.pollFirst()) != null) { int u = first; int k = kk[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]); int v = u ^ uu[h] ^ vv[h]; if (pi[v] > p || pi[v] == p && kk[v] > k) { if (pi[v] < INF) pq.remove(v); pi[v] = p; kk[v] = k; bb[v] = h_; pq.add(v); } } } } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } int edmonds_karp(int s, int t) { System.arraycopy(cost, 0, cost_, 0, m_); while (true) { dijkstra(s); if (pi[t] == INF) break; push(s, t); for (int h = 0; h < m_; h++) { int u = uu[h], v = vv[h]; if (pi[u] != INF && pi[v] != INF) cost_[h] += pi[u] - pi[v]; } } int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, kk, bb; int[] uu, vv, cost, cost_; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; kk = new int[n_]; bb = new int[n_]; uu = new int[m_]; vv = new int[m_]; cost = new int[m_]; cost_ = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } void dijkstra(int s) { Arrays.fill(pi, INF); pi[s] = 0; TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v); pq.add(s); Integer first; while ((first = pq.pollFirst()) != null) { int u = first; int k = kk[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]); int v = u ^ uu[h] ^ vv[h]; if (pi[v] > p || pi[v] == p && kk[v] > k) { if (pi[v] < INF) pq.remove(v); pi[v] = p; kk[v] = k; bb[v] = h_; pq.add(v); } } } } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } int edmonds_karp(int s, int t) { System.arraycopy(cost, 0, cost_, 0, m_); while (true) { dijkstra(s); if (pi[t] == INF) break; push(s, t); for (int h = 0; h < m_; h++) { int u = uu[h], v = vv[h]; if (pi[u] != INF && pi[v] != INF) cost_[h] += pi[u] - pi[v]; } } int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> // upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, kk, bb; int[] uu, vv, cost, cost_; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; kk = new int[n_]; bb = new int[n_]; uu = new int[m_]; vv = new int[m_]; cost = new int[m_]; cost_ = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } void dijkstra(int s) { Arrays.fill(pi, INF); pi[s] = 0; TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v); pq.add(s); Integer first; while ((first = pq.pollFirst()) != null) { int u = first; int k = kk[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]); int v = u ^ uu[h] ^ vv[h]; if (pi[v] > p || pi[v] == p && kk[v] > k) { if (pi[v] < INF) pq.remove(v); pi[v] = p; kk[v] = k; bb[v] = h_; pq.add(v); } } } } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } int edmonds_karp(int s, int t) { System.arraycopy(cost, 0, cost_, 0, m_); while (true) { dijkstra(s); if (pi[t] == INF) break; push(s, t); for (int h = 0; h < m_; h++) { int u = uu[h], v = vv[h]; if (pi[u] != INF && pi[v] != INF) cost_[h] += pi[u] - pi[v]; } } int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,897
3,543
3,451
import java.util.*; import java.lang.*; import java.math.*; import java.io.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class A{ Scanner sc=new Scanner(System.in); void run(){ String s=sc.nextLine(); int n=s.length(); int ans=0; for(int len=1; len<n; len++){ for(int i=0; i+len<=n; i++){ String t=s.substring(i, i+len); // println(t); if(s.indexOf(t,i+1)!=-1){ ans=len; break; } } } println(ans+""); } void println(String s){ System.out.println(s); } void print(String s){ System.out.print(s); } public static void main(String[] args){ new A().run(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.math.*; import java.io.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class A{ Scanner sc=new Scanner(System.in); void run(){ String s=sc.nextLine(); int n=s.length(); int ans=0; for(int len=1; len<n; len++){ for(int i=0; i+len<=n; i++){ String t=s.substring(i, i+len); // println(t); if(s.indexOf(t,i+1)!=-1){ ans=len; break; } } } println(ans+""); } void println(String s){ System.out.println(s); } void print(String s){ System.out.print(s); } public static void main(String[] args){ new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.lang.*; import java.math.*; import java.io.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class A{ Scanner sc=new Scanner(System.in); void run(){ String s=sc.nextLine(); int n=s.length(); int ans=0; for(int len=1; len<n; len++){ for(int i=0; i+len<=n; i++){ String t=s.substring(i, i+len); // println(t); if(s.indexOf(t,i+1)!=-1){ ans=len; break; } } } println(ans+""); } void println(String s){ System.out.println(s); } void print(String s){ System.out.print(s); } public static void main(String[] args){ new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
532
3,445
3,640
import java.awt.Point; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.UnsupportedEncodingException; import java.net.URISyntaxException; import java.util.LinkedList; import java.util.Queue; import java.util.StringTokenizer; public class Main { public static void main(String[] args)throws IOException, URISyntaxException { Reader.init(new FileInputStream("input.txt")); StringBuilder s=new StringBuilder(); boolean[][]vis=new boolean[Reader.nextInt()][Reader.nextInt()]; int k=Reader.nextInt(),r,c; Queue<Point>q=new LinkedList<Point>(); while(k-->0) { r=Reader.nextInt()-1; c=Reader.nextInt()-1; vis[r][c]=true; q.add(new Point(r,c)); } Point end=null; int[]x={0,0,1,-1},y={1,-1,0,0}; int a,b,i; while(!q.isEmpty()) { end=q.poll(); for(i=0;i<4;i++) { a=end.x+x[i]; b=end.y+y[i]; if(a>=0&&b>=0&&a<vis.length&&b<vis[a].length&&!vis[a][b]) { vis[a][b]=true; q.add(new Point(a,b)); } } } s.append(end.x+1).append(' ').append(end.y+1); PrintWriter p=new PrintWriter("output.txt"); p.println(s); p.close(); } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) throws UnsupportedEncodingException { reader = new BufferedReader( new InputStreamReader(input, "UTF-8") ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static String nextLine() throws IOException { return reader.readLine(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.awt.Point; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.UnsupportedEncodingException; import java.net.URISyntaxException; import java.util.LinkedList; import java.util.Queue; import java.util.StringTokenizer; public class Main { public static void main(String[] args)throws IOException, URISyntaxException { Reader.init(new FileInputStream("input.txt")); StringBuilder s=new StringBuilder(); boolean[][]vis=new boolean[Reader.nextInt()][Reader.nextInt()]; int k=Reader.nextInt(),r,c; Queue<Point>q=new LinkedList<Point>(); while(k-->0) { r=Reader.nextInt()-1; c=Reader.nextInt()-1; vis[r][c]=true; q.add(new Point(r,c)); } Point end=null; int[]x={0,0,1,-1},y={1,-1,0,0}; int a,b,i; while(!q.isEmpty()) { end=q.poll(); for(i=0;i<4;i++) { a=end.x+x[i]; b=end.y+y[i]; if(a>=0&&b>=0&&a<vis.length&&b<vis[a].length&&!vis[a][b]) { vis[a][b]=true; q.add(new Point(a,b)); } } } s.append(end.x+1).append(' ').append(end.y+1); PrintWriter p=new PrintWriter("output.txt"); p.println(s); p.close(); } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) throws UnsupportedEncodingException { reader = new BufferedReader( new InputStreamReader(input, "UTF-8") ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static String nextLine() throws IOException { return reader.readLine(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.awt.Point; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.UnsupportedEncodingException; import java.net.URISyntaxException; import java.util.LinkedList; import java.util.Queue; import java.util.StringTokenizer; public class Main { public static void main(String[] args)throws IOException, URISyntaxException { Reader.init(new FileInputStream("input.txt")); StringBuilder s=new StringBuilder(); boolean[][]vis=new boolean[Reader.nextInt()][Reader.nextInt()]; int k=Reader.nextInt(),r,c; Queue<Point>q=new LinkedList<Point>(); while(k-->0) { r=Reader.nextInt()-1; c=Reader.nextInt()-1; vis[r][c]=true; q.add(new Point(r,c)); } Point end=null; int[]x={0,0,1,-1},y={1,-1,0,0}; int a,b,i; while(!q.isEmpty()) { end=q.poll(); for(i=0;i<4;i++) { a=end.x+x[i]; b=end.y+y[i]; if(a>=0&&b>=0&&a<vis.length&&b<vis[a].length&&!vis[a][b]) { vis[a][b]=true; q.add(new Point(a,b)); } } } s.append(end.x+1).append(' ').append(end.y+1); PrintWriter p=new PrintWriter("output.txt"); p.println(s); p.close(); } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) throws UnsupportedEncodingException { reader = new BufferedReader( new InputStreamReader(input, "UTF-8") ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static String nextLine() throws IOException { return reader.readLine(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException { return Long.parseLong( next() ); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
870
3,632
3,250
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.StringTokenizer; public class A { static StringTokenizer st; static BufferedReader br; static PrintWriter pw; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); BigInteger a = new BigInteger(next()); System.out.println(BigInteger.valueOf(5).modPow(a, BigInteger.valueOf(100))); pw.close(); } private static int nextInt() throws IOException { return Integer.parseInt(next()); } private static long nextLong() throws IOException { return Long.parseLong(next()); } private static double nextDouble() throws IOException { return Double.parseDouble(next()); } private static String next() throws IOException { while (st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.StringTokenizer; public class A { static StringTokenizer st; static BufferedReader br; static PrintWriter pw; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); BigInteger a = new BigInteger(next()); System.out.println(BigInteger.valueOf(5).modPow(a, BigInteger.valueOf(100))); pw.close(); } private static int nextInt() throws IOException { return Integer.parseInt(next()); } private static long nextLong() throws IOException { return Long.parseLong(next()); } private static double nextDouble() throws IOException { return Double.parseDouble(next()); } private static String next() throws IOException { while (st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.StringTokenizer; public class A { static StringTokenizer st; static BufferedReader br; static PrintWriter pw; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); BigInteger a = new BigInteger(next()); System.out.println(BigInteger.valueOf(5).modPow(a, BigInteger.valueOf(100))); pw.close(); } private static int nextInt() throws IOException { return Integer.parseInt(next()); } private static long nextLong() throws IOException { return Long.parseLong(next()); } private static double nextDouble() throws IOException { return Double.parseDouble(next()); } private static String next() throws IOException { while (st==null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
544
3,244
2,276
import java.util.Scanner; //http://codeforces.com/contest/909/problem/C public class PythInd { public static final int MOD = 1000000007; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.nextLine()); String[] sTypes = new String[n]; for (int i = 0; i < n; i++) { sTypes[i] = sc.nextLine(); } sc.close(); // dp[i][j] = number of ways to have a for loop indented // j times at the ith position. int[][] dp = new int[n][n]; dp[0][0] = 1; for (int i = 0; i < dp.length - 1; i++) { if (sTypes[i].equals("s")) { int curSum = 0; for (int j = i + 1; j >= 0; j--) { curSum = (dp[i][j] + curSum) % MOD; dp[i + 1][j] += curSum; dp[i + 1][j] %= MOD; } } else { for (int j = 1; j <= i + 1; j++) { dp[i + 1][j] += dp[i][j - 1]; dp[i + 1][j] %= MOD; } } } int ans = 0; for (int i = 0; i < dp[0].length; i++) { ans = (ans + dp[n - 1][i]) % MOD; } System.out.println(ans); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; //http://codeforces.com/contest/909/problem/C public class PythInd { public static final int MOD = 1000000007; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.nextLine()); String[] sTypes = new String[n]; for (int i = 0; i < n; i++) { sTypes[i] = sc.nextLine(); } sc.close(); // dp[i][j] = number of ways to have a for loop indented // j times at the ith position. int[][] dp = new int[n][n]; dp[0][0] = 1; for (int i = 0; i < dp.length - 1; i++) { if (sTypes[i].equals("s")) { int curSum = 0; for (int j = i + 1; j >= 0; j--) { curSum = (dp[i][j] + curSum) % MOD; dp[i + 1][j] += curSum; dp[i + 1][j] %= MOD; } } else { for (int j = 1; j <= i + 1; j++) { dp[i + 1][j] += dp[i][j - 1]; dp[i + 1][j] %= MOD; } } } int ans = 0; for (int i = 0; i < dp[0].length; i++) { ans = (ans + dp[n - 1][i]) % MOD; } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; //http://codeforces.com/contest/909/problem/C public class PythInd { public static final int MOD = 1000000007; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = Integer.parseInt(sc.nextLine()); String[] sTypes = new String[n]; for (int i = 0; i < n; i++) { sTypes[i] = sc.nextLine(); } sc.close(); // dp[i][j] = number of ways to have a for loop indented // j times at the ith position. int[][] dp = new int[n][n]; dp[0][0] = 1; for (int i = 0; i < dp.length - 1; i++) { if (sTypes[i].equals("s")) { int curSum = 0; for (int j = i + 1; j >= 0; j--) { curSum = (dp[i][j] + curSum) % MOD; dp[i + 1][j] += curSum; dp[i + 1][j] %= MOD; } } else { for (int j = 1; j <= i + 1; j++) { dp[i + 1][j] += dp[i][j - 1]; dp[i + 1][j] %= MOD; } } } int ans = 0; for (int i = 0; i < dp[0].length; i++) { ans = (ans + dp[n - 1][i]) % MOD; } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
720
2,271
1,797
import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.PrintStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author coderbd */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int m, n, k; n = in.readInt(); m = in.readInt(); k = in.readInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.readInt() - 1; Arrays.sort(a); int ans = -1; if (k >= m) ans = 0; else for (int i = 0; i < n; i++) { k += a[n-i-1]; if (k >= m) { ans = i + 1; break; } } System.out.println(ans); } } class InputReader { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int peek() { if (numChars == -1) return -1; if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) return -1; } return buf[curChar]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0L; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m *= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) read(); return value == -1; } public String next() { return readString(); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void printLine(char[] array) { writer.print(array); } public void printFormat(String format, Object...objects) { writer.printf(format, objects); } public void close() { writer.close(); } public void flush() { writer.flush(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.PrintStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author coderbd */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int m, n, k; n = in.readInt(); m = in.readInt(); k = in.readInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.readInt() - 1; Arrays.sort(a); int ans = -1; if (k >= m) ans = 0; else for (int i = 0; i < n; i++) { k += a[n-i-1]; if (k >= m) { ans = i + 1; break; } } System.out.println(ans); } } class InputReader { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int peek() { if (numChars == -1) return -1; if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) return -1; } return buf[curChar]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0L; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m *= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) read(); return value == -1; } public String next() { return readString(); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void printLine(char[] array) { writer.print(array); } public void printFormat(String format, Object...objects) { writer.printf(format, objects); } public void close() { writer.close(); } public void flush() { writer.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.OutputStreamWriter; import java.util.Arrays; import java.io.BufferedWriter; import java.util.InputMismatchException; import java.io.PrintStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.Writer; import java.math.BigInteger; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * @author coderbd */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, OutputWriter out) { int m, n, k; n = in.readInt(); m = in.readInt(); k = in.readInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = in.readInt() - 1; Arrays.sort(a); int ans = -1; if (k >= m) ans = 0; else for (int i = 0; i < n; i++) { k += a[n-i-1]; if (k >= m) { ans = i + 1; break; } } System.out.println(ans); } } class InputReader { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int peek() { if (numChars == -1) return -1; if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) return -1; } return buf[curChar]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0L; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public static boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m *= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) read(); return value == -1; } public String next() { return readString(); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void printLine(char[] array) { writer.print(array); } public void printFormat(String format, Object...objects) { writer.printf(format, objects); } public void close() { writer.close(); } public void flush() { writer.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,962
1,793
1,522
// @author Sanzhar import java.io.*; import java.util.*; import java.awt.Point; public class Template { BufferedReader in; PrintWriter out; StringTokenizer st; String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (Exception e) { } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } public void run() throws Exception { //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.flush(); out.close(); in.close(); } public void solve() throws Exception { int n = nextInt(); int k = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } boolean[] ok = new boolean[n]; Arrays.fill(ok, true); Arrays.sort(a); if (k != 1) { for (int i = 0; i < n; i++) { if (a[i] % k == 0) { int x = a[i] / k; int ind = Arrays.binarySearch(a, x); if (ind >= 0 && ok[ind]) { ok[i] = false; } } } } int ans = 0; for (int i = 0; i < n; i++) { if (ok[i]) { ans++; } } out.println(ans); } public static void main(String[] args) throws Exception { new Template().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // @author Sanzhar import java.io.*; import java.util.*; import java.awt.Point; public class Template { BufferedReader in; PrintWriter out; StringTokenizer st; String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (Exception e) { } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } public void run() throws Exception { //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.flush(); out.close(); in.close(); } public void solve() throws Exception { int n = nextInt(); int k = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } boolean[] ok = new boolean[n]; Arrays.fill(ok, true); Arrays.sort(a); if (k != 1) { for (int i = 0; i < n; i++) { if (a[i] % k == 0) { int x = a[i] / k; int ind = Arrays.binarySearch(a, x); if (ind >= 0 && ok[ind]) { ok[i] = false; } } } } int ans = 0; for (int i = 0; i < n; i++) { if (ok[i]) { ans++; } } out.println(ans); } public static void main(String[] args) throws Exception { new Template().run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // @author Sanzhar import java.io.*; import java.util.*; import java.awt.Point; public class Template { BufferedReader in; PrintWriter out; StringTokenizer st; String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(in.readLine()); } catch (Exception e) { } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } public void run() throws Exception { //in = new BufferedReader(new FileReader("input.txt")); //out = new PrintWriter(new FileWriter("output.txt")); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.flush(); out.close(); in.close(); } public void solve() throws Exception { int n = nextInt(); int k = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } boolean[] ok = new boolean[n]; Arrays.fill(ok, true); Arrays.sort(a); if (k != 1) { for (int i = 0; i < n; i++) { if (a[i] % k == 0) { int x = a[i] / k; int ind = Arrays.binarySearch(a, x); if (ind >= 0 && ok[ind]) { ok[i] = false; } } } } int ans = 0; for (int i = 0; i < n; i++) { if (ok[i]) { ans++; } } out.println(ans); } public static void main(String[] args) throws Exception { new Template().run(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
754
1,520
3,248
import java.util.Scanner; /** * Created by mmaikovych on 18.02.16. */ public class EER_A { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); scanner.nextLine(); System.out.println(25); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; /** * Created by mmaikovych on 18.02.16. */ public class EER_A { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); scanner.nextLine(); System.out.println(25); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /** * Created by mmaikovych on 18.02.16. */ public class EER_A { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); scanner.nextLine(); System.out.println(25); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
417
3,242
4,316
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Darshandarji */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); boolean[][] g = new boolean[n][n]; for (int i = 0; i < m; ++i) { int a = in.nextInt() - 1; int b = in.nextInt() - 1; g[a][b] = true; g[b][a] = true; } /*for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) g[i][j] = true;*/ long[] am = new long[n + 1]; long[][] ways = new long[1 << n][n]; for (int start = 0; start < n; ++start) { for (int mask = 0; mask < (1 << (n - start)); ++mask) for (int last = start; last < n; ++last) { ways[mask][last - start] = 0; } ways[1][0] = 1; for (int mask = 0; mask < (1 << (n - start)); ++mask) { int cnt = 0; int tmp = mask; while (tmp > 0) { ++cnt; tmp = tmp & (tmp - 1); } for (int last = start; last < n; ++last) if (ways[mask][last - start] > 0) { long amm = ways[mask][last - start]; for (int i = start; i < n; ++i) if ((mask & (1 << (i - start))) == 0 && g[last][i]) { ways[mask | (1 << (i - start))][i - start] += amm; } if (g[last][start]) am[cnt] += ways[mask][last - start]; } } } long res = 0; for (int cnt = 3; cnt <= n; ++cnt) { if (am[cnt] % (2) != 0) throw new RuntimeException(); res += am[cnt] / (2); } out.println(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Darshandarji */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); boolean[][] g = new boolean[n][n]; for (int i = 0; i < m; ++i) { int a = in.nextInt() - 1; int b = in.nextInt() - 1; g[a][b] = true; g[b][a] = true; } /*for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) g[i][j] = true;*/ long[] am = new long[n + 1]; long[][] ways = new long[1 << n][n]; for (int start = 0; start < n; ++start) { for (int mask = 0; mask < (1 << (n - start)); ++mask) for (int last = start; last < n; ++last) { ways[mask][last - start] = 0; } ways[1][0] = 1; for (int mask = 0; mask < (1 << (n - start)); ++mask) { int cnt = 0; int tmp = mask; while (tmp > 0) { ++cnt; tmp = tmp & (tmp - 1); } for (int last = start; last < n; ++last) if (ways[mask][last - start] > 0) { long amm = ways[mask][last - start]; for (int i = start; i < n; ++i) if ((mask & (1 << (i - start))) == 0 && g[last][i]) { ways[mask | (1 << (i - start))][i - start] += amm; } if (g[last][start]) am[cnt] += ways[mask][last - start]; } } } long res = 0; for (int cnt = 3; cnt <= n; ++cnt) { if (am[cnt] % (2) != 0) throw new RuntimeException(); res += am[cnt] / (2); } out.println(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Darshandarji */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskD solver = new TaskD(); solver.solve(1, in, out); out.close(); } static class TaskD { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); boolean[][] g = new boolean[n][n]; for (int i = 0; i < m; ++i) { int a = in.nextInt() - 1; int b = in.nextInt() - 1; g[a][b] = true; g[b][a] = true; } /*for (int i = 0; i < n; ++i) for (int j = 0; j < n; ++j) g[i][j] = true;*/ long[] am = new long[n + 1]; long[][] ways = new long[1 << n][n]; for (int start = 0; start < n; ++start) { for (int mask = 0; mask < (1 << (n - start)); ++mask) for (int last = start; last < n; ++last) { ways[mask][last - start] = 0; } ways[1][0] = 1; for (int mask = 0; mask < (1 << (n - start)); ++mask) { int cnt = 0; int tmp = mask; while (tmp > 0) { ++cnt; tmp = tmp & (tmp - 1); } for (int last = start; last < n; ++last) if (ways[mask][last - start] > 0) { long amm = ways[mask][last - start]; for (int i = start; i < n; ++i) if ((mask & (1 << (i - start))) == 0 && g[last][i]) { ways[mask | (1 << (i - start))][i - start] += amm; } if (g[last][start]) am[cnt] += ways[mask][last - start]; } } } long res = 0; for (int cnt = 3; cnt <= n; ++cnt) { if (am[cnt] % (2) != 0) throw new RuntimeException(); res += am[cnt] / (2); } out.println(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,331
4,305
2,121
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG solver = new TaskG(); solver.solve(1, in, out); out.close(); } static class TaskG { static final long MODULO = (long) 1e9 + 7; static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO; static final int[] ONE = new int[]{1}; int k; int n; long[] globalRes; int[] p2; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); globalRes = new long[k + 1]; p2 = new int[n + 1]; p2[0] = 1; for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO); Vertex[] vs = new Vertex[n]; for (int i = 0; i < n; ++i) vs[i] = new Vertex(); for (int i = 0; i < n - 1; ++i) { Vertex a = vs[in.nextInt() - 1]; Vertex b = vs[in.nextInt() - 1]; a.adj.add(b); b.adj.add(a); } vs[0].dfs(null); long[][] ways = new long[k + 1][k + 1]; ways[0][0] = 1; for (int i = 1; i <= k; ++i) { for (int j = 1; j <= k; ++j) { ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO; } } long sum = 0; for (int i = 1; i <= k; ++i) { long s = globalRes[i]; s %= MODULO; sum = (sum + s * ways[k][i]) % MODULO; } out.println(sum); } class Vertex { int[] res; int subtreeSize; List<Vertex> adj = new ArrayList<>(); public void dfs(Vertex parent) { subtreeSize = 1; int[] prod = ONE; for (Vertex child : adj) if (child != parent) { child.dfs(this); subtreeSize += child.subtreeSize; } int mult = 2;//p2[n - subtreeSize]; for (Vertex child : adj) if (child != parent) { int[] c = child.res; prod = mul(prod, c); subFrom(globalRes, c, 1); } addTo(globalRes, prod, mult); res = insertEdge(prod); } private int[] insertEdge(int[] a) { int len = a.length + 1; if (len > k) len = k + 1; int[] b = new int[len]; b[0] = a[0] * 2; if (b[0] >= MODULO) b[0] -= MODULO; for (int i = 1; i < len; ++i) { long s = a[i - 1]; if (i < a.length) s += a[i]; if (s >= MODULO) s -= MODULO; s = s * 2; if (s >= MODULO) s -= MODULO; b[i] = (int) s; } b[1] -= 1; if (b[1] < 0) b[1] += MODULO; return b; } private void addTo(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + b[i] * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private void subFrom(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + (MODULO - b[i]) * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private int[] mul(int[] a, int[] b) { int len = a.length + b.length - 1; if (len > k) len = k + 1; int[] c = new int[len]; for (int i = 0; i < len; ++i) { long s = 0; int left = Math.max(0, i - (b.length - 1)); int right = Math.min(a.length - 1, i); for (int ia = left; ia <= right; ++ia) { int ib = i - ia; s += a[ia] * (long) b[ib]; if (s < 0) s -= BIG; } c[i] = (int) (s % MODULO); } return c; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG solver = new TaskG(); solver.solve(1, in, out); out.close(); } static class TaskG { static final long MODULO = (long) 1e9 + 7; static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO; static final int[] ONE = new int[]{1}; int k; int n; long[] globalRes; int[] p2; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); globalRes = new long[k + 1]; p2 = new int[n + 1]; p2[0] = 1; for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO); Vertex[] vs = new Vertex[n]; for (int i = 0; i < n; ++i) vs[i] = new Vertex(); for (int i = 0; i < n - 1; ++i) { Vertex a = vs[in.nextInt() - 1]; Vertex b = vs[in.nextInt() - 1]; a.adj.add(b); b.adj.add(a); } vs[0].dfs(null); long[][] ways = new long[k + 1][k + 1]; ways[0][0] = 1; for (int i = 1; i <= k; ++i) { for (int j = 1; j <= k; ++j) { ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO; } } long sum = 0; for (int i = 1; i <= k; ++i) { long s = globalRes[i]; s %= MODULO; sum = (sum + s * ways[k][i]) % MODULO; } out.println(sum); } class Vertex { int[] res; int subtreeSize; List<Vertex> adj = new ArrayList<>(); public void dfs(Vertex parent) { subtreeSize = 1; int[] prod = ONE; for (Vertex child : adj) if (child != parent) { child.dfs(this); subtreeSize += child.subtreeSize; } int mult = 2;//p2[n - subtreeSize]; for (Vertex child : adj) if (child != parent) { int[] c = child.res; prod = mul(prod, c); subFrom(globalRes, c, 1); } addTo(globalRes, prod, mult); res = insertEdge(prod); } private int[] insertEdge(int[] a) { int len = a.length + 1; if (len > k) len = k + 1; int[] b = new int[len]; b[0] = a[0] * 2; if (b[0] >= MODULO) b[0] -= MODULO; for (int i = 1; i < len; ++i) { long s = a[i - 1]; if (i < a.length) s += a[i]; if (s >= MODULO) s -= MODULO; s = s * 2; if (s >= MODULO) s -= MODULO; b[i] = (int) s; } b[1] -= 1; if (b[1] < 0) b[1] += MODULO; return b; } private void addTo(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + b[i] * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private void subFrom(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + (MODULO - b[i]) * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private int[] mul(int[] a, int[] b) { int len = a.length + b.length - 1; if (len > k) len = k + 1; int[] c = new int[len]; for (int i = 0; i < len; ++i) { long s = 0; int left = Math.max(0, i - (b.length - 1)); int right = Math.min(a.length - 1, i); for (int ia = left; ia <= right; ++ia) { int ib = i - ia; s += a[ia] * (long) b[ib]; if (s < 0) s -= BIG; } c[i] = (int) (s % MODULO); } return c; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG solver = new TaskG(); solver.solve(1, in, out); out.close(); } static class TaskG { static final long MODULO = (long) 1e9 + 7; static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO; static final int[] ONE = new int[]{1}; int k; int n; long[] globalRes; int[] p2; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); globalRes = new long[k + 1]; p2 = new int[n + 1]; p2[0] = 1; for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO); Vertex[] vs = new Vertex[n]; for (int i = 0; i < n; ++i) vs[i] = new Vertex(); for (int i = 0; i < n - 1; ++i) { Vertex a = vs[in.nextInt() - 1]; Vertex b = vs[in.nextInt() - 1]; a.adj.add(b); b.adj.add(a); } vs[0].dfs(null); long[][] ways = new long[k + 1][k + 1]; ways[0][0] = 1; for (int i = 1; i <= k; ++i) { for (int j = 1; j <= k; ++j) { ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO; } } long sum = 0; for (int i = 1; i <= k; ++i) { long s = globalRes[i]; s %= MODULO; sum = (sum + s * ways[k][i]) % MODULO; } out.println(sum); } class Vertex { int[] res; int subtreeSize; List<Vertex> adj = new ArrayList<>(); public void dfs(Vertex parent) { subtreeSize = 1; int[] prod = ONE; for (Vertex child : adj) if (child != parent) { child.dfs(this); subtreeSize += child.subtreeSize; } int mult = 2;//p2[n - subtreeSize]; for (Vertex child : adj) if (child != parent) { int[] c = child.res; prod = mul(prod, c); subFrom(globalRes, c, 1); } addTo(globalRes, prod, mult); res = insertEdge(prod); } private int[] insertEdge(int[] a) { int len = a.length + 1; if (len > k) len = k + 1; int[] b = new int[len]; b[0] = a[0] * 2; if (b[0] >= MODULO) b[0] -= MODULO; for (int i = 1; i < len; ++i) { long s = a[i - 1]; if (i < a.length) s += a[i]; if (s >= MODULO) s -= MODULO; s = s * 2; if (s >= MODULO) s -= MODULO; b[i] = (int) s; } b[1] -= 1; if (b[1] < 0) b[1] += MODULO; return b; } private void addTo(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + b[i] * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private void subFrom(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + (MODULO - b[i]) * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private int[] mul(int[] a, int[] b) { int len = a.length + b.length - 1; if (len > k) len = k + 1; int[] c = new int[len]; for (int i = 0; i < len; ++i) { long s = 0; int left = Math.max(0, i - (b.length - 1)); int right = Math.min(a.length - 1, i); for (int ia = left; ia <= right; ++ia) { int ib = i - ia; s += a[ia] * (long) b[ib]; if (s < 0) s -= BIG; } c[i] = (int) (s % MODULO); } return c; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,740
2,117
2,984
import java.util.*; public class p343A { static long n = 0; static void resistance(long a, long b) { n += a/b; a %= b; if(a!=0) resistance(b, a); } public static void main(String[] args) { Scanner in = new Scanner(System.in); long a = in.nextLong(); long b = in.nextLong(); resistance(a, b); System.out.println(n); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class p343A { static long n = 0; static void resistance(long a, long b) { n += a/b; a %= b; if(a!=0) resistance(b, a); } public static void main(String[] args) { Scanner in = new Scanner(System.in); long a = in.nextLong(); long b = in.nextLong(); resistance(a, b); System.out.println(n); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; public class p343A { static long n = 0; static void resistance(long a, long b) { n += a/b; a %= b; if(a!=0) resistance(b, a); } public static void main(String[] args) { Scanner in = new Scanner(System.in); long a = in.nextLong(); long b = in.nextLong(); resistance(a, b); System.out.println(n); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
440
2,978
1,342
import java.io.*; import java.util.Locale; import java.util.StringTokenizer; public class B implements Runnable { private static final boolean ONLINE_JUDGE = true;//System.getProperty("ONLINE_JUDGE") != null; private BufferedReader in; private PrintWriter out; private StringTokenizer tok = new StringTokenizer(""); private void init() throws FileNotFoundException { Locale.setDefault(Locale.US); String fileName = ""; if (ONLINE_JUDGE && fileName.isEmpty()) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { if (fileName.isEmpty()) { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } else { in = new BufferedReader(new FileReader(fileName + ".in")); out = new PrintWriter(fileName + ".out"); } } } String readString() { while (!tok.hasMoreTokens()) { try { tok = new StringTokenizer(in.readLine()); } catch (Exception e) { return null; } } return tok.nextToken(); } int readInt() { return Integer.parseInt(readString()); } long readLong() { return Long.parseLong(readString()); } double readDouble() { return Double.parseDouble(readString()); } int[] readIntArray(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = readInt(); } return a; } public static void main(String[] args) { //new Thread(null, new _Solution(), "", 128 * (1L << 20)).start(); new B().run(); } long timeBegin, timeEnd; void time() { timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } @Override public void run() { try { timeBegin = System.currentTimeMillis(); init(); int n = readInt(); int[] rect1 = solve1(n); int[] rect2 = solve2(n, rect1); out.printf("! %s %s %s %s %s %s %s %s\n", rect1[0], rect1[1], rect1[2], rect1[3], rect2[0], rect2[1], rect2[2], rect2[3]); out.flush(); out.close(); time(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } int ask(int x1, int y1, int x2, int y2) { out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); return readInt(); } int ask(int x1, int y1, int x2, int y2, int[] rect) { out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); int res = readInt(); if (rect[0] >= x1 && rect[2] <= x2 && rect[1] >= y1 && rect[3] <= y2) { res--; } return res; } int[] dropTopAndLeft1(int x2, int y2) { int x1 = x2, y1 = y2; int left = 1, right = x2; while (left <= right) { int mid = (left + right) >> 1; int count = ask(mid, 1, x2, y2); if (count >= 1) { x1 = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } left = 1; right = y2; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, mid, x2, y2); if (count >= 1) { y1 = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } return new int[]{x1, y1, x2, y2}; } private int[] solve1(int n) { int x = -1; int left = 1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(1, 1, mid, n); if (count >= 1) { x = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } left = 1; right = n; int y = -1; while (left <= right) { int mid = (left + right) >> 1; int count = ask(1, 1, x, mid); if (count >= 1) { y = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } return dropTopAndLeft1(x, y); } private int[] solve2(int n, int[] rect) { int x = -1; int left = 1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(mid, 1, n, n, rect); if (count >= 1) { x = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } left = 1; right = n; int y = -1; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x, mid, n, n, rect); if (count >= 1) { y = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } return dropTopAndLeft2(x, y, n, rect); } int[] dropTopAndLeft2(int x1, int y1, int n, int[] rect) { int x2 = x1, y2 = y1; int left = x1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, y1, mid, n, rect); if (count >= 1) { x2 = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } left = y1; right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, y1, x2, mid, rect); if (count == 1) { y2 = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } return new int[]{x1, y1, x2, y2}; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.Locale; import java.util.StringTokenizer; public class B implements Runnable { private static final boolean ONLINE_JUDGE = true;//System.getProperty("ONLINE_JUDGE") != null; private BufferedReader in; private PrintWriter out; private StringTokenizer tok = new StringTokenizer(""); private void init() throws FileNotFoundException { Locale.setDefault(Locale.US); String fileName = ""; if (ONLINE_JUDGE && fileName.isEmpty()) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { if (fileName.isEmpty()) { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } else { in = new BufferedReader(new FileReader(fileName + ".in")); out = new PrintWriter(fileName + ".out"); } } } String readString() { while (!tok.hasMoreTokens()) { try { tok = new StringTokenizer(in.readLine()); } catch (Exception e) { return null; } } return tok.nextToken(); } int readInt() { return Integer.parseInt(readString()); } long readLong() { return Long.parseLong(readString()); } double readDouble() { return Double.parseDouble(readString()); } int[] readIntArray(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = readInt(); } return a; } public static void main(String[] args) { //new Thread(null, new _Solution(), "", 128 * (1L << 20)).start(); new B().run(); } long timeBegin, timeEnd; void time() { timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } @Override public void run() { try { timeBegin = System.currentTimeMillis(); init(); int n = readInt(); int[] rect1 = solve1(n); int[] rect2 = solve2(n, rect1); out.printf("! %s %s %s %s %s %s %s %s\n", rect1[0], rect1[1], rect1[2], rect1[3], rect2[0], rect2[1], rect2[2], rect2[3]); out.flush(); out.close(); time(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } int ask(int x1, int y1, int x2, int y2) { out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); return readInt(); } int ask(int x1, int y1, int x2, int y2, int[] rect) { out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); int res = readInt(); if (rect[0] >= x1 && rect[2] <= x2 && rect[1] >= y1 && rect[3] <= y2) { res--; } return res; } int[] dropTopAndLeft1(int x2, int y2) { int x1 = x2, y1 = y2; int left = 1, right = x2; while (left <= right) { int mid = (left + right) >> 1; int count = ask(mid, 1, x2, y2); if (count >= 1) { x1 = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } left = 1; right = y2; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, mid, x2, y2); if (count >= 1) { y1 = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } return new int[]{x1, y1, x2, y2}; } private int[] solve1(int n) { int x = -1; int left = 1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(1, 1, mid, n); if (count >= 1) { x = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } left = 1; right = n; int y = -1; while (left <= right) { int mid = (left + right) >> 1; int count = ask(1, 1, x, mid); if (count >= 1) { y = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } return dropTopAndLeft1(x, y); } private int[] solve2(int n, int[] rect) { int x = -1; int left = 1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(mid, 1, n, n, rect); if (count >= 1) { x = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } left = 1; right = n; int y = -1; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x, mid, n, n, rect); if (count >= 1) { y = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } return dropTopAndLeft2(x, y, n, rect); } int[] dropTopAndLeft2(int x1, int y1, int n, int[] rect) { int x2 = x1, y2 = y1; int left = x1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, y1, mid, n, rect); if (count >= 1) { x2 = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } left = y1; right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, y1, x2, mid, rect); if (count == 1) { y2 = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } return new int[]{x1, y1, x2, y2}; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.Locale; import java.util.StringTokenizer; public class B implements Runnable { private static final boolean ONLINE_JUDGE = true;//System.getProperty("ONLINE_JUDGE") != null; private BufferedReader in; private PrintWriter out; private StringTokenizer tok = new StringTokenizer(""); private void init() throws FileNotFoundException { Locale.setDefault(Locale.US); String fileName = ""; if (ONLINE_JUDGE && fileName.isEmpty()) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { if (fileName.isEmpty()) { in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); } else { in = new BufferedReader(new FileReader(fileName + ".in")); out = new PrintWriter(fileName + ".out"); } } } String readString() { while (!tok.hasMoreTokens()) { try { tok = new StringTokenizer(in.readLine()); } catch (Exception e) { return null; } } return tok.nextToken(); } int readInt() { return Integer.parseInt(readString()); } long readLong() { return Long.parseLong(readString()); } double readDouble() { return Double.parseDouble(readString()); } int[] readIntArray(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = readInt(); } return a; } public static void main(String[] args) { //new Thread(null, new _Solution(), "", 128 * (1L << 20)).start(); new B().run(); } long timeBegin, timeEnd; void time() { timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } @Override public void run() { try { timeBegin = System.currentTimeMillis(); init(); int n = readInt(); int[] rect1 = solve1(n); int[] rect2 = solve2(n, rect1); out.printf("! %s %s %s %s %s %s %s %s\n", rect1[0], rect1[1], rect1[2], rect1[3], rect2[0], rect2[1], rect2[2], rect2[3]); out.flush(); out.close(); time(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } int ask(int x1, int y1, int x2, int y2) { out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); return readInt(); } int ask(int x1, int y1, int x2, int y2, int[] rect) { out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.flush(); int res = readInt(); if (rect[0] >= x1 && rect[2] <= x2 && rect[1] >= y1 && rect[3] <= y2) { res--; } return res; } int[] dropTopAndLeft1(int x2, int y2) { int x1 = x2, y1 = y2; int left = 1, right = x2; while (left <= right) { int mid = (left + right) >> 1; int count = ask(mid, 1, x2, y2); if (count >= 1) { x1 = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } left = 1; right = y2; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, mid, x2, y2); if (count >= 1) { y1 = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } return new int[]{x1, y1, x2, y2}; } private int[] solve1(int n) { int x = -1; int left = 1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(1, 1, mid, n); if (count >= 1) { x = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } left = 1; right = n; int y = -1; while (left <= right) { int mid = (left + right) >> 1; int count = ask(1, 1, x, mid); if (count >= 1) { y = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } return dropTopAndLeft1(x, y); } private int[] solve2(int n, int[] rect) { int x = -1; int left = 1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(mid, 1, n, n, rect); if (count >= 1) { x = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } left = 1; right = n; int y = -1; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x, mid, n, n, rect); if (count >= 1) { y = mid; left = mid + 1; } if (count == 0) { right = mid - 1; } } return dropTopAndLeft2(x, y, n, rect); } int[] dropTopAndLeft2(int x1, int y1, int n, int[] rect) { int x2 = x1, y2 = y1; int left = x1, right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, y1, mid, n, rect); if (count >= 1) { x2 = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } left = y1; right = n; while (left <= right) { int mid = (left + right) >> 1; int count = ask(x1, y1, x2, mid, rect); if (count == 1) { y2 = mid; right = mid - 1; } if (count == 0) { left = mid + 1; } } return new int[]{x1, y1, x2, y2}; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,005
1,340
585
//package contests.CF495; import java.io.*; import java.util.HashSet; import java.util.StringTokenizer; public class A { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int d = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = sc.nextInt(); } HashSet<Integer> set = new HashSet<>(); for (int i = 0; i < arr.length; i++) { set.add(arr[i]+d); set.add(arr[i]-d); } int cnt = 0; for (int loc: set) { int minDist = (int)2e9; for (int i = 0; i < n; i++) { minDist = Math.min(minDist, Math.abs(arr[i]-loc)); } if(minDist == d) cnt++; } pw.println(cnt); pw.flush(); pw.close(); } static int[][] packD(int n, int[] from, int[] to) { int[][] g = new int[n][]; int[] p = new int[n]; for (int f : from) if(f != -1) p[f]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < from.length; i++) if(from[i] != -1) {g[from[i]][--p[from[i]]] = to[i];} return g; } static void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int)(Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s)));} public String next() throws IOException {while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());return st.nextToken();} public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready();} } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package contests.CF495; import java.io.*; import java.util.HashSet; import java.util.StringTokenizer; public class A { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int d = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = sc.nextInt(); } HashSet<Integer> set = new HashSet<>(); for (int i = 0; i < arr.length; i++) { set.add(arr[i]+d); set.add(arr[i]-d); } int cnt = 0; for (int loc: set) { int minDist = (int)2e9; for (int i = 0; i < n; i++) { minDist = Math.min(minDist, Math.abs(arr[i]-loc)); } if(minDist == d) cnt++; } pw.println(cnt); pw.flush(); pw.close(); } static int[][] packD(int n, int[] from, int[] to) { int[][] g = new int[n][]; int[] p = new int[n]; for (int f : from) if(f != -1) p[f]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < from.length; i++) if(from[i] != -1) {g[from[i]][--p[from[i]]] = to[i];} return g; } static void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int)(Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s)));} public String next() throws IOException {while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());return st.nextToken();} public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready();} } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package contests.CF495; import java.io.*; import java.util.HashSet; import java.util.StringTokenizer; public class A { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); int d = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < arr.length; i++) { arr[i] = sc.nextInt(); } HashSet<Integer> set = new HashSet<>(); for (int i = 0; i < arr.length; i++) { set.add(arr[i]+d); set.add(arr[i]-d); } int cnt = 0; for (int loc: set) { int minDist = (int)2e9; for (int i = 0; i < n; i++) { minDist = Math.min(minDist, Math.abs(arr[i]-loc)); } if(minDist == d) cnt++; } pw.println(cnt); pw.flush(); pw.close(); } static int[][] packD(int n, int[] from, int[] to) { int[][] g = new int[n][]; int[] p = new int[n]; for (int f : from) if(f != -1) p[f]++; for (int i = 0; i < n; i++) g[i] = new int[p[i]]; for (int i = 0; i < from.length; i++) if(from[i] != -1) {g[from[i]][--p[from[i]]] = to[i];} return g; } static void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int)(Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s)));} public String next() throws IOException {while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());return st.nextToken();} public int nextInt() throws IOException {return Integer.parseInt(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready();} } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
911
584
2,775
import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); int S=Integer.parseInt(s1[1]); if(S%n==0) System.out.println(S/n); else System.out.println(S/n+1); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); int S=Integer.parseInt(s1[1]); if(S%n==0) System.out.println(S/n); else System.out.println(S/n+1); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class A { public static void main(String ar[]) throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String s1[]=br.readLine().split(" "); int n=Integer.parseInt(s1[0]); int S=Integer.parseInt(s1[1]); if(S%n==0) System.out.println(S/n); else System.out.println(S/n+1); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
447
2,769
344
import java.io.*; import java.math.BigInteger; import java.util.StringTokenizer; public class C implements Runnable { private static final boolean USE_FILE_IO = false; private static final String FILE_IN = "c.in"; private static final String FILE_OUT = "c.out"; BufferedReader in; PrintWriter out; StringTokenizer tokenizer = new StringTokenizer(""); public static void main(String[] args) { new Thread(new C()).start(); } int n, h, t; char[] c; private void solve() throws IOException { n = nextInt(); c = nextToken().toCharArray(); if (c.length != n) { throw new IllegalStateException(); } for (char l : c) if (l == 'H') { h++; } t = n - h; if (h == 0) { out.print(0); return; } int answer = Integer.MAX_VALUE; for (int hLo = 0; hLo < n; hLo++) if (c[hLo] == 'H') { int hHi = (hLo + h) % n; int current = 0; int j = hLo; while (j != hHi) { if (c[j] == 'T') { current++; } j = (j + 1) % n; } answer = Math.min(answer, current); } out.print(answer); } public void run() { long timeStart = System.currentTimeMillis(); try { if (USE_FILE_IO) { in = new BufferedReader(new FileReader(FILE_IN)); out = new PrintWriter(new FileWriter(FILE_OUT)); } else { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); } solve(); in.close(); out.close(); } catch (IOException e) { throw new IllegalStateException(e); } long timeEnd = System.currentTimeMillis(); System.out.println("Time spent: " + (timeEnd - timeStart) + " ms"); } private String nextToken() throws IOException { while (!tokenizer.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } return tokenizer.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private BigInteger nextBigInt() throws IOException { return new BigInteger(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.StringTokenizer; public class C implements Runnable { private static final boolean USE_FILE_IO = false; private static final String FILE_IN = "c.in"; private static final String FILE_OUT = "c.out"; BufferedReader in; PrintWriter out; StringTokenizer tokenizer = new StringTokenizer(""); public static void main(String[] args) { new Thread(new C()).start(); } int n, h, t; char[] c; private void solve() throws IOException { n = nextInt(); c = nextToken().toCharArray(); if (c.length != n) { throw new IllegalStateException(); } for (char l : c) if (l == 'H') { h++; } t = n - h; if (h == 0) { out.print(0); return; } int answer = Integer.MAX_VALUE; for (int hLo = 0; hLo < n; hLo++) if (c[hLo] == 'H') { int hHi = (hLo + h) % n; int current = 0; int j = hLo; while (j != hHi) { if (c[j] == 'T') { current++; } j = (j + 1) % n; } answer = Math.min(answer, current); } out.print(answer); } public void run() { long timeStart = System.currentTimeMillis(); try { if (USE_FILE_IO) { in = new BufferedReader(new FileReader(FILE_IN)); out = new PrintWriter(new FileWriter(FILE_OUT)); } else { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); } solve(); in.close(); out.close(); } catch (IOException e) { throw new IllegalStateException(e); } long timeEnd = System.currentTimeMillis(); System.out.println("Time spent: " + (timeEnd - timeStart) + " ms"); } private String nextToken() throws IOException { while (!tokenizer.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } return tokenizer.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private BigInteger nextBigInt() throws IOException { return new BigInteger(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; import java.util.StringTokenizer; public class C implements Runnable { private static final boolean USE_FILE_IO = false; private static final String FILE_IN = "c.in"; private static final String FILE_OUT = "c.out"; BufferedReader in; PrintWriter out; StringTokenizer tokenizer = new StringTokenizer(""); public static void main(String[] args) { new Thread(new C()).start(); } int n, h, t; char[] c; private void solve() throws IOException { n = nextInt(); c = nextToken().toCharArray(); if (c.length != n) { throw new IllegalStateException(); } for (char l : c) if (l == 'H') { h++; } t = n - h; if (h == 0) { out.print(0); return; } int answer = Integer.MAX_VALUE; for (int hLo = 0; hLo < n; hLo++) if (c[hLo] == 'H') { int hHi = (hLo + h) % n; int current = 0; int j = hLo; while (j != hHi) { if (c[j] == 'T') { current++; } j = (j + 1) % n; } answer = Math.min(answer, current); } out.print(answer); } public void run() { long timeStart = System.currentTimeMillis(); try { if (USE_FILE_IO) { in = new BufferedReader(new FileReader(FILE_IN)); out = new PrintWriter(new FileWriter(FILE_OUT)); } else { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); } solve(); in.close(); out.close(); } catch (IOException e) { throw new IllegalStateException(e); } long timeEnd = System.currentTimeMillis(); System.out.println("Time spent: " + (timeEnd - timeStart) + " ms"); } private String nextToken() throws IOException { while (!tokenizer.hasMoreTokens()) { String line = in.readLine(); if (line == null) { return null; } tokenizer = new StringTokenizer(line); } return tokenizer.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private BigInteger nextBigInt() throws IOException { return new BigInteger(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
923
343
2,366
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int l, r, sum = 0; int[] a = new int[n+5]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++) if (a[i] > a[j]) sum++; int q = in.nextInt(); while (q-- > 0){ l = in.nextInt(); r = in.nextInt(); sum += (r-l+1)/2; if (sum % 2 == 1) out.println("odd"); else out.println("even"); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int l, r, sum = 0; int[] a = new int[n+5]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++) if (a[i] > a[j]) sum++; int q = in.nextInt(); while (q-- > 0){ l = in.nextInt(); r = in.nextInt(); sum += (r-l+1)/2; if (sum % 2 == 1) out.println("odd"); else out.println("even"); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int l, r, sum = 0; int[] a = new int[n+5]; for (int i = 0; i < n; i++) a[i] = in.nextInt(); for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++) if (a[i] > a[j]) sum++; int q = in.nextInt(); while (q-- > 0){ l = in.nextInt(); r = in.nextInt(); sum += (r-l+1)/2; if (sum % 2 == 1) out.println("odd"); else out.println("even"); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
781
2,361
4,294
import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.IOException; import java.util.InputMismatchException; import java.io.PrintWriter; import java.util.Arrays; import java.io.OutputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { double special(int[] loyalties, int[] levels, int playerlevelsum) { int poss = 1 << loyalties.length; double res = 0; for(int pos = 0; pos < poss; pos++) { double occurs = 1; int happy = 0; int badlevelssum = 0; for(int i = 0; i < loyalties.length; i++) { if(((pos >> i) & 1) == 1) { //happy senator happy++; occurs *= (double) loyalties[i] / 100; } else { //unhappy senator badlevelssum += levels[i]; occurs *= (double) (100 - loyalties[i]) / 100; } } double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1; // System.err.println(pos + " " + (happy <= levels.length / 2) + " " + playerlevelsum + " " + (playerlevelsum + badlevelssum) + " " + occurs + " " + winprob + " " + occurs * winprob); res += occurs * winprob; } return res; } public void solve(int testNumber, InputReader in, OutputWriter out) { int senators = in.readInt(); // n, [1, 8] int sweets = in.readInt(); // k, [1, 8] int playerlevelsum = in.readInt(); // A, [1, 9999] int[] levels = new int[senators]; // [1, 9999] int[] loyalties = new int[senators]; // [0, 100] divisible by 10 IOUtils.readIntArrays(in, levels, loyalties); ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>())); for(int senator = 0; senator < senators; senator++) { ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>(); for(ArrayList<Integer> al : possibilities) { int sumsofar = 0; for(int val : al) sumsofar += val; int minadd = senator == senators - 1 ? sweets - sumsofar : 0; for(int moar = minadd; moar <= sweets - sumsofar; moar++) { ArrayList<Integer> copy = new ArrayList<>(al); copy.add(moar); newpossibilities.add(copy); } } possibilities = newpossibilities; } double res = 0; // out.printLine(possibilities.size()); for(ArrayList<Integer> al : possibilities) { int[] newloyalties = new int[senators]; for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i)); // out.printLine(al); // out.printLine(newloyalties); // double works = dp(0, 0, newloyalties); double special = special(newloyalties, levels, playerlevelsum); double tot = special; res = Math.max(res, tot); } out.printLine(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for(int i = 0; i < objects.length; i++) { if(i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for(int i = 0; i < arrays[0].length; i++) { for(int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.IOException; import java.util.InputMismatchException; import java.io.PrintWriter; import java.util.Arrays; import java.io.OutputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { double special(int[] loyalties, int[] levels, int playerlevelsum) { int poss = 1 << loyalties.length; double res = 0; for(int pos = 0; pos < poss; pos++) { double occurs = 1; int happy = 0; int badlevelssum = 0; for(int i = 0; i < loyalties.length; i++) { if(((pos >> i) & 1) == 1) { //happy senator happy++; occurs *= (double) loyalties[i] / 100; } else { //unhappy senator badlevelssum += levels[i]; occurs *= (double) (100 - loyalties[i]) / 100; } } double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1; // System.err.println(pos + " " + (happy <= levels.length / 2) + " " + playerlevelsum + " " + (playerlevelsum + badlevelssum) + " " + occurs + " " + winprob + " " + occurs * winprob); res += occurs * winprob; } return res; } public void solve(int testNumber, InputReader in, OutputWriter out) { int senators = in.readInt(); // n, [1, 8] int sweets = in.readInt(); // k, [1, 8] int playerlevelsum = in.readInt(); // A, [1, 9999] int[] levels = new int[senators]; // [1, 9999] int[] loyalties = new int[senators]; // [0, 100] divisible by 10 IOUtils.readIntArrays(in, levels, loyalties); ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>())); for(int senator = 0; senator < senators; senator++) { ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>(); for(ArrayList<Integer> al : possibilities) { int sumsofar = 0; for(int val : al) sumsofar += val; int minadd = senator == senators - 1 ? sweets - sumsofar : 0; for(int moar = minadd; moar <= sweets - sumsofar; moar++) { ArrayList<Integer> copy = new ArrayList<>(al); copy.add(moar); newpossibilities.add(copy); } } possibilities = newpossibilities; } double res = 0; // out.printLine(possibilities.size()); for(ArrayList<Integer> al : possibilities) { int[] newloyalties = new int[senators]; for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i)); // out.printLine(al); // out.printLine(newloyalties); // double works = dp(0, 0, newloyalties); double special = special(newloyalties, levels, playerlevelsum); double tot = special; res = Math.max(res, tot); } out.printLine(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for(int i = 0; i < objects.length; i++) { if(i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for(int i = 0; i < arrays[0].length; i++) { for(int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.InputStream; import java.io.OutputStream; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.IOException; import java.util.InputMismatchException; import java.io.PrintWriter; import java.util.Arrays; import java.io.OutputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Alex */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskB solver = new TaskB(); solver.solve(1, in, out); out.close(); } static class TaskB { double special(int[] loyalties, int[] levels, int playerlevelsum) { int poss = 1 << loyalties.length; double res = 0; for(int pos = 0; pos < poss; pos++) { double occurs = 1; int happy = 0; int badlevelssum = 0; for(int i = 0; i < loyalties.length; i++) { if(((pos >> i) & 1) == 1) { //happy senator happy++; occurs *= (double) loyalties[i] / 100; } else { //unhappy senator badlevelssum += levels[i]; occurs *= (double) (100 - loyalties[i]) / 100; } } double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) : 1; // System.err.println(pos + " " + (happy <= levels.length / 2) + " " + playerlevelsum + " " + (playerlevelsum + badlevelssum) + " " + occurs + " " + winprob + " " + occurs * winprob); res += occurs * winprob; } return res; } public void solve(int testNumber, InputReader in, OutputWriter out) { int senators = in.readInt(); // n, [1, 8] int sweets = in.readInt(); // k, [1, 8] int playerlevelsum = in.readInt(); // A, [1, 9999] int[] levels = new int[senators]; // [1, 9999] int[] loyalties = new int[senators]; // [0, 100] divisible by 10 IOUtils.readIntArrays(in, levels, loyalties); ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>())); for(int senator = 0; senator < senators; senator++) { ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>(); for(ArrayList<Integer> al : possibilities) { int sumsofar = 0; for(int val : al) sumsofar += val; int minadd = senator == senators - 1 ? sweets - sumsofar : 0; for(int moar = minadd; moar <= sweets - sumsofar; moar++) { ArrayList<Integer> copy = new ArrayList<>(al); copy.add(moar); newpossibilities.add(copy); } } possibilities = newpossibilities; } double res = 0; // out.printLine(possibilities.size()); for(ArrayList<Integer> al : possibilities) { int[] newloyalties = new int[senators]; for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i)); // out.printLine(al); // out.printLine(newloyalties); // double works = dp(0, 0, newloyalties); double special = special(newloyalties, levels, playerlevelsum); double tot = special; res = Math.max(res, tot); } out.printLine(res); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if(numChars == -1) throw new InputMismatchException(); if(curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if(c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while(!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if(filter != null) return filter.isSpaceChar(c); return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for(int i = 0; i < objects.length; i++) { if(i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } static class IOUtils { public static void readIntArrays(InputReader in, int[]... arrays) { for(int i = 0; i < arrays[0].length; i++) { for(int j = 0; j < arrays.length; j++) arrays[j][i] = in.readInt(); } } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,805
4,283
2,532
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; public class CF1141F { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] split = br.readLine().split(" "); int[] terms = new int[n]; int[] sums = new int[n+1]; for(int i=0; i<n; i++) { terms[i] = Integer.parseInt(split[i]); sums[i+1] = sums[i]+terms[i]; } ArrayList<Block> blocks = new ArrayList<>(); for(int i=0; i<n; i++) for(int j=i; j<n; j++){ int s = sums[j+1]-sums[i]; blocks.add(new Block(i, j, s)); } Collections.sort(blocks); ArrayList<Block> best = new ArrayList<>(); int i = 0; while(i<blocks.size()){ int curSum = blocks.get(i).sum; ArrayList<Block> curBlocks = new ArrayList<>(); while(i<blocks.size() && blocks.get(i).sum==curSum) curBlocks.add(blocks.get(i++)); int[] memo = new int[curBlocks.size()+1]; Arrays.fill(memo, -1); memo[curBlocks.size()] = 0; for(int j=curBlocks.size()-1; j>=0; j--){ int idx = Collections.binarySearch(curBlocks, new Block(curBlocks.get(j).r+1, curBlocks.get(j).r+1, curBlocks.get(j).sum)); if(idx<0) idx = -(idx+1); memo[j] = Math.max(memo[j+1], 1+memo[idx]); } if(memo[0]>best.size()){ best = new ArrayList<>(); int idx = 0; while(memo[idx]>=1){ if(memo[idx]>memo[idx+1]) best.add(curBlocks.get(idx)); idx++; } } } StringBuilder sb = new StringBuilder(); sb.append(best.size()).append("\n"); for(Block b : best){ sb.append(b.l+1).append(" ").append(b.r+1).append("\n"); } System.out.print(sb); } static class Block implements Comparable<Block>{ int l, r, sum; Block(int a, int b, int c){ l = a; r = b; sum = c; } @Override public int compareTo(Block o) { if(sum==o.sum){ if(l==o.l) return r-o.r; return l-o.l; } return sum-o.sum; } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; public class CF1141F { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] split = br.readLine().split(" "); int[] terms = new int[n]; int[] sums = new int[n+1]; for(int i=0; i<n; i++) { terms[i] = Integer.parseInt(split[i]); sums[i+1] = sums[i]+terms[i]; } ArrayList<Block> blocks = new ArrayList<>(); for(int i=0; i<n; i++) for(int j=i; j<n; j++){ int s = sums[j+1]-sums[i]; blocks.add(new Block(i, j, s)); } Collections.sort(blocks); ArrayList<Block> best = new ArrayList<>(); int i = 0; while(i<blocks.size()){ int curSum = blocks.get(i).sum; ArrayList<Block> curBlocks = new ArrayList<>(); while(i<blocks.size() && blocks.get(i).sum==curSum) curBlocks.add(blocks.get(i++)); int[] memo = new int[curBlocks.size()+1]; Arrays.fill(memo, -1); memo[curBlocks.size()] = 0; for(int j=curBlocks.size()-1; j>=0; j--){ int idx = Collections.binarySearch(curBlocks, new Block(curBlocks.get(j).r+1, curBlocks.get(j).r+1, curBlocks.get(j).sum)); if(idx<0) idx = -(idx+1); memo[j] = Math.max(memo[j+1], 1+memo[idx]); } if(memo[0]>best.size()){ best = new ArrayList<>(); int idx = 0; while(memo[idx]>=1){ if(memo[idx]>memo[idx+1]) best.add(curBlocks.get(idx)); idx++; } } } StringBuilder sb = new StringBuilder(); sb.append(best.size()).append("\n"); for(Block b : best){ sb.append(b.l+1).append(" ").append(b.r+1).append("\n"); } System.out.print(sb); } static class Block implements Comparable<Block>{ int l, r, sum; Block(int a, int b, int c){ l = a; r = b; sum = c; } @Override public int compareTo(Block o) { if(sum==o.sum){ if(l==o.l) return r-o.r; return l-o.l; } return sum-o.sum; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; public class CF1141F { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] split = br.readLine().split(" "); int[] terms = new int[n]; int[] sums = new int[n+1]; for(int i=0; i<n; i++) { terms[i] = Integer.parseInt(split[i]); sums[i+1] = sums[i]+terms[i]; } ArrayList<Block> blocks = new ArrayList<>(); for(int i=0; i<n; i++) for(int j=i; j<n; j++){ int s = sums[j+1]-sums[i]; blocks.add(new Block(i, j, s)); } Collections.sort(blocks); ArrayList<Block> best = new ArrayList<>(); int i = 0; while(i<blocks.size()){ int curSum = blocks.get(i).sum; ArrayList<Block> curBlocks = new ArrayList<>(); while(i<blocks.size() && blocks.get(i).sum==curSum) curBlocks.add(blocks.get(i++)); int[] memo = new int[curBlocks.size()+1]; Arrays.fill(memo, -1); memo[curBlocks.size()] = 0; for(int j=curBlocks.size()-1; j>=0; j--){ int idx = Collections.binarySearch(curBlocks, new Block(curBlocks.get(j).r+1, curBlocks.get(j).r+1, curBlocks.get(j).sum)); if(idx<0) idx = -(idx+1); memo[j] = Math.max(memo[j+1], 1+memo[idx]); } if(memo[0]>best.size()){ best = new ArrayList<>(); int idx = 0; while(memo[idx]>=1){ if(memo[idx]>memo[idx+1]) best.add(curBlocks.get(idx)); idx++; } } } StringBuilder sb = new StringBuilder(); sb.append(best.size()).append("\n"); for(Block b : best){ sb.append(b.l+1).append(" ").append(b.r+1).append("\n"); } System.out.print(sb); } static class Block implements Comparable<Block>{ int l, r, sum; Block(int a, int b, int c){ l = a; r = b; sum = c; } @Override public int compareTo(Block o) { if(sum==o.sum){ if(l==o.l) return r-o.r; return l-o.l; } return sum-o.sum; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
962
2,526
2,399
//app.は全部けす import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Scanner; //流す前にfinalにする public final class EcRound35DApplication { public static void main(String[] args) { Input input = new Input(); input = SystemInput(); List<String> resultList = run(input); for(String result:resultList){ System.out.println(result); } } //流す前にstaticにする private static void tester(Integer no,List<Integer> inputList,List<String> answer) { Input input = new Input(); input.setInput(inputList); List<String> result = run(input); if(result.equals(answer)) { System.out.println("No." + no + ":OK"); } else { System.out.println("No." + no + ":failed"); System.out.println("result:" + result); System.out.println("answer:" + answer); } } //流す前にstaticにする private static Input SystemInput() { Input input = new Input(); Scanner sc = new Scanner(System.in); List<Integer> inputList = new ArrayList<Integer>(); while(sc.hasNextInt()) { inputList.add(sc.nextInt()); } input.setInput(inputList); sc.close(); return input; } //流す前にstaticにする private static List<String> run(Input input) { List<String> result = new ArrayList<String>(); List<Integer> permutation = input.getPermutationList(); Integer count; count = inversion(permutation); for(Integer i = 0;i < input.getQueryNum();i++) { count = count + change(input.getQuery(i)); result.add(evenOdd(count)); } return result; } //カウントする private static Integer inversion(List<Integer>permutation) { String result = new String(); Integer inversionCount = 0; for(Integer i = 0; i < permutation.size(); i++) { for(Integer j = i + 1; j < permutation.size(); j++) { if(permutation.get(i) > permutation.get(j)) { inversionCount++; } } } return inversionCount; } //交換時追加分カウント private static Integer change(Query query) { Integer result; result = query.getLength() * (query.getLength() - 1) / 2; return result; } //判定する private static String evenOdd(Integer i) { if(i % 2 == 0) { return "even"; } else { return "odd"; } } private static class Query{ private Integer l; private Integer r; public void setQuery(Integer l,Integer r) { this.l = l; this.r = r; } public Integer getL() { return l; } public void setL(Integer l) { this.l = l; } public Integer getR() { return r; } public void setR(Integer r) { this.r = r; } public Integer getLength(){ return r - l + 1; } } //流す前にstaticにする private static class Input{ private Integer length; private List<Integer> permutationList = new ArrayList<Integer>(); private Integer queryNum; private List<Query> queryList = new ArrayList<Query>(); public void setInput(List<Integer> inputList) { this.length = inputList.get(0); setPermutationList(inputList.subList(1, length+1)); this.queryNum = inputList.get(length+1); for(Integer j = length+2; j < inputList.size()-1; j = j + 2) { addQueryList(inputList.get(j),inputList.get(j+1)); } // checkInput(); } public void checkInput() { System.out.println("permutation length:" + permutationList.size()); System.out.println("permutation:" + permutationList); System.out.println("query length:" + queryList.size()); System.out.println("queries:"); for(Integer i = 0;i < queryList.size();i++) { System.out.println(this.getQueryL(i) + " " + this.getQueryR(i)); } } public Integer getLength() { return length; } public void setLength(Integer length) { this.length = length; } public List<Integer> getPermutationList() { return permutationList; } public void setPermutationList(List<Integer> permutationList) { this.permutationList = permutationList; } public Integer getPermutation(Integer i) { return permutationList.get(i); } public void addPermutationList(Integer newPermutation) { this.permutationList.add(newPermutation); } public Integer getQueryNum() { return queryNum; } public void setQueryNum(Integer queryNum) { this.queryNum = queryNum; } public Query getQuery(Integer i) { return queryList.get(i); } public Integer getQueryL(Integer i) { return queryList.get(i).getL(); } public Integer getQueryR(Integer i) { return queryList.get(i).getR(); } public List<Query> getQueryList() { return queryList; } public void setQueryList(List<Query> queryList) { this.queryList = queryList; } public void addQueryList(Query newQuery) { this.queryList.add(newQuery); } public void addQueryList(Integer l,Integer r) { Query newQuery = new Query(); newQuery.setQuery(l, r); addQueryList(newQuery); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //app.は全部けす import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Scanner; //流す前にfinalにする public final class EcRound35DApplication { public static void main(String[] args) { Input input = new Input(); input = SystemInput(); List<String> resultList = run(input); for(String result:resultList){ System.out.println(result); } } //流す前にstaticにする private static void tester(Integer no,List<Integer> inputList,List<String> answer) { Input input = new Input(); input.setInput(inputList); List<String> result = run(input); if(result.equals(answer)) { System.out.println("No." + no + ":OK"); } else { System.out.println("No." + no + ":failed"); System.out.println("result:" + result); System.out.println("answer:" + answer); } } //流す前にstaticにする private static Input SystemInput() { Input input = new Input(); Scanner sc = new Scanner(System.in); List<Integer> inputList = new ArrayList<Integer>(); while(sc.hasNextInt()) { inputList.add(sc.nextInt()); } input.setInput(inputList); sc.close(); return input; } //流す前にstaticにする private static List<String> run(Input input) { List<String> result = new ArrayList<String>(); List<Integer> permutation = input.getPermutationList(); Integer count; count = inversion(permutation); for(Integer i = 0;i < input.getQueryNum();i++) { count = count + change(input.getQuery(i)); result.add(evenOdd(count)); } return result; } //カウントする private static Integer inversion(List<Integer>permutation) { String result = new String(); Integer inversionCount = 0; for(Integer i = 0; i < permutation.size(); i++) { for(Integer j = i + 1; j < permutation.size(); j++) { if(permutation.get(i) > permutation.get(j)) { inversionCount++; } } } return inversionCount; } //交換時追加分カウント private static Integer change(Query query) { Integer result; result = query.getLength() * (query.getLength() - 1) / 2; return result; } //判定する private static String evenOdd(Integer i) { if(i % 2 == 0) { return "even"; } else { return "odd"; } } private static class Query{ private Integer l; private Integer r; public void setQuery(Integer l,Integer r) { this.l = l; this.r = r; } public Integer getL() { return l; } public void setL(Integer l) { this.l = l; } public Integer getR() { return r; } public void setR(Integer r) { this.r = r; } public Integer getLength(){ return r - l + 1; } } //流す前にstaticにする private static class Input{ private Integer length; private List<Integer> permutationList = new ArrayList<Integer>(); private Integer queryNum; private List<Query> queryList = new ArrayList<Query>(); public void setInput(List<Integer> inputList) { this.length = inputList.get(0); setPermutationList(inputList.subList(1, length+1)); this.queryNum = inputList.get(length+1); for(Integer j = length+2; j < inputList.size()-1; j = j + 2) { addQueryList(inputList.get(j),inputList.get(j+1)); } // checkInput(); } public void checkInput() { System.out.println("permutation length:" + permutationList.size()); System.out.println("permutation:" + permutationList); System.out.println("query length:" + queryList.size()); System.out.println("queries:"); for(Integer i = 0;i < queryList.size();i++) { System.out.println(this.getQueryL(i) + " " + this.getQueryR(i)); } } public Integer getLength() { return length; } public void setLength(Integer length) { this.length = length; } public List<Integer> getPermutationList() { return permutationList; } public void setPermutationList(List<Integer> permutationList) { this.permutationList = permutationList; } public Integer getPermutation(Integer i) { return permutationList.get(i); } public void addPermutationList(Integer newPermutation) { this.permutationList.add(newPermutation); } public Integer getQueryNum() { return queryNum; } public void setQueryNum(Integer queryNum) { this.queryNum = queryNum; } public Query getQuery(Integer i) { return queryList.get(i); } public Integer getQueryL(Integer i) { return queryList.get(i).getL(); } public Integer getQueryR(Integer i) { return queryList.get(i).getR(); } public List<Query> getQueryList() { return queryList; } public void setQueryList(List<Query> queryList) { this.queryList = queryList; } public void addQueryList(Query newQuery) { this.queryList.add(newQuery); } public void addQueryList(Integer l,Integer r) { Query newQuery = new Query(); newQuery.setQuery(l, r); addQueryList(newQuery); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //app.は全部けす import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Scanner; //流す前にfinalにする public final class EcRound35DApplication { public static void main(String[] args) { Input input = new Input(); input = SystemInput(); List<String> resultList = run(input); for(String result:resultList){ System.out.println(result); } } //流す前にstaticにする private static void tester(Integer no,List<Integer> inputList,List<String> answer) { Input input = new Input(); input.setInput(inputList); List<String> result = run(input); if(result.equals(answer)) { System.out.println("No." + no + ":OK"); } else { System.out.println("No." + no + ":failed"); System.out.println("result:" + result); System.out.println("answer:" + answer); } } //流す前にstaticにする private static Input SystemInput() { Input input = new Input(); Scanner sc = new Scanner(System.in); List<Integer> inputList = new ArrayList<Integer>(); while(sc.hasNextInt()) { inputList.add(sc.nextInt()); } input.setInput(inputList); sc.close(); return input; } //流す前にstaticにする private static List<String> run(Input input) { List<String> result = new ArrayList<String>(); List<Integer> permutation = input.getPermutationList(); Integer count; count = inversion(permutation); for(Integer i = 0;i < input.getQueryNum();i++) { count = count + change(input.getQuery(i)); result.add(evenOdd(count)); } return result; } //カウントする private static Integer inversion(List<Integer>permutation) { String result = new String(); Integer inversionCount = 0; for(Integer i = 0; i < permutation.size(); i++) { for(Integer j = i + 1; j < permutation.size(); j++) { if(permutation.get(i) > permutation.get(j)) { inversionCount++; } } } return inversionCount; } //交換時追加分カウント private static Integer change(Query query) { Integer result; result = query.getLength() * (query.getLength() - 1) / 2; return result; } //判定する private static String evenOdd(Integer i) { if(i % 2 == 0) { return "even"; } else { return "odd"; } } private static class Query{ private Integer l; private Integer r; public void setQuery(Integer l,Integer r) { this.l = l; this.r = r; } public Integer getL() { return l; } public void setL(Integer l) { this.l = l; } public Integer getR() { return r; } public void setR(Integer r) { this.r = r; } public Integer getLength(){ return r - l + 1; } } //流す前にstaticにする private static class Input{ private Integer length; private List<Integer> permutationList = new ArrayList<Integer>(); private Integer queryNum; private List<Query> queryList = new ArrayList<Query>(); public void setInput(List<Integer> inputList) { this.length = inputList.get(0); setPermutationList(inputList.subList(1, length+1)); this.queryNum = inputList.get(length+1); for(Integer j = length+2; j < inputList.size()-1; j = j + 2) { addQueryList(inputList.get(j),inputList.get(j+1)); } // checkInput(); } public void checkInput() { System.out.println("permutation length:" + permutationList.size()); System.out.println("permutation:" + permutationList); System.out.println("query length:" + queryList.size()); System.out.println("queries:"); for(Integer i = 0;i < queryList.size();i++) { System.out.println(this.getQueryL(i) + " " + this.getQueryR(i)); } } public Integer getLength() { return length; } public void setLength(Integer length) { this.length = length; } public List<Integer> getPermutationList() { return permutationList; } public void setPermutationList(List<Integer> permutationList) { this.permutationList = permutationList; } public Integer getPermutation(Integer i) { return permutationList.get(i); } public void addPermutationList(Integer newPermutation) { this.permutationList.add(newPermutation); } public Integer getQueryNum() { return queryNum; } public void setQueryNum(Integer queryNum) { this.queryNum = queryNum; } public Query getQuery(Integer i) { return queryList.get(i); } public Integer getQueryL(Integer i) { return queryList.get(i).getL(); } public Integer getQueryR(Integer i) { return queryList.get(i).getR(); } public List<Query> getQueryList() { return queryList; } public void setQueryList(List<Query> queryList) { this.queryList = queryList; } public void addQueryList(Query newQuery) { this.queryList.add(newQuery); } public void addQueryList(Integer l,Integer r) { Query newQuery = new Query(); newQuery.setQuery(l, r); addQueryList(newQuery); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,608
2,394
3,847
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { // your code goes here BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); for(int q=0;q<t;q++){ String s = br.readLine(); int n = Integer.parseInt(s); int a[] = new int[1000]; int index=0; for(int i=0;i<n;i++){ int x = Integer.parseInt(br.readLine()); for(int j=index;j>=0;j--){ if(x-1==a[j]){ a[j]=x; for(int k=0;k<j;k++){ System.out.print(a[k]+"."); } System.out.print(a[j]); System.out.println(); for(int k=j+1;k<1000;k++){ if(a[k]!=0) a[k]=0; else break; } index=j+1; // System.out.println(a[j]+"*"+j); break; } } } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { // your code goes here BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); for(int q=0;q<t;q++){ String s = br.readLine(); int n = Integer.parseInt(s); int a[] = new int[1000]; int index=0; for(int i=0;i<n;i++){ int x = Integer.parseInt(br.readLine()); for(int j=index;j>=0;j--){ if(x-1==a[j]){ a[j]=x; for(int k=0;k<j;k++){ System.out.print(a[k]+"."); } System.out.print(a[j]); System.out.println(); for(int k=j+1;k<1000;k++){ if(a[k]!=0) a[k]=0; else break; } index=j+1; // System.out.println(a[j]+"*"+j); break; } } } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { // your code goes here BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); for(int q=0;q<t;q++){ String s = br.readLine(); int n = Integer.parseInt(s); int a[] = new int[1000]; int index=0; for(int i=0;i<n;i++){ int x = Integer.parseInt(br.readLine()); for(int j=index;j>=0;j--){ if(x-1==a[j]){ a[j]=x; for(int k=0;k<j;k++){ System.out.print(a[k]+"."); } System.out.print(a[j]); System.out.println(); for(int k=j+1;k<1000;k++){ if(a[k]!=0) a[k]=0; else break; } index=j+1; // System.out.println(a[j]+"*"+j); break; } } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
648
3,837
1,067
import java.util.Scanner; public class Solution { public static void main(String[] args) { long b=0;long p=1; Scanner s=new Scanner(System.in); long m=s.nextLong(); long x=1; do{ p=(m+b)/x; b=10*b+10; x++; }while(p/(long)Math.pow(10, x-1)!=0); rest : x--;b=b/10-1; b=x*p-b; b=m-b; b=x-b-1; p/=(long)Math.pow(10, b); p%=10; System.out.println(p); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Solution { public static void main(String[] args) { long b=0;long p=1; Scanner s=new Scanner(System.in); long m=s.nextLong(); long x=1; do{ p=(m+b)/x; b=10*b+10; x++; }while(p/(long)Math.pow(10, x-1)!=0); rest : x--;b=b/10-1; b=x*p-b; b=m-b; b=x-b-1; p/=(long)Math.pow(10, b); p%=10; System.out.println(p); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class Solution { public static void main(String[] args) { long b=0;long p=1; Scanner s=new Scanner(System.in); long m=s.nextLong(); long x=1; do{ p=(m+b)/x; b=10*b+10; x++; }while(p/(long)Math.pow(10, x-1)!=0); rest : x--;b=b/10-1; b=x*p-b; b=m-b; b=x-b-1; p/=(long)Math.pow(10, b); p%=10; System.out.println(p); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
482
1,066
681
import jdk.nashorn.internal.objects.NativeArray; import javax.swing.JOptionPane ; import javax.swing.plaf.basic.BasicInternalFrameTitlePane; import java.sql.SQLSyntaxErrorException; import java.util.Arrays; import java.util.Scanner; import java.util.Vector; import static jdk.nashorn.internal.objects.NativeArray.sort; import static jdk.nashorn.internal.runtime.ScriptObject.toPropertyDescriptor; public class Dialog1 { private static int n ; private static String s ; private static char[] a; public static void main(String[] args) { Scanner input = new Scanner(System.in); n = input.nextInt() ; s = input.next() ; a = s.toCharArray(); for(int i = 0 ; i < 200 ; ++i) { int cur = i ; boolean fl = true ; for(int j = 0 ; j < n ; ++j) { if(a[j] == '+') ++cur ; else --cur ; if(cur < 0) fl = false ; } if(fl) { System.out.print(cur); return ; } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import jdk.nashorn.internal.objects.NativeArray; import javax.swing.JOptionPane ; import javax.swing.plaf.basic.BasicInternalFrameTitlePane; import java.sql.SQLSyntaxErrorException; import java.util.Arrays; import java.util.Scanner; import java.util.Vector; import static jdk.nashorn.internal.objects.NativeArray.sort; import static jdk.nashorn.internal.runtime.ScriptObject.toPropertyDescriptor; public class Dialog1 { private static int n ; private static String s ; private static char[] a; public static void main(String[] args) { Scanner input = new Scanner(System.in); n = input.nextInt() ; s = input.next() ; a = s.toCharArray(); for(int i = 0 ; i < 200 ; ++i) { int cur = i ; boolean fl = true ; for(int j = 0 ; j < n ; ++j) { if(a[j] == '+') ++cur ; else --cur ; if(cur < 0) fl = false ; } if(fl) { System.out.print(cur); return ; } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import jdk.nashorn.internal.objects.NativeArray; import javax.swing.JOptionPane ; import javax.swing.plaf.basic.BasicInternalFrameTitlePane; import java.sql.SQLSyntaxErrorException; import java.util.Arrays; import java.util.Scanner; import java.util.Vector; import static jdk.nashorn.internal.objects.NativeArray.sort; import static jdk.nashorn.internal.runtime.ScriptObject.toPropertyDescriptor; public class Dialog1 { private static int n ; private static String s ; private static char[] a; public static void main(String[] args) { Scanner input = new Scanner(System.in); n = input.nextInt() ; s = input.next() ; a = s.toCharArray(); for(int i = 0 ; i < 200 ; ++i) { int cur = i ; boolean fl = true ; for(int j = 0 ; j < n ; ++j) { if(a[j] == '+') ++cur ; else --cur ; if(cur < 0) fl = false ; } if(fl) { System.out.print(cur); return ; } } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
581
680
4,164
import java.util.*; import java.text.*; import java.math.*; public class Main{ static double EPS=1e-10; static double PI=Math.acos(-1.0); static double p[][]=new double[25][25]; static double f[]=new double[1<<20]; static int n; public static void PR(String s){ System.out.print(s); } public static void PR(double s) { java.text.DecimalFormat d=new java.text.DecimalFormat("#.0000000"); System.out.print(d.format(s)); } public static void DP() { int i,j,k,cnt; for(i=0;i<(1<<n);i++) f[i]=0; f[(1<<n)-1]=1; for(k=(1<<n)-1;k>=0;k--) { cnt=0; for(i=0;i<n;i++) if((k&(1<<i))!=0) cnt++; for(i=0;i<n;i++) if((k&(1<<i))!=0) { for(j=0;j<n;j++) if(i!=j&&(k&(1<<j))!=0) { f[k^(1<<j)]+=f[k]*p[i][j]/((cnt-1)*cnt/2); } } } } public static void main(String[] args){ Scanner S=new Scanner(System.in); while(S.hasNext()) { n=S.nextInt(); int i,j; for(i=0;i<n;i++) for(j=0;j<n;j++) p[i][j]=S.nextDouble(); DP(); for(i=0;i<n;i++) { if(i!=0) PR(" "); PR(f[1<<i]); } PR("\n"); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.text.*; import java.math.*; public class Main{ static double EPS=1e-10; static double PI=Math.acos(-1.0); static double p[][]=new double[25][25]; static double f[]=new double[1<<20]; static int n; public static void PR(String s){ System.out.print(s); } public static void PR(double s) { java.text.DecimalFormat d=new java.text.DecimalFormat("#.0000000"); System.out.print(d.format(s)); } public static void DP() { int i,j,k,cnt; for(i=0;i<(1<<n);i++) f[i]=0; f[(1<<n)-1]=1; for(k=(1<<n)-1;k>=0;k--) { cnt=0; for(i=0;i<n;i++) if((k&(1<<i))!=0) cnt++; for(i=0;i<n;i++) if((k&(1<<i))!=0) { for(j=0;j<n;j++) if(i!=j&&(k&(1<<j))!=0) { f[k^(1<<j)]+=f[k]*p[i][j]/((cnt-1)*cnt/2); } } } } public static void main(String[] args){ Scanner S=new Scanner(System.in); while(S.hasNext()) { n=S.nextInt(); int i,j; for(i=0;i<n;i++) for(j=0;j<n;j++) p[i][j]=S.nextDouble(); DP(); for(i=0;i<n;i++) { if(i!=0) PR(" "); PR(f[1<<i]); } PR("\n"); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.text.*; import java.math.*; public class Main{ static double EPS=1e-10; static double PI=Math.acos(-1.0); static double p[][]=new double[25][25]; static double f[]=new double[1<<20]; static int n; public static void PR(String s){ System.out.print(s); } public static void PR(double s) { java.text.DecimalFormat d=new java.text.DecimalFormat("#.0000000"); System.out.print(d.format(s)); } public static void DP() { int i,j,k,cnt; for(i=0;i<(1<<n);i++) f[i]=0; f[(1<<n)-1]=1; for(k=(1<<n)-1;k>=0;k--) { cnt=0; for(i=0;i<n;i++) if((k&(1<<i))!=0) cnt++; for(i=0;i<n;i++) if((k&(1<<i))!=0) { for(j=0;j<n;j++) if(i!=j&&(k&(1<<j))!=0) { f[k^(1<<j)]+=f[k]*p[i][j]/((cnt-1)*cnt/2); } } } } public static void main(String[] args){ Scanner S=new Scanner(System.in); while(S.hasNext()) { n=S.nextInt(); int i,j; for(i=0;i<n;i++) for(j=0;j<n;j++) p[i][j]=S.nextDouble(); DP(); for(i=0;i<n;i++) { if(i!=0) PR(" "); PR(f[1<<i]); } PR("\n"); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
746
4,153
752
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.StringTokenizer; public class C364 { static HashMap<Character, Integer> freq; static int unique = 0; public static void main(String[] args) throws Exception { FastScanner in = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(); char[] s = in.next().toCharArray(); freq = new HashMap<Character, Integer>(); for(int i = 0; i < n; i++) { char c = s[i]; if(!freq.containsKey(c)) freq.put(c, 0); } int k = freq.size(); int l = 0, r = 0, best = n; inc(s[0]); while(r < n) { if(unique == k) { // got all, move left best = Math.min(best, r+1-l); dec(s[l++]); } else { // advance r if(++r == n) break; inc(s[r]); } } pw.println(best); pw.flush(); pw.close(); } static void inc(char c) { int cur = freq.get(c); if(cur == 0) unique++; freq.put(c, cur+1); } static void dec(char c) { int cur = freq.get(c); if(cur == 1) unique--; freq.put(c, cur-1); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); } String next() throws Exception { while(!st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(next()); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.StringTokenizer; public class C364 { static HashMap<Character, Integer> freq; static int unique = 0; public static void main(String[] args) throws Exception { FastScanner in = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(); char[] s = in.next().toCharArray(); freq = new HashMap<Character, Integer>(); for(int i = 0; i < n; i++) { char c = s[i]; if(!freq.containsKey(c)) freq.put(c, 0); } int k = freq.size(); int l = 0, r = 0, best = n; inc(s[0]); while(r < n) { if(unique == k) { // got all, move left best = Math.min(best, r+1-l); dec(s[l++]); } else { // advance r if(++r == n) break; inc(s[r]); } } pw.println(best); pw.flush(); pw.close(); } static void inc(char c) { int cur = freq.get(c); if(cur == 0) unique++; freq.put(c, cur+1); } static void dec(char c) { int cur = freq.get(c); if(cur == 1) unique--; freq.put(c, cur-1); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); } String next() throws Exception { while(!st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.HashMap; import java.util.StringTokenizer; public class C364 { static HashMap<Character, Integer> freq; static int unique = 0; public static void main(String[] args) throws Exception { FastScanner in = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = in.nextInt(); char[] s = in.next().toCharArray(); freq = new HashMap<Character, Integer>(); for(int i = 0; i < n; i++) { char c = s[i]; if(!freq.containsKey(c)) freq.put(c, 0); } int k = freq.size(); int l = 0, r = 0, best = n; inc(s[0]); while(r < n) { if(unique == k) { // got all, move left best = Math.min(best, r+1-l); dec(s[l++]); } else { // advance r if(++r == n) break; inc(s[r]); } } pw.println(best); pw.flush(); pw.close(); } static void inc(char c) { int cur = freq.get(c); if(cur == 0) unique++; freq.put(c, cur+1); } static void dec(char c) { int cur = freq.get(c); if(cur == 1) unique--; freq.put(c, cur-1); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); } String next() throws Exception { while(!st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
768
751
350
//package round43; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class C { Scanner in; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); char[] x = in.next().toCharArray(); int t = 0; for(int i = 0;i < n;i++){ if(x[i] == 'T'){ t++; } } int min = 9999; for(int i = 0;i < n;i++){ int y = 0; for(int j = i;j < i + t;j++){ if(x[j % n] == 'T'){ y++; } } min = Math.min(min, t - y); } out.println(min); } void run() throws Exception { in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(INPUT); out = new PrintWriter(System.out); solve(); out.flush(); } public static void main(String[] args) throws Exception { new C().run(); } int ni() { return Integer.parseInt(in.next()); } void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> //package round43; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class C { Scanner in; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); char[] x = in.next().toCharArray(); int t = 0; for(int i = 0;i < n;i++){ if(x[i] == 'T'){ t++; } } int min = 9999; for(int i = 0;i < n;i++){ int y = 0; for(int j = i;j < i + t;j++){ if(x[j % n] == 'T'){ y++; } } min = Math.min(min, t - y); } out.println(min); } void run() throws Exception { in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(INPUT); out = new PrintWriter(System.out); solve(); out.flush(); } public static void main(String[] args) throws Exception { new C().run(); } int ni() { return Integer.parseInt(in.next()); } void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> //package round43; import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class C { Scanner in; PrintWriter out; String INPUT = ""; void solve() { int n = ni(); char[] x = in.next().toCharArray(); int t = 0; for(int i = 0;i < n;i++){ if(x[i] == 'T'){ t++; } } int min = 9999; for(int i = 0;i < n;i++){ int y = 0; for(int j = i;j < i + t;j++){ if(x[j % n] == 'T'){ y++; } } min = Math.min(min, t - y); } out.println(min); } void run() throws Exception { in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(INPUT); out = new PrintWriter(System.out); solve(); out.flush(); } public static void main(String[] args) throws Exception { new C().run(); } int ni() { return Integer.parseInt(in.next()); } void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
632
349