id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
3,167 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class BankAccount {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s = in.readLine();
int n = Integer.parseInt(s);
if (s.charAt(0) == '-')
if (Integer.parseInt(s.substring(0, s.length()-1))>Integer.parseInt(s.substring(0, s.length()-2)+s.charAt(s.length()-1)))
s=s.substring(0, s.length()-1);
else
s=s.substring(0, s.length()-2)+s.charAt(s.length()-1);
System.out.println(Integer.parseInt(s));
in.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class BankAccount {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s = in.readLine();
int n = Integer.parseInt(s);
if (s.charAt(0) == '-')
if (Integer.parseInt(s.substring(0, s.length()-1))>Integer.parseInt(s.substring(0, s.length()-2)+s.charAt(s.length()-1)))
s=s.substring(0, s.length()-1);
else
s=s.substring(0, s.length()-2)+s.charAt(s.length()-1);
System.out.println(Integer.parseInt(s));
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class BankAccount {
/**
* @param args
* @throws IOException
*/
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String s = in.readLine();
int n = Integer.parseInt(s);
if (s.charAt(0) == '-')
if (Integer.parseInt(s.substring(0, s.length()-1))>Integer.parseInt(s.substring(0, s.length()-2)+s.charAt(s.length()-1)))
s=s.substring(0, s.length()-1);
else
s=s.substring(0, s.length()-2)+s.charAt(s.length()-1);
System.out.println(Integer.parseInt(s));
in.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 496 | 3,161 |
644 |
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author Saransh
*/
import java.util.*;
import java.io.*;
import java.math.*;
import java.lang.*;
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
try
{
Parserdoubt pd=new Parserdoubt(System.in);
int t=pd.nextInt();
int inde=0,indo=0,o=0,e=0;
for(int i=0;i<t;i++)
{
if(pd.nextInt()%2==0)
{
inde=i;
e++;
}
else
{
o++;
indo=i;
}
}
if(o==1)
{
System.out.println(indo+1);
}
else
{
System.out.println(inde+1);
}
}
catch(Exception e){}
}
}
class Parserdoubt
{
final private int BUFFER_SIZE = 1 << 17;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Parserdoubt(InputStream in)
{
din = new DataInputStream(in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String nextString() throws Exception
{
StringBuffer sb=new StringBuffer("");
byte c = read();
while (c <= ' ') c = read();
do
{
sb.append((char)c);
c=read();
}while(c>' ');
return sb.toString();
}
public char nextChar() throws Exception
{
byte c=read();
while(c<=' ') c= read();
return (char)c;
}
public int nextInt() throws Exception
{
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = c == '-';
if (neg) c = read();
do
{
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) return -ret;
return ret;
}
public long nextLong() throws Exception
{
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = c == '-';
if (neg) c = read();
do
{
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws Exception
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws Exception
{
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author Saransh
*/
import java.util.*;
import java.io.*;
import java.math.*;
import java.lang.*;
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
try
{
Parserdoubt pd=new Parserdoubt(System.in);
int t=pd.nextInt();
int inde=0,indo=0,o=0,e=0;
for(int i=0;i<t;i++)
{
if(pd.nextInt()%2==0)
{
inde=i;
e++;
}
else
{
o++;
indo=i;
}
}
if(o==1)
{
System.out.println(indo+1);
}
else
{
System.out.println(inde+1);
}
}
catch(Exception e){}
}
}
class Parserdoubt
{
final private int BUFFER_SIZE = 1 << 17;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Parserdoubt(InputStream in)
{
din = new DataInputStream(in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String nextString() throws Exception
{
StringBuffer sb=new StringBuffer("");
byte c = read();
while (c <= ' ') c = read();
do
{
sb.append((char)c);
c=read();
}while(c>' ');
return sb.toString();
}
public char nextChar() throws Exception
{
byte c=read();
while(c<=' ') c= read();
return (char)c;
}
public int nextInt() throws Exception
{
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = c == '-';
if (neg) c = read();
do
{
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) return -ret;
return ret;
}
public long nextLong() throws Exception
{
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = c == '-';
if (neg) c = read();
do
{
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws Exception
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws Exception
{
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author Saransh
*/
import java.util.*;
import java.io.*;
import java.math.*;
import java.lang.*;
public class Main {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
// TODO code application logic here
try
{
Parserdoubt pd=new Parserdoubt(System.in);
int t=pd.nextInt();
int inde=0,indo=0,o=0,e=0;
for(int i=0;i<t;i++)
{
if(pd.nextInt()%2==0)
{
inde=i;
e++;
}
else
{
o++;
indo=i;
}
}
if(o==1)
{
System.out.println(indo+1);
}
else
{
System.out.println(inde+1);
}
}
catch(Exception e){}
}
}
class Parserdoubt
{
final private int BUFFER_SIZE = 1 << 17;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Parserdoubt(InputStream in)
{
din = new DataInputStream(in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String nextString() throws Exception
{
StringBuffer sb=new StringBuffer("");
byte c = read();
while (c <= ' ') c = read();
do
{
sb.append((char)c);
c=read();
}while(c>' ');
return sb.toString();
}
public char nextChar() throws Exception
{
byte c=read();
while(c<=' ') c= read();
return (char)c;
}
public int nextInt() throws Exception
{
int ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = c == '-';
if (neg) c = read();
do
{
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) return -ret;
return ret;
}
public long nextLong() throws Exception
{
long ret = 0;
byte c = read();
while (c <= ' ') c = read();
boolean neg = c == '-';
if (neg) c = read();
do
{
ret = ret * 10 + c - '0';
c = read();
} while (c > ' ');
if (neg) return -ret;
return ret;
}
private void fillBuffer() throws Exception
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) buffer[0] = -1;
}
private byte read() throws Exception
{
if (bufferPointer == bytesRead) fillBuffer();
return buffer[bufferPointer++];
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,004 | 643 |
1,420 |
import java.util.*;
public class Main{
public static void main(String[]args){
Scanner cin=new Scanner(System.in);
long z=cin.nextLong()-1<<1,n=cin.nextInt(),l=-1,r=1+n,m;
while(l<(m=l+r>>1)) if(z>(m+n-1)*(n-m)) r=m;else l=m;
if(0<l) l=n-l;
System.out.print(l);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main{
public static void main(String[]args){
Scanner cin=new Scanner(System.in);
long z=cin.nextLong()-1<<1,n=cin.nextInt(),l=-1,r=1+n,m;
while(l<(m=l+r>>1)) if(z>(m+n-1)*(n-m)) r=m;else l=m;
if(0<l) l=n-l;
System.out.print(l);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class Main{
public static void main(String[]args){
Scanner cin=new Scanner(System.in);
long z=cin.nextLong()-1<<1,n=cin.nextInt(),l=-1,r=1+n,m;
while(l<(m=l+r>>1)) if(z>(m+n-1)*(n-m)) r=m;else l=m;
if(0<l) l=n-l;
System.out.print(l);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 428 | 1,418 |
3,286 |
import java.io.*;
import java.util.StringTokenizer;
/**
* Author: Maksim Novik
* Date: 30.06.12
* Time: 22:34
*/
public class Round125ProblemA {
public static void main(String[] args) {
InputStream in = System.in;
OutputStream out = System.out;
InputReader reader = new InputReader(in);
PrintWriter writer = new PrintWriter(out);
solve(reader, writer);
writer.close();
}
static void solve(InputReader in, PrintWriter out) {
long fib = in.nextLong();
out.write("" + 0 + " " + 0 + " " + fib);
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* Author: Maksim Novik
* Date: 30.06.12
* Time: 22:34
*/
public class Round125ProblemA {
public static void main(String[] args) {
InputStream in = System.in;
OutputStream out = System.out;
InputReader reader = new InputReader(in);
PrintWriter writer = new PrintWriter(out);
solve(reader, writer);
writer.close();
}
static void solve(InputReader in, PrintWriter out) {
long fib = in.nextLong();
out.write("" + 0 + " " + 0 + " " + fib);
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.StringTokenizer;
/**
* Author: Maksim Novik
* Date: 30.06.12
* Time: 22:34
*/
public class Round125ProblemA {
public static void main(String[] args) {
InputStream in = System.in;
OutputStream out = System.out;
InputReader reader = new InputReader(in);
PrintWriter writer = new PrintWriter(out);
solve(reader, writer);
writer.close();
}
static void solve(InputReader in, PrintWriter out) {
long fib = in.nextLong();
out.write("" + 0 + " " + 0 + " " + fib);
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 609 | 3,280 |
4,118 |
import java.util.*;
public class c8 {
static int n;
static int[] ds;
static int[][] g;
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int x = input.nextInt(), y = input.nextInt();
n = input.nextInt();
int[] xs = new int[n], ys = new int[n];
for(int i = 0; i<n; i++)
{
xs[i] = input.nextInt();
ys[i] = input.nextInt();
}
ds = new int[n];
g = new int[n][n];
for(int i = 0; i<n; i++)
{
ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]);
for(int j = 0; j<n; j++)
{
g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]);
}
}
int[] dp = new int[1<<n];
Arrays.fill(dp, 987654321);
dp[0] = 0;
for(int i = 0; i<(1<<n); i++)
{
if(dp[i] == 987654321) continue;
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) > 0) continue;
dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]);
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) > 0) continue;
dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]);
}
break;
}
}
Stack<Integer> stk = new Stack<Integer>();
stk.add(0);
int i = (1<<n) - 1;
//System.out.println(Arrays.toString(dp));
trace:
while(i > 0)
{
//System.out.println(i);
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) == 0) continue;
if( dp[i] == dp[i - (1<<a)] + 2*ds[a])
{
stk.add(a+1);
stk.add(0);
i -= (1<<a);
continue trace;
}
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) == 0) continue;
if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b])
{
stk.add(a+1);
stk.add(b+1);
stk.add(0);
i -= (1<<a) + (1<<b);
continue trace;
}
}
//break;
}
}
System.out.println(dp[(1<<n) - 1]);
while(!stk.isEmpty()) System.out.print(stk.pop()+" ");
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class c8 {
static int n;
static int[] ds;
static int[][] g;
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int x = input.nextInt(), y = input.nextInt();
n = input.nextInt();
int[] xs = new int[n], ys = new int[n];
for(int i = 0; i<n; i++)
{
xs[i] = input.nextInt();
ys[i] = input.nextInt();
}
ds = new int[n];
g = new int[n][n];
for(int i = 0; i<n; i++)
{
ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]);
for(int j = 0; j<n; j++)
{
g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]);
}
}
int[] dp = new int[1<<n];
Arrays.fill(dp, 987654321);
dp[0] = 0;
for(int i = 0; i<(1<<n); i++)
{
if(dp[i] == 987654321) continue;
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) > 0) continue;
dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]);
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) > 0) continue;
dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]);
}
break;
}
}
Stack<Integer> stk = new Stack<Integer>();
stk.add(0);
int i = (1<<n) - 1;
//System.out.println(Arrays.toString(dp));
trace:
while(i > 0)
{
//System.out.println(i);
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) == 0) continue;
if( dp[i] == dp[i - (1<<a)] + 2*ds[a])
{
stk.add(a+1);
stk.add(0);
i -= (1<<a);
continue trace;
}
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) == 0) continue;
if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b])
{
stk.add(a+1);
stk.add(b+1);
stk.add(0);
i -= (1<<a) + (1<<b);
continue trace;
}
}
//break;
}
}
System.out.println(dp[(1<<n) - 1]);
while(!stk.isEmpty()) System.out.print(stk.pop()+" ");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class c8 {
static int n;
static int[] ds;
static int[][] g;
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int x = input.nextInt(), y = input.nextInt();
n = input.nextInt();
int[] xs = new int[n], ys = new int[n];
for(int i = 0; i<n; i++)
{
xs[i] = input.nextInt();
ys[i] = input.nextInt();
}
ds = new int[n];
g = new int[n][n];
for(int i = 0; i<n; i++)
{
ds[i] = (x - xs[i]) * (x - xs[i]) + (y - ys[i]) * (y - ys[i]);
for(int j = 0; j<n; j++)
{
g[i][j] = (xs[i] - xs[j]) * (xs[i] - xs[j]) + (ys[i] - ys[j]) * (ys[i] - ys[j]);
}
}
int[] dp = new int[1<<n];
Arrays.fill(dp, 987654321);
dp[0] = 0;
for(int i = 0; i<(1<<n); i++)
{
if(dp[i] == 987654321) continue;
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) > 0) continue;
dp[i | (1<<a)] = Math.min(dp[i | (1<<a)], dp[i] + 2*ds[a]);
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) > 0) continue;
dp[i | (1<<a) | (1<<b)] = Math.min(dp[i | (1<<a) | (1<<b)], dp[i] + ds[a] + ds[b] + g[a][b]);
}
break;
}
}
Stack<Integer> stk = new Stack<Integer>();
stk.add(0);
int i = (1<<n) - 1;
//System.out.println(Arrays.toString(dp));
trace:
while(i > 0)
{
//System.out.println(i);
for(int a = 0; a<n; a++)
{
if((i & (1<<a)) == 0) continue;
if( dp[i] == dp[i - (1<<a)] + 2*ds[a])
{
stk.add(a+1);
stk.add(0);
i -= (1<<a);
continue trace;
}
for(int b = a+1; b<n; b++)
{
if((i & (1<<b)) == 0) continue;
if(dp[i] == dp[i - (1<<a) - (1<<b)] + ds[a] + ds[b] + g[a][b])
{
stk.add(a+1);
stk.add(b+1);
stk.add(0);
i -= (1<<a) + (1<<b);
continue trace;
}
}
//break;
}
}
System.out.println(dp[(1<<n) - 1]);
while(!stk.isEmpty()) System.out.print(stk.pop()+" ");
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,080 | 4,107 |
3,468 |
import static java.lang.Math.max;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class GivenString implements Runnable
{
public static void main(String[] args) throws Exception
{
new GivenString().run();
}
private void solve() throws Exception
{
String s = nextToken();
int len = s.length();
KMP kmp = new KMP();
int r = 0;
for (int i = 0; i < len; i++)
{
for (int j = i + 1; j <= len; j++)
{
String cur = s.substring(i, j);
int count = kmp.search(s, cur);
if (count >= 2)
r = max(r, cur.length());
}
}
out.println(r);
}
class KMP
{
public int search(String text, String pattern)
{
int count = 0;
int n = text.length(), m = pattern.length(), matchPoint = -1;
char pat[] = pattern.toCharArray(), t[] = text.toCharArray();
int p[] = prefixTable(pattern);
int j = 0;
for (int i = 0; i < n; i++)
{
while (j > 0 && pat[j] != t[i])
j = p[j - 1];
if (pat[j] == t[i])
j++;
if (j == m)
{
matchPoint = i - m + 1;
j = p[j - 1];
count++;
}
}
return count;
}
private int[] prefixTable(String pat)
{
int m = pat.length(), p[] = new int[m];
char s[] = pat.toCharArray();
int j = 0;
for (int i = 1; i < m; i++)
{
while (j > 0 && s[j] != s[i])
j = p[j - 1];
if (s[j] == s[i])
j++;
p[i] = j;
}
return p;
}
}
// -------------- Input/Output routines below ---------------//
private BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer;
public void run()
{
// String problem = this.getClass().getName();
try
{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new BufferedOutputStream(System.out));
solve();
out.flush();
in.close();
out.close();
}
catch (Exception e)
{
e.printStackTrace();
// System.exit(1);
}
}
String nextToken() throws IOException
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
{
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException
{
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException
{
return Double.parseDouble(nextToken());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.max;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class GivenString implements Runnable
{
public static void main(String[] args) throws Exception
{
new GivenString().run();
}
private void solve() throws Exception
{
String s = nextToken();
int len = s.length();
KMP kmp = new KMP();
int r = 0;
for (int i = 0; i < len; i++)
{
for (int j = i + 1; j <= len; j++)
{
String cur = s.substring(i, j);
int count = kmp.search(s, cur);
if (count >= 2)
r = max(r, cur.length());
}
}
out.println(r);
}
class KMP
{
public int search(String text, String pattern)
{
int count = 0;
int n = text.length(), m = pattern.length(), matchPoint = -1;
char pat[] = pattern.toCharArray(), t[] = text.toCharArray();
int p[] = prefixTable(pattern);
int j = 0;
for (int i = 0; i < n; i++)
{
while (j > 0 && pat[j] != t[i])
j = p[j - 1];
if (pat[j] == t[i])
j++;
if (j == m)
{
matchPoint = i - m + 1;
j = p[j - 1];
count++;
}
}
return count;
}
private int[] prefixTable(String pat)
{
int m = pat.length(), p[] = new int[m];
char s[] = pat.toCharArray();
int j = 0;
for (int i = 1; i < m; i++)
{
while (j > 0 && s[j] != s[i])
j = p[j - 1];
if (s[j] == s[i])
j++;
p[i] = j;
}
return p;
}
}
// -------------- Input/Output routines below ---------------//
private BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer;
public void run()
{
// String problem = this.getClass().getName();
try
{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new BufferedOutputStream(System.out));
solve();
out.flush();
in.close();
out.close();
}
catch (Exception e)
{
e.printStackTrace();
// System.exit(1);
}
}
String nextToken() throws IOException
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
{
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException
{
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException
{
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import static java.lang.Math.max;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class GivenString implements Runnable
{
public static void main(String[] args) throws Exception
{
new GivenString().run();
}
private void solve() throws Exception
{
String s = nextToken();
int len = s.length();
KMP kmp = new KMP();
int r = 0;
for (int i = 0; i < len; i++)
{
for (int j = i + 1; j <= len; j++)
{
String cur = s.substring(i, j);
int count = kmp.search(s, cur);
if (count >= 2)
r = max(r, cur.length());
}
}
out.println(r);
}
class KMP
{
public int search(String text, String pattern)
{
int count = 0;
int n = text.length(), m = pattern.length(), matchPoint = -1;
char pat[] = pattern.toCharArray(), t[] = text.toCharArray();
int p[] = prefixTable(pattern);
int j = 0;
for (int i = 0; i < n; i++)
{
while (j > 0 && pat[j] != t[i])
j = p[j - 1];
if (pat[j] == t[i])
j++;
if (j == m)
{
matchPoint = i - m + 1;
j = p[j - 1];
count++;
}
}
return count;
}
private int[] prefixTable(String pat)
{
int m = pat.length(), p[] = new int[m];
char s[] = pat.toCharArray();
int j = 0;
for (int i = 1; i < m; i++)
{
while (j > 0 && s[j] != s[i])
j = p[j - 1];
if (s[j] == s[i])
j++;
p[i] = j;
}
return p;
}
}
// -------------- Input/Output routines below ---------------//
private BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer;
public void run()
{
// String problem = this.getClass().getName();
try
{
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new BufferedOutputStream(System.out));
solve();
out.flush();
in.close();
out.close();
}
catch (Exception e)
{
e.printStackTrace();
// System.exit(1);
}
}
String nextToken() throws IOException
{
while (tokenizer == null || !tokenizer.hasMoreTokens())
{
tokenizer = new StringTokenizer(in.readLine());
}
return tokenizer.nextToken();
}
int nextInt() throws IOException
{
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException
{
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException
{
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,016 | 3,462 |
272 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author sumit
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CChessboard solver = new CChessboard();
solver.solve(1, in, out);
out.close();
}
static class CChessboard {
int[] nextPermutation(int[] array) {
int i = array.length - 1;
while (i > 0 && array[i - 1] >= array[i]) {
i--;
}
if (i <= 0) {
return null;
}
int j = array.length - 1;
while (array[j] <= array[i - 1]) {
j--;
}
int temp = array[i - 1];
array[i - 1] = array[j];
array[j] = temp;
j = array.length - 1;
while (i < j) {
temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
return array;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int arr[][][] = new int[4][n][n];
int sum[] = new int[4];
for (int k = 0; k < 4; k++) {
for (int i = 0; i < n; i++) {
String str = in.next();
for (int j = 0; j < n; j++) {
arr[k][i][j] = (str.charAt(j) - '0');
}
}
}
for (int k = 0; k < 4; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if ((i + j) % 2 == arr[k][i][j])
sum[k]++;
}
}
}
int perm[] = new int[4];
for (int i = 0; i < 4; i++)
perm[i] = i;
int min = Integer.MAX_VALUE;
while (true) {
perm = nextPermutation(perm);
if (perm == null)
break;
int sm = 0;
for (int j = 0; j < 4; j++) {
if (j % 2 == 0) {
sm += (sum[perm[j]]);
} else {
sm += (n * n - sum[perm[j]]);
}
}
min = Math.min(min, sm);
sm = 0;
for (int j = 0; j < 4; j++) {
if (j % 2 == 0) {
sm += (n * n - sum[perm[j]]);
} else {
sm += (sum[perm[j]]);
}
}
min = Math.min(sm, min);
}
out.printLine(min);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c & 15;
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author sumit
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CChessboard solver = new CChessboard();
solver.solve(1, in, out);
out.close();
}
static class CChessboard {
int[] nextPermutation(int[] array) {
int i = array.length - 1;
while (i > 0 && array[i - 1] >= array[i]) {
i--;
}
if (i <= 0) {
return null;
}
int j = array.length - 1;
while (array[j] <= array[i - 1]) {
j--;
}
int temp = array[i - 1];
array[i - 1] = array[j];
array[j] = temp;
j = array.length - 1;
while (i < j) {
temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
return array;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int arr[][][] = new int[4][n][n];
int sum[] = new int[4];
for (int k = 0; k < 4; k++) {
for (int i = 0; i < n; i++) {
String str = in.next();
for (int j = 0; j < n; j++) {
arr[k][i][j] = (str.charAt(j) - '0');
}
}
}
for (int k = 0; k < 4; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if ((i + j) % 2 == arr[k][i][j])
sum[k]++;
}
}
}
int perm[] = new int[4];
for (int i = 0; i < 4; i++)
perm[i] = i;
int min = Integer.MAX_VALUE;
while (true) {
perm = nextPermutation(perm);
if (perm == null)
break;
int sm = 0;
for (int j = 0; j < 4; j++) {
if (j % 2 == 0) {
sm += (sum[perm[j]]);
} else {
sm += (n * n - sum[perm[j]]);
}
}
min = Math.min(min, sm);
sm = 0;
for (int j = 0; j < 4; j++) {
if (j % 2 == 0) {
sm += (n * n - sum[perm[j]]);
} else {
sm += (sum[perm[j]]);
}
}
min = Math.min(sm, min);
}
out.printLine(min);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c & 15;
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author sumit
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
CChessboard solver = new CChessboard();
solver.solve(1, in, out);
out.close();
}
static class CChessboard {
int[] nextPermutation(int[] array) {
int i = array.length - 1;
while (i > 0 && array[i - 1] >= array[i]) {
i--;
}
if (i <= 0) {
return null;
}
int j = array.length - 1;
while (array[j] <= array[i - 1]) {
j--;
}
int temp = array[i - 1];
array[i - 1] = array[j];
array[j] = temp;
j = array.length - 1;
while (i < j) {
temp = array[i];
array[i] = array[j];
array[j] = temp;
i++;
j--;
}
return array;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt();
int arr[][][] = new int[4][n][n];
int sum[] = new int[4];
for (int k = 0; k < 4; k++) {
for (int i = 0; i < n; i++) {
String str = in.next();
for (int j = 0; j < n; j++) {
arr[k][i][j] = (str.charAt(j) - '0');
}
}
}
for (int k = 0; k < 4; k++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if ((i + j) % 2 == arr[k][i][j])
sum[k]++;
}
}
}
int perm[] = new int[4];
for (int i = 0; i < 4; i++)
perm[i] = i;
int min = Integer.MAX_VALUE;
while (true) {
perm = nextPermutation(perm);
if (perm == null)
break;
int sm = 0;
for (int j = 0; j < 4; j++) {
if (j % 2 == 0) {
sm += (sum[perm[j]]);
} else {
sm += (n * n - sum[perm[j]]);
}
}
min = Math.min(min, sm);
sm = 0;
for (int j = 0; j < 4; j++) {
if (j % 2 == 0) {
sm += (n * n - sum[perm[j]]);
} else {
sm += (sum[perm[j]]);
}
}
min = Math.min(sm, min);
}
out.printLine(min);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(int i) {
writer.println(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c & 15;
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String next() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,582 | 272 |
1,954 |
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) {
Scanner in = new Scanner(System.in);
int n=in.nextInt(),key=in.nextInt(),ans=0;
int[] a = new int[101], b = new int[101];
for (int i=1;i<=n;i++) {a[i]=in.nextInt();b[i]=in.nextInt();}
for (int i=1;i<n;i++)
for (int j=i+1;j<=n;j++)
if (a[i]<a[j] || (a[i]==a[j] && b[i]>b[j])) {
int yed = a[i];a[i]=a[j]; a[j]=yed;
yed = b[i];b[i]=b[j];b[j]=yed;
}
int k=0;
for (int i=1;i<=n;i++) {
if (a[i]==a[i-1] && b[i]==b[i-1]) k++; else
{if (i>key && ans==0) ans = k;k=1;}
}
if (ans == 0) ans = k;
System.out.println(ans);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) {
Scanner in = new Scanner(System.in);
int n=in.nextInt(),key=in.nextInt(),ans=0;
int[] a = new int[101], b = new int[101];
for (int i=1;i<=n;i++) {a[i]=in.nextInt();b[i]=in.nextInt();}
for (int i=1;i<n;i++)
for (int j=i+1;j<=n;j++)
if (a[i]<a[j] || (a[i]==a[j] && b[i]>b[j])) {
int yed = a[i];a[i]=a[j]; a[j]=yed;
yed = b[i];b[i]=b[j];b[j]=yed;
}
int k=0;
for (int i=1;i<=n;i++) {
if (a[i]==a[i-1] && b[i]==b[i-1]) k++; else
{if (i>key && ans==0) ans = k;k=1;}
}
if (ans == 0) ans = k;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C{
public static void main(String args[]) {
Scanner in = new Scanner(System.in);
int n=in.nextInt(),key=in.nextInt(),ans=0;
int[] a = new int[101], b = new int[101];
for (int i=1;i<=n;i++) {a[i]=in.nextInt();b[i]=in.nextInt();}
for (int i=1;i<n;i++)
for (int j=i+1;j<=n;j++)
if (a[i]<a[j] || (a[i]==a[j] && b[i]>b[j])) {
int yed = a[i];a[i]=a[j]; a[j]=yed;
yed = b[i];b[i]=b[j];b[j]=yed;
}
int k=0;
for (int i=1;i<=n;i++) {
if (a[i]==a[i-1] && b[i]==b[i-1]) k++; else
{if (i>key && ans==0) ans = k;k=1;}
}
if (ans == 0) ans = k;
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 624 | 1,950 |
3,323 |
import java.io.*;
import java.util.*;
public class CF387D {
static class A {
ArrayList<Integer> list = new ArrayList<>();
int u, v, d;
}
static int INF = Integer.MAX_VALUE;
static boolean bfs(A[] aa, int n) {
LinkedList<Integer> q = new LinkedList<>();
for (int u = 1; u <= n; u++)
if (aa[u].v > 0)
aa[u].d = INF;
else {
aa[u].d = 0;
q.addLast(u);
}
aa[0].d = INF;
while (!q.isEmpty()) {
int u = q.removeFirst();
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == INF) {
aa[w].d = aa[u].d + 1;
if (w == 0)
return true;
q.addLast(w);
}
}
}
return false;
}
static boolean dfs(A[] aa, int n, int u) {
if (u == 0)
return true;
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) {
aa[u].v = v;
aa[v].u = u;
return true;
}
}
aa[u].d = INF;
return false;
}
static int matchings(A[] aa, int n) {
int cnt = 0;
while (bfs(aa, n))
for (int u = 1; u <= n; u++)
if (aa[u].v == 0 && dfs(aa, n, u))
cnt++;
return cnt;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] eu = new int[m];
int[] ev = new int[m];
for (int j = 0; j < m; j++) {
st = new StringTokenizer(br.readLine());
eu[j] = Integer.parseInt(st.nextToken());
ev[j] = Integer.parseInt(st.nextToken());
}
A[] aa = new A[n + 1];
int min = m + n * 3;
for (int ctr = 1; ctr <= n; ctr++) {
boolean loop = false;
boolean[] ci = new boolean[n + 1];
boolean[] co = new boolean[n + 1];
for (int i = 0; i <= n; i++)
aa[i] = new A();
int m_ = 0;
for (int j = 0; j < m; j++) {
int u = eu[j];
int v = ev[j];
if (u == ctr && v == ctr)
loop = true;
else if (u == ctr && v != ctr)
ci[v] = true;
else if (u != ctr && v == ctr)
co[u] = true;
else {
aa[u].list.add(v);
m_++;
}
}
int cnt = loop ? 0 : 1;
for (int i = 1; i <= n; i++)
if (i != ctr) {
if (!ci[i])
cnt++;
if (!co[i])
cnt++;
}
int m2 = matchings(aa, n);
cnt += (m_ - m2) + (n - 1 - m2);
if (min > cnt)
min = cnt;
}
System.out.println(min);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF387D {
static class A {
ArrayList<Integer> list = new ArrayList<>();
int u, v, d;
}
static int INF = Integer.MAX_VALUE;
static boolean bfs(A[] aa, int n) {
LinkedList<Integer> q = new LinkedList<>();
for (int u = 1; u <= n; u++)
if (aa[u].v > 0)
aa[u].d = INF;
else {
aa[u].d = 0;
q.addLast(u);
}
aa[0].d = INF;
while (!q.isEmpty()) {
int u = q.removeFirst();
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == INF) {
aa[w].d = aa[u].d + 1;
if (w == 0)
return true;
q.addLast(w);
}
}
}
return false;
}
static boolean dfs(A[] aa, int n, int u) {
if (u == 0)
return true;
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) {
aa[u].v = v;
aa[v].u = u;
return true;
}
}
aa[u].d = INF;
return false;
}
static int matchings(A[] aa, int n) {
int cnt = 0;
while (bfs(aa, n))
for (int u = 1; u <= n; u++)
if (aa[u].v == 0 && dfs(aa, n, u))
cnt++;
return cnt;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] eu = new int[m];
int[] ev = new int[m];
for (int j = 0; j < m; j++) {
st = new StringTokenizer(br.readLine());
eu[j] = Integer.parseInt(st.nextToken());
ev[j] = Integer.parseInt(st.nextToken());
}
A[] aa = new A[n + 1];
int min = m + n * 3;
for (int ctr = 1; ctr <= n; ctr++) {
boolean loop = false;
boolean[] ci = new boolean[n + 1];
boolean[] co = new boolean[n + 1];
for (int i = 0; i <= n; i++)
aa[i] = new A();
int m_ = 0;
for (int j = 0; j < m; j++) {
int u = eu[j];
int v = ev[j];
if (u == ctr && v == ctr)
loop = true;
else if (u == ctr && v != ctr)
ci[v] = true;
else if (u != ctr && v == ctr)
co[u] = true;
else {
aa[u].list.add(v);
m_++;
}
}
int cnt = loop ? 0 : 1;
for (int i = 1; i <= n; i++)
if (i != ctr) {
if (!ci[i])
cnt++;
if (!co[i])
cnt++;
}
int m2 = matchings(aa, n);
cnt += (m_ - m2) + (n - 1 - m2);
if (min > cnt)
min = cnt;
}
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class CF387D {
static class A {
ArrayList<Integer> list = new ArrayList<>();
int u, v, d;
}
static int INF = Integer.MAX_VALUE;
static boolean bfs(A[] aa, int n) {
LinkedList<Integer> q = new LinkedList<>();
for (int u = 1; u <= n; u++)
if (aa[u].v > 0)
aa[u].d = INF;
else {
aa[u].d = 0;
q.addLast(u);
}
aa[0].d = INF;
while (!q.isEmpty()) {
int u = q.removeFirst();
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == INF) {
aa[w].d = aa[u].d + 1;
if (w == 0)
return true;
q.addLast(w);
}
}
}
return false;
}
static boolean dfs(A[] aa, int n, int u) {
if (u == 0)
return true;
for (int v : aa[u].list) {
int w = aa[v].u;
if (aa[w].d == aa[u].d + 1 && dfs(aa, n, w)) {
aa[u].v = v;
aa[v].u = u;
return true;
}
}
aa[u].d = INF;
return false;
}
static int matchings(A[] aa, int n) {
int cnt = 0;
while (bfs(aa, n))
for (int u = 1; u <= n; u++)
if (aa[u].v == 0 && dfs(aa, n, u))
cnt++;
return cnt;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int m = Integer.parseInt(st.nextToken());
int[] eu = new int[m];
int[] ev = new int[m];
for (int j = 0; j < m; j++) {
st = new StringTokenizer(br.readLine());
eu[j] = Integer.parseInt(st.nextToken());
ev[j] = Integer.parseInt(st.nextToken());
}
A[] aa = new A[n + 1];
int min = m + n * 3;
for (int ctr = 1; ctr <= n; ctr++) {
boolean loop = false;
boolean[] ci = new boolean[n + 1];
boolean[] co = new boolean[n + 1];
for (int i = 0; i <= n; i++)
aa[i] = new A();
int m_ = 0;
for (int j = 0; j < m; j++) {
int u = eu[j];
int v = ev[j];
if (u == ctr && v == ctr)
loop = true;
else if (u == ctr && v != ctr)
ci[v] = true;
else if (u != ctr && v == ctr)
co[u] = true;
else {
aa[u].list.add(v);
m_++;
}
}
int cnt = loop ? 0 : 1;
for (int i = 1; i <= n; i++)
if (i != ctr) {
if (!ci[i])
cnt++;
if (!co[i])
cnt++;
}
int m2 = matchings(aa, n);
cnt += (m_ - m2) + (n - 1 - m2);
if (min > cnt)
min = cnt;
}
System.out.println(min);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,201 | 3,317 |
2,161 |
import java.util.*;
import java.io.*;
public class probC {
static int r;
static ArrayList<Circ> curr = new ArrayList<Circ>();
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
r = sc.nextInt();
int[] xC = new int[n];
for(int i = 0; i < n; i++)
xC[i] = sc.nextInt();
double ans[] = new double[n];
ans[0] = r;
curr.add(new Circ(xC[0], r));
for(int i = 1; i < n; i++) {
double max = r;
for(int k = 0; k < curr.size(); k++) {
double cur = curr.get(k).y+ Math.sqrt(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x));
//System.out.println(cur + " " + max);
if(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x) >= 0)
max = Math.max(cur, max);
}
ans[i] = max;
curr.add(new Circ(xC[i], max));
//System.out.println();
}
for(int i = 0; i < n; i++)
System.out.print(ans[i] + " ");
sc.close();
}
static class Circ {
double x, y;
public Circ(double a, double b) {
x=a;
y=b;
}
public boolean isNT(Circ b) {
double dist = Math.sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y));
return dist > 2*r;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class probC {
static int r;
static ArrayList<Circ> curr = new ArrayList<Circ>();
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
r = sc.nextInt();
int[] xC = new int[n];
for(int i = 0; i < n; i++)
xC[i] = sc.nextInt();
double ans[] = new double[n];
ans[0] = r;
curr.add(new Circ(xC[0], r));
for(int i = 1; i < n; i++) {
double max = r;
for(int k = 0; k < curr.size(); k++) {
double cur = curr.get(k).y+ Math.sqrt(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x));
//System.out.println(cur + " " + max);
if(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x) >= 0)
max = Math.max(cur, max);
}
ans[i] = max;
curr.add(new Circ(xC[i], max));
//System.out.println();
}
for(int i = 0; i < n; i++)
System.out.print(ans[i] + " ");
sc.close();
}
static class Circ {
double x, y;
public Circ(double a, double b) {
x=a;
y=b;
}
public boolean isNT(Circ b) {
double dist = Math.sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y));
return dist > 2*r;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class probC {
static int r;
static ArrayList<Circ> curr = new ArrayList<Circ>();
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
r = sc.nextInt();
int[] xC = new int[n];
for(int i = 0; i < n; i++)
xC[i] = sc.nextInt();
double ans[] = new double[n];
ans[0] = r;
curr.add(new Circ(xC[0], r));
for(int i = 1; i < n; i++) {
double max = r;
for(int k = 0; k < curr.size(); k++) {
double cur = curr.get(k).y+ Math.sqrt(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x));
//System.out.println(cur + " " + max);
if(4 * r*r - (xC[i]-curr.get(k).x)*(xC[i]-curr.get(k).x) >= 0)
max = Math.max(cur, max);
}
ans[i] = max;
curr.add(new Circ(xC[i], max));
//System.out.println();
}
for(int i = 0; i < n; i++)
System.out.print(ans[i] + " ");
sc.close();
}
static class Circ {
double x, y;
public Circ(double a, double b) {
x=a;
y=b;
}
public boolean isNT(Circ b) {
double dist = Math.sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y));
return dist > 2*r;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 723 | 2,157 |
463 |
import java.util.*;
import java.lang.*;
import java.io.*;
public class CodehorsesTShirt {
public static void main(String args[]) throws IOException {
FastReader in = new FastReader();
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
Task.solve(in, out);
out.close();
}
static class Task {
public static void solve(FastReader in, PrintWriter out) {
int n = in.nextInt();
HashMap<String , Integer> hm1 = new HashMap<>();
HashMap<String , Integer> hm2 = new HashMap<>();
for(int i=0;i<n;i++){
String val = in.next();
if(hm1.containsKey(val)){
hm1.put(val, hm1.get(val)+1);
}else{
hm1.put(val,1);
}
}
for(int i=0;i<n;i++){
String val = in.next();
if(hm1.containsKey(val)){
int x = hm1.get(val);
if(x==1){
hm1.remove(val);
}else{
hm1.put(val,hm1.get(val)-1);
}
}else{
if(hm2.containsKey(val)){
hm2.put(val, hm2.get(val)+1);
}else{
hm2.put(val,1);
}
}
}
int ans = 0;
for(Map.Entry<String , Integer> row: hm1.entrySet()){
ans += row.getValue();
}
System.out.println(ans);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class CodehorsesTShirt {
public static void main(String args[]) throws IOException {
FastReader in = new FastReader();
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
Task.solve(in, out);
out.close();
}
static class Task {
public static void solve(FastReader in, PrintWriter out) {
int n = in.nextInt();
HashMap<String , Integer> hm1 = new HashMap<>();
HashMap<String , Integer> hm2 = new HashMap<>();
for(int i=0;i<n;i++){
String val = in.next();
if(hm1.containsKey(val)){
hm1.put(val, hm1.get(val)+1);
}else{
hm1.put(val,1);
}
}
for(int i=0;i<n;i++){
String val = in.next();
if(hm1.containsKey(val)){
int x = hm1.get(val);
if(x==1){
hm1.remove(val);
}else{
hm1.put(val,hm1.get(val)-1);
}
}else{
if(hm2.containsKey(val)){
hm2.put(val, hm2.get(val)+1);
}else{
hm2.put(val,1);
}
}
}
int ans = 0;
for(Map.Entry<String , Integer> row: hm1.entrySet()){
ans += row.getValue();
}
System.out.println(ans);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.io.*;
public class CodehorsesTShirt {
public static void main(String args[]) throws IOException {
FastReader in = new FastReader();
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
Task.solve(in, out);
out.close();
}
static class Task {
public static void solve(FastReader in, PrintWriter out) {
int n = in.nextInt();
HashMap<String , Integer> hm1 = new HashMap<>();
HashMap<String , Integer> hm2 = new HashMap<>();
for(int i=0;i<n;i++){
String val = in.next();
if(hm1.containsKey(val)){
hm1.put(val, hm1.get(val)+1);
}else{
hm1.put(val,1);
}
}
for(int i=0;i<n;i++){
String val = in.next();
if(hm1.containsKey(val)){
int x = hm1.get(val);
if(x==1){
hm1.remove(val);
}else{
hm1.put(val,hm1.get(val)-1);
}
}else{
if(hm2.containsKey(val)){
hm2.put(val, hm2.get(val)+1);
}else{
hm2.put(val,1);
}
}
}
int ans = 0;
for(Map.Entry<String , Integer> row: hm1.entrySet()){
ans += row.getValue();
}
System.out.println(ans);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 824 | 462 |
3,679 |
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
public static void main(String args[]) throws IOException {
File f = new File("input.txt");
Scanner sc = new Scanner(f);
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
int n = sc.nextInt();
int m = sc.nextInt();
boolean[][] grid = new boolean[n][m];
for (int i = 0; i < n; i++) for (int j = 0; j < m; j++)
grid[i][j] = false;
Queue<Pair> q = new LinkedList<>();
int cnt = sc.nextInt();
for (int i = 0; i < cnt; i++) {
int x = sc.nextInt();
int y = sc.nextInt();
x--;
y--;
grid[x][y] = true;
q.add(new Pair(x, y));
}
Pair last = new Pair(-1, -1);
while (!q.isEmpty()) {
Pair current = q.poll();
last = current;
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
if (i != 0 && j != 0) continue;
if (inside(current.x + i, current.y + j, n, m) &&
!grid[current.x + i][current.y + j]) {
grid[current.x + i][current.y + j] = true;
q.add(new Pair(current.x + i, current.y + j));
//bw.append((current.x + i) + " " + (current.y + j) + "\n");
}
}
}
}
bw.append((last.x + 1) + " " + (last.y + 1) + "\n");
bw.flush();
bw.close();
sc.close();
}
static class Pair {
int x;
int y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
private static boolean inside(int a, int b, int n, int m) {
return (a >= 0 && a < n && b >= 0 && b < m);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
public static void main(String args[]) throws IOException {
File f = new File("input.txt");
Scanner sc = new Scanner(f);
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
int n = sc.nextInt();
int m = sc.nextInt();
boolean[][] grid = new boolean[n][m];
for (int i = 0; i < n; i++) for (int j = 0; j < m; j++)
grid[i][j] = false;
Queue<Pair> q = new LinkedList<>();
int cnt = sc.nextInt();
for (int i = 0; i < cnt; i++) {
int x = sc.nextInt();
int y = sc.nextInt();
x--;
y--;
grid[x][y] = true;
q.add(new Pair(x, y));
}
Pair last = new Pair(-1, -1);
while (!q.isEmpty()) {
Pair current = q.poll();
last = current;
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
if (i != 0 && j != 0) continue;
if (inside(current.x + i, current.y + j, n, m) &&
!grid[current.x + i][current.y + j]) {
grid[current.x + i][current.y + j] = true;
q.add(new Pair(current.x + i, current.y + j));
//bw.append((current.x + i) + " " + (current.y + j) + "\n");
}
}
}
}
bw.append((last.x + 1) + " " + (last.y + 1) + "\n");
bw.flush();
bw.close();
sc.close();
}
static class Pair {
int x;
int y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
private static boolean inside(int a, int b, int n, int m) {
return (a >= 0 && a < n && b >= 0 && b < m);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
public static void main(String args[]) throws IOException {
File f = new File("input.txt");
Scanner sc = new Scanner(f);
BufferedWriter bw = new BufferedWriter(new FileWriter(new File("output.txt")));
int n = sc.nextInt();
int m = sc.nextInt();
boolean[][] grid = new boolean[n][m];
for (int i = 0; i < n; i++) for (int j = 0; j < m; j++)
grid[i][j] = false;
Queue<Pair> q = new LinkedList<>();
int cnt = sc.nextInt();
for (int i = 0; i < cnt; i++) {
int x = sc.nextInt();
int y = sc.nextInt();
x--;
y--;
grid[x][y] = true;
q.add(new Pair(x, y));
}
Pair last = new Pair(-1, -1);
while (!q.isEmpty()) {
Pair current = q.poll();
last = current;
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
if (i != 0 && j != 0) continue;
if (inside(current.x + i, current.y + j, n, m) &&
!grid[current.x + i][current.y + j]) {
grid[current.x + i][current.y + j] = true;
q.add(new Pair(current.x + i, current.y + j));
//bw.append((current.x + i) + " " + (current.y + j) + "\n");
}
}
}
}
bw.append((last.x + 1) + " " + (last.y + 1) + "\n");
bw.flush();
bw.close();
sc.close();
}
static class Pair {
int x;
int y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
}
private static boolean inside(int a, int b, int n, int m) {
return (a >= 0 && a < n && b >= 0 && b < m);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 864 | 3,671 |
38 |
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
long x=Long.parseLong(s1[1]);
long y=Long.parseLong(s1[2]);
long S=0;
long mod=1000000007;
B a[]=new B[n];
TreeMap<Long,Long> tm=new TreeMap<Long,Long>();
long ans[]=new long[n];
for(int i=0;i<n;i++)
{
String s2[]=br.readLine().split(" ");
long l=Long.parseLong(s2[0]);
long r=Long.parseLong(s2[1]);
B b1=new B(l,r);
a[i]=b1;
}
Arrays.sort(a,new The_Comp());
for(int i=0;i<n;i++)
{
long l=a[i].x;
long r=a[i].y;
if(tm.floorKey(l-1)!=null)
{
long u=tm.floorKey(l-1);
long v=l;
if((v-u)*y<x)
{ ans[i]=((r-u)*y)%mod;
if(tm.get(u)>1)
tm.put(u,tm.get(u)-1);
else
tm.remove(u);
}
else
{ ans[i]=(x+(r-l)*y)%mod; }
}
else
ans[i]=(x+(r-l)*y)%mod;
S=(S+ans[i])%mod;
if(tm.containsKey(r))
tm.put(r,1+tm.get(r));
else
tm.put(r,(long)1);
}
System.out.println(S);
}
}
class The_Comp implements Comparator<B>
{
public int compare(B b1,B b2)
{
if(b1.x>b2.x)
return 1;
else if(b1.x==b2.x)
{
if(b1.y>b2.y)
return 1;
else if(b1.y==b2.y)
return 0;
else
return -1;
}
else
return -1;
}
}
class B
{
long x=(long)1;
long y=(long)1;
public B(long l1,long l2)
{ x=l1; y=l2; }
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
long x=Long.parseLong(s1[1]);
long y=Long.parseLong(s1[2]);
long S=0;
long mod=1000000007;
B a[]=new B[n];
TreeMap<Long,Long> tm=new TreeMap<Long,Long>();
long ans[]=new long[n];
for(int i=0;i<n;i++)
{
String s2[]=br.readLine().split(" ");
long l=Long.parseLong(s2[0]);
long r=Long.parseLong(s2[1]);
B b1=new B(l,r);
a[i]=b1;
}
Arrays.sort(a,new The_Comp());
for(int i=0;i<n;i++)
{
long l=a[i].x;
long r=a[i].y;
if(tm.floorKey(l-1)!=null)
{
long u=tm.floorKey(l-1);
long v=l;
if((v-u)*y<x)
{ ans[i]=((r-u)*y)%mod;
if(tm.get(u)>1)
tm.put(u,tm.get(u)-1);
else
tm.remove(u);
}
else
{ ans[i]=(x+(r-l)*y)%mod; }
}
else
ans[i]=(x+(r-l)*y)%mod;
S=(S+ans[i])%mod;
if(tm.containsKey(r))
tm.put(r,1+tm.get(r));
else
tm.put(r,(long)1);
}
System.out.println(S);
}
}
class The_Comp implements Comparator<B>
{
public int compare(B b1,B b2)
{
if(b1.x>b2.x)
return 1;
else if(b1.x==b2.x)
{
if(b1.y>b2.y)
return 1;
else if(b1.y==b2.y)
return 0;
else
return -1;
}
else
return -1;
}
}
class B
{
long x=(long)1;
long y=(long)1;
public B(long l1,long l2)
{ x=l1; y=l2; }
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
long x=Long.parseLong(s1[1]);
long y=Long.parseLong(s1[2]);
long S=0;
long mod=1000000007;
B a[]=new B[n];
TreeMap<Long,Long> tm=new TreeMap<Long,Long>();
long ans[]=new long[n];
for(int i=0;i<n;i++)
{
String s2[]=br.readLine().split(" ");
long l=Long.parseLong(s2[0]);
long r=Long.parseLong(s2[1]);
B b1=new B(l,r);
a[i]=b1;
}
Arrays.sort(a,new The_Comp());
for(int i=0;i<n;i++)
{
long l=a[i].x;
long r=a[i].y;
if(tm.floorKey(l-1)!=null)
{
long u=tm.floorKey(l-1);
long v=l;
if((v-u)*y<x)
{ ans[i]=((r-u)*y)%mod;
if(tm.get(u)>1)
tm.put(u,tm.get(u)-1);
else
tm.remove(u);
}
else
{ ans[i]=(x+(r-l)*y)%mod; }
}
else
ans[i]=(x+(r-l)*y)%mod;
S=(S+ans[i])%mod;
if(tm.containsKey(r))
tm.put(r,1+tm.get(r));
else
tm.put(r,(long)1);
}
System.out.println(S);
}
}
class The_Comp implements Comparator<B>
{
public int compare(B b1,B b2)
{
if(b1.x>b2.x)
return 1;
else if(b1.x==b2.x)
{
if(b1.y>b2.y)
return 1;
else if(b1.y==b2.y)
return 0;
else
return -1;
}
else
return -1;
}
}
class B
{
long x=(long)1;
long y=(long)1;
public B(long l1,long l2)
{ x=l1; y=l2; }
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 893 | 38 |
824 |
import java.util.Arrays;
import java.util.Scanner;
public class Main {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner entrada = new Scanner (System.in);
int Primos []= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,
71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,
151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,
233,239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997
};
boolean sw=true;
int Indices [] = new int [Primos.length];
int cantidad = 0;
for(int i=0;i<Primos.length-1 && sw;i++)
{
int suma=Primos[i]+Primos[i+1]+1;
int posicion = Arrays.binarySearch(Primos,suma);
if(posicion>-1)
Indices[posicion]=1;
}
while(entrada.hasNextInt())
{
int N = entrada.nextInt();
int K = entrada.nextInt();
int contador=0;
for(int i=0;Primos[i]<=N && i<Primos.length-1;i++)
contador+=Indices[i];
if(contador>=K)
System.out.println("YES");
else
System.out.println("NO");
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner entrada = new Scanner (System.in);
int Primos []= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,
71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,
151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,
233,239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997
};
boolean sw=true;
int Indices [] = new int [Primos.length];
int cantidad = 0;
for(int i=0;i<Primos.length-1 && sw;i++)
{
int suma=Primos[i]+Primos[i+1]+1;
int posicion = Arrays.binarySearch(Primos,suma);
if(posicion>-1)
Indices[posicion]=1;
}
while(entrada.hasNextInt())
{
int N = entrada.nextInt();
int K = entrada.nextInt();
int contador=0;
for(int i=0;Primos[i]<=N && i<Primos.length-1;i++)
contador+=Indices[i];
if(contador>=K)
System.out.println("YES");
else
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner entrada = new Scanner (System.in);
int Primos []= {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,
71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,
151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,
233,239,
241,
251,
257,
263,
269,
271,
277,
281,
283,
293,
307,
311,
313,
317,
331,
337,
347,
349,
353,
359,
367,
373,
379,
383,
389,
397,
401,
409,
419,
421,
431,
433,
439,
443,
449,
457,
461,
463,
467,
479,
487,
491,
499,
503,
509,
521,
523,
541,
547,
557,
563,
569,
571,
577,
587,
593,
599,
601,
607,
613,
617,
619,
631,
641,
643,
647,
653,
659,
661,
673,
677,
683,
691,
701,
709,
719,
727,
733,
739,
743,
751,
757,
761,
769,
773,
787,
797,
809,
811,
821,
823,
827,
829,
839,
853,
857,
859,
863,
877,
881,
883,
887,
907,
911,
919,
929,
937,
941,
947,
953,
967,
971,
977,
983,
991,
997
};
boolean sw=true;
int Indices [] = new int [Primos.length];
int cantidad = 0;
for(int i=0;i<Primos.length-1 && sw;i++)
{
int suma=Primos[i]+Primos[i+1]+1;
int posicion = Arrays.binarySearch(Primos,suma);
if(posicion>-1)
Indices[posicion]=1;
}
while(entrada.hasNextInt())
{
int N = entrada.nextInt();
int K = entrada.nextInt();
int contador=0;
for(int i=0;Primos[i]<=N && i<Primos.length-1;i++)
contador+=Indices[i];
if(contador>=K)
System.out.println("YES");
else
System.out.println("NO");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,467 | 823 |
261 |
import java.io.*;
import java.util.*;
public class LectureSleep {
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
}
static InputReader r = new InputReader(System.in);
static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args) {
int n = r.nextInt(); // duration of lecture
int k = r.nextInt(); // number of minutes keep mishka awake
int[] theorems = new int[n+1];
for(int i = 1; i <= n; i++){
theorems[i] = r.nextInt();
}
int[] mishka = new int[n+1];
for(int i = 1; i <= n; i++){
mishka[i] = r.nextInt();
}
int[] sums = new int[n+1];
for(int i = 1; i <= n; i++){
if(mishka[i] == 0){
sums[i] = sums[i-1] + theorems[i];
} else{
sums[i] = sums[i-1];
}
}
int max = 0;
for(int i = 1; i <= n-k+1; i++){
int sum = sums[i+k-1] - sums[i-1];
max = Math.max(max, sum);
}
int totalSum = 0;
for(int i = 1; i <= n; i++){
if(mishka[i] == 1){
totalSum += theorems[i];
}
}
pw.println(totalSum + max);
pw.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class LectureSleep {
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
}
static InputReader r = new InputReader(System.in);
static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args) {
int n = r.nextInt(); // duration of lecture
int k = r.nextInt(); // number of minutes keep mishka awake
int[] theorems = new int[n+1];
for(int i = 1; i <= n; i++){
theorems[i] = r.nextInt();
}
int[] mishka = new int[n+1];
for(int i = 1; i <= n; i++){
mishka[i] = r.nextInt();
}
int[] sums = new int[n+1];
for(int i = 1; i <= n; i++){
if(mishka[i] == 0){
sums[i] = sums[i-1] + theorems[i];
} else{
sums[i] = sums[i-1];
}
}
int max = 0;
for(int i = 1; i <= n-k+1; i++){
int sum = sums[i+k-1] - sums[i-1];
max = Math.max(max, sum);
}
int totalSum = 0;
for(int i = 1; i <= n; i++){
if(mishka[i] == 1){
totalSum += theorems[i];
}
}
pw.println(totalSum + max);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class LectureSleep {
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
}
static InputReader r = new InputReader(System.in);
static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args) {
int n = r.nextInt(); // duration of lecture
int k = r.nextInt(); // number of minutes keep mishka awake
int[] theorems = new int[n+1];
for(int i = 1; i <= n; i++){
theorems[i] = r.nextInt();
}
int[] mishka = new int[n+1];
for(int i = 1; i <= n; i++){
mishka[i] = r.nextInt();
}
int[] sums = new int[n+1];
for(int i = 1; i <= n; i++){
if(mishka[i] == 0){
sums[i] = sums[i-1] + theorems[i];
} else{
sums[i] = sums[i-1];
}
}
int max = 0;
for(int i = 1; i <= n-k+1; i++){
int sum = sums[i+k-1] - sums[i-1];
max = Math.max(max, sum);
}
int totalSum = 0;
for(int i = 1; i <= n; i++){
if(mishka[i] == 1){
totalSum += theorems[i];
}
}
pw.println(totalSum + max);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 821 | 261 |
2,670 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author anand.oza
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = in.readIntArray(n);
Arrays.sort(a);
int answer = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0)
continue;
answer++;
for (int j = 0; j < n; j++) {
if (j == i)
continue;
if (a[j] % a[i] == 0) {
a[j] = 0;
}
}
a[i] = 0;
}
out.println(answer);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public int[] readIntArray(int n) {
int[] x = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
return x;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author anand.oza
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = in.readIntArray(n);
Arrays.sort(a);
int answer = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0)
continue;
answer++;
for (int j = 0; j < n; j++) {
if (j == i)
continue;
if (a[j] % a[i] == 0) {
a[j] = 0;
}
}
a[i] = 0;
}
out.println(answer);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public int[] readIntArray(int n) {
int[] x = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
return x;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author anand.oza
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APaintTheNumbers solver = new APaintTheNumbers();
solver.solve(1, in, out);
out.close();
}
static class APaintTheNumbers {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] a = in.readIntArray(n);
Arrays.sort(a);
int answer = 0;
for (int i = 0; i < n; i++) {
if (a[i] == 0)
continue;
answer++;
for (int j = 0; j < n; j++) {
if (j == i)
continue;
if (a[j] % a[i] == 0) {
a[j] = 0;
}
}
a[i] = 0;
}
out.println(answer);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public int[] readIntArray(int n) {
int[] x = new int[n];
for (int i = 0; i < n; i++) {
x[i] = nextInt();
}
return x;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 811 | 2,664 |
239 |
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
/* spar5h */
public class cf1 implements Runnable{
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t = 1;
while(t-- > 0) {
int n = s.nextInt(), m = s.nextInt();
int[] a = new int[n + 1];
for(int i = 1; i <= n; i++)
a[i] = s.nextInt();
int[] b = new int[n + 1];
for(int i = 1; i <= n; i++)
b[i] = s.nextInt();
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(a[1]);
for(int i = 2; i <= n; i++) {
list.add(b[i]); list.add(a[i]);
}
list.add(b[1]);
double wt = m;
boolean check = true;
for(int i = list.size() - 1; i >= 0; i--) {
if(list.get(i) <= 1) {
check = false; break;
}
double x = wt / (list.get(i) - 1);
wt += x;
}
if(check)
w.println(wt - m);
else
w.println(-1);
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception
{
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
/* spar5h */
public class cf1 implements Runnable{
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t = 1;
while(t-- > 0) {
int n = s.nextInt(), m = s.nextInt();
int[] a = new int[n + 1];
for(int i = 1; i <= n; i++)
a[i] = s.nextInt();
int[] b = new int[n + 1];
for(int i = 1; i <= n; i++)
b[i] = s.nextInt();
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(a[1]);
for(int i = 2; i <= n; i++) {
list.add(b[i]); list.add(a[i]);
}
list.add(b[1]);
double wt = m;
boolean check = true;
for(int i = list.size() - 1; i >= 0; i--) {
if(list.get(i) <= 1) {
check = false; break;
}
double x = wt / (list.get(i) - 1);
wt += x;
}
if(check)
w.println(wt - m);
else
w.println(-1);
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception
{
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
/* spar5h */
public class cf1 implements Runnable{
public void run() {
InputReader s = new InputReader(System.in);
PrintWriter w = new PrintWriter(System.out);
int t = 1;
while(t-- > 0) {
int n = s.nextInt(), m = s.nextInt();
int[] a = new int[n + 1];
for(int i = 1; i <= n; i++)
a[i] = s.nextInt();
int[] b = new int[n + 1];
for(int i = 1; i <= n; i++)
b[i] = s.nextInt();
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(a[1]);
for(int i = 2; i <= n; i++) {
list.add(b[i]); list.add(a[i]);
}
list.add(b[1]);
double wt = m;
boolean check = true;
for(int i = list.size() - 1; i >= 0; i--) {
if(list.get(i) <= 1) {
check = false; break;
}
double x = wt / (list.get(i) - 1);
wt += x;
}
if(check)
w.println(wt - m);
else
w.println(-1);
}
w.close();
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars)
{
curChar = 0;
try
{
numChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine()
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
public int nextInt()
{
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return readString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static void main(String args[]) throws Exception
{
new Thread(null, new cf1(),"cf1",1<<26).start();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,664 | 239 |
2,769 |
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya (bsrkaditya@gmail.com)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long n = in.nextLong();
if(n == 1) out.println("1");
else if(n == 2) out.println("2");
else if(n%2 == 1) out.println(n*(n-1)*(n-2));
else if(n%6 == 0) out.println((n-1)*(n-2)*(n-3));
else out.println(n*(n-1)*(n-3));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya (bsrkaditya@gmail.com)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long n = in.nextLong();
if(n == 1) out.println("1");
else if(n == 2) out.println("2");
else if(n%2 == 1) out.println(n*(n-1)*(n-2));
else if(n%6 == 0) out.println((n-1)*(n-2)*(n-3));
else out.println(n*(n-1)*(n-3));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
import java.io.OutputStream;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author BSRK Aditya (bsrkaditya@gmail.com)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, Scanner in, PrintWriter out) {
long n = in.nextLong();
if(n == 1) out.println("1");
else if(n == 2) out.println("2");
else if(n%2 == 1) out.println(n*(n-1)*(n-2));
else if(n%6 == 0) out.println((n-1)*(n-2)*(n-3));
else out.println(n*(n-1)*(n-3));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 578 | 2,763 |
1,245 |
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class _____A implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new _____A(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException{
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException{
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
int x = readInt();
int y = readInt();
return new Point(x, y);
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
List<Integer>[] readGraph(int vertexNumber, int edgeNumber)
throws IOException{
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
class OutputWriter extends PrintWriter{
final int DEFAULT_PRECISION = 12;
int precision;
String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
boolean checkBit(int mask, int bitNumber){
return (mask & (1 << bitNumber)) != 0;
}
/////////////////////////////////////////////////////////////////////
long md = (1000 * 1000 * 1000 + 9);
void solve() throws IOException{
int n = readInt();
int m = readInt();
int k = readInt();
long count = n / k;
long mod = n % k;
long maxM = count * (k - 1) + mod;
if (maxM >= m) {
out.println(m % md);
return;
}
long d = m - maxM;
long mul = (binpow(2, d) - 1 + md) % md * 2 % md;
long ans = (mul * k) % md;
ans = (ans + ((count - d) * (k - 1) % md + md) % md + mod) % md;
out.println(ans);
}
long binpow(long a, long n) {
if (n == 0) return 1;
if ((n & 1) == 0) {
long b = binpow(a, n >> 1);
return (b * b) % md;
} else {
return binpow(a, n - 1) * a % md;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class _____A implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new _____A(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException{
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException{
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
int x = readInt();
int y = readInt();
return new Point(x, y);
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
List<Integer>[] readGraph(int vertexNumber, int edgeNumber)
throws IOException{
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
class OutputWriter extends PrintWriter{
final int DEFAULT_PRECISION = 12;
int precision;
String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
boolean checkBit(int mask, int bitNumber){
return (mask & (1 << bitNumber)) != 0;
}
/////////////////////////////////////////////////////////////////////
long md = (1000 * 1000 * 1000 + 9);
void solve() throws IOException{
int n = readInt();
int m = readInt();
int k = readInt();
long count = n / k;
long mod = n % k;
long maxM = count * (k - 1) + mod;
if (maxM >= m) {
out.println(m % md);
return;
}
long d = m - maxM;
long mul = (binpow(2, d) - 1 + md) % md * 2 % md;
long ans = (mul * k) % md;
ans = (ans + ((count - d) * (k - 1) % md + md) % md + mod) % md;
out.println(ans);
}
long binpow(long a, long n) {
if (n == 0) return 1;
if ((n & 1) == 0) {
long b = binpow(a, n >> 1);
return (b * b) % md;
} else {
return binpow(a, n - 1) * a % md;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.awt.Point;
import java.math.BigDecimal;
import java.math.BigInteger;
import static java.lang.Math.*;
// Solution is at the bottom of code
public class _____A implements Runnable{
final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
BufferedReader in;
OutputWriter out;
StringTokenizer tok = new StringTokenizer("");
public static void main(String[] args){
new Thread(null, new _____A(), "", 128 * (1L << 20)).start();
}
/////////////////////////////////////////////////////////////////////
void init() throws FileNotFoundException{
Locale.setDefault(Locale.US);
if (ONLINE_JUDGE){
in = new BufferedReader(new InputStreamReader(System.in));
out = new OutputWriter(System.out);
}else{
in = new BufferedReader(new FileReader("input.txt"));
out = new OutputWriter("output.txt");
}
}
////////////////////////////////////////////////////////////////
long timeBegin, timeEnd;
void time(){
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
void debug(Object... objects){
if (ONLINE_JUDGE){
for (Object o: objects){
System.err.println(o.toString());
}
}
}
/////////////////////////////////////////////////////////////////////
public void run(){
try{
timeBegin = System.currentTimeMillis();
Locale.setDefault(Locale.US);
init();
solve();
out.close();
time();
}catch (Exception e){
e.printStackTrace(System.err);
System.exit(-1);
}
}
/////////////////////////////////////////////////////////////////////
String delim = " ";
String readString() throws IOException{
while(!tok.hasMoreTokens()){
try{
tok = new StringTokenizer(in.readLine());
}catch (Exception e){
return null;
}
}
return tok.nextToken(delim);
}
String readLine() throws IOException{
return in.readLine();
}
/////////////////////////////////////////////////////////////////
final char NOT_A_SYMBOL = '\0';
char readChar() throws IOException{
int intValue = in.read();
if (intValue == -1){
return NOT_A_SYMBOL;
}
return (char) intValue;
}
char[] readCharArray() throws IOException{
return readLine().toCharArray();
}
/////////////////////////////////////////////////////////////////
int readInt() throws IOException{
return Integer.parseInt(readString());
}
int[] readIntArray(int size) throws IOException{
int[] array = new int[size];
for (int index = 0; index < size; ++index){
array[index] = readInt();
}
return array;
}
///////////////////////////////////////////////////////////////////
long readLong() throws IOException{
return Long.parseLong(readString());
}
long[] readLongArray(int size) throws IOException{
long[] array = new long[size];
for (int index = 0; index < size; ++index){
array[index] = readLong();
}
return array;
}
////////////////////////////////////////////////////////////////////
double readDouble() throws IOException{
return Double.parseDouble(readString());
}
double[] readDoubleArray(int size) throws IOException{
double[] array = new double[size];
for (int index = 0; index < size; ++index){
array[index] = readDouble();
}
return array;
}
/////////////////////////////////////////////////////////////////////
Point readPoint() throws IOException{
int x = readInt();
int y = readInt();
return new Point(x, y);
}
Point[] readPointArray(int size) throws IOException{
Point[] array = new Point[size];
for (int index = 0; index < size; ++index){
array[index] = readPoint();
}
return array;
}
/////////////////////////////////////////////////////////////////////
List<Integer>[] readGraph(int vertexNumber, int edgeNumber)
throws IOException{
List<Integer>[] graph = new List[vertexNumber];
for (int index = 0; index < vertexNumber; ++index){
graph[index] = new ArrayList<Integer>();
}
while (edgeNumber-- > 0){
int from = readInt() - 1;
int to = readInt() - 1;
graph[from].add(to);
graph[to].add(from);
}
return graph;
}
/////////////////////////////////////////////////////////////////////
class OutputWriter extends PrintWriter{
final int DEFAULT_PRECISION = 12;
int precision;
String format, formatWithSpace;
{
precision = DEFAULT_PRECISION;
format = createFormat(precision);
formatWithSpace = format + " ";
}
public OutputWriter(OutputStream out) {
super(out);
}
public OutputWriter(String fileName) throws FileNotFoundException {
super(fileName);
}
public int getPrecision() {
return precision;
}
public void setPrecision(int precision) {
this.precision = precision;
format = createFormat(precision);
formatWithSpace = format + " ";
}
private String createFormat(int precision){
return "%." + precision + "f";
}
@Override
public void print(double d){
printf(format, d);
}
public void printWithSpace(double d){
printf(formatWithSpace, d);
}
public void printAll(double...d){
for (int i = 0; i < d.length - 1; ++i){
printWithSpace(d[i]);
}
print(d[d.length - 1]);
}
@Override
public void println(double d){
printlnAll(d);
}
public void printlnAll(double... d){
printAll(d);
println();
}
}
/////////////////////////////////////////////////////////////////////
int[][] steps = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int[][] steps8 = {
{-1, 0}, {1, 0}, {0, -1}, {0, 1},
{-1, -1}, {1, 1}, {1, -1}, {-1, 1}
};
boolean check(int index, int lim){
return (0 <= index && index < lim);
}
/////////////////////////////////////////////////////////////////////
boolean checkBit(int mask, int bitNumber){
return (mask & (1 << bitNumber)) != 0;
}
/////////////////////////////////////////////////////////////////////
long md = (1000 * 1000 * 1000 + 9);
void solve() throws IOException{
int n = readInt();
int m = readInt();
int k = readInt();
long count = n / k;
long mod = n % k;
long maxM = count * (k - 1) + mod;
if (maxM >= m) {
out.println(m % md);
return;
}
long d = m - maxM;
long mul = (binpow(2, d) - 1 + md) % md * 2 % md;
long ans = (mul * k) % md;
ans = (ans + ((count - d) * (k - 1) % md + md) % md + mod) % md;
out.println(ans);
}
long binpow(long a, long n) {
if (n == 0) return 1;
if ((n & 1) == 0) {
long b = binpow(a, n >> 1);
return (b * b) % md;
} else {
return binpow(a, n - 1) * a % md;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,031 | 1,244 |
969 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st = new StringTokenizer("");
static PrintWriter pw = new PrintWriter(System.out);
public static String next() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static long nextLong() throws IOException {
return Long.parseLong(next());
}
public static void main(String[] args) throws IOException {
new Main().run();
}
void run() throws IOException {
long n = nextInt();
long k = nextInt();
long d = 9 + 8 * (n + k);
pw.print(n - (-3 + (int)Math.sqrt(d)) / 2);
pw.close();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st = new StringTokenizer("");
static PrintWriter pw = new PrintWriter(System.out);
public static String next() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static long nextLong() throws IOException {
return Long.parseLong(next());
}
public static void main(String[] args) throws IOException {
new Main().run();
}
void run() throws IOException {
long n = nextInt();
long k = nextInt();
long d = 9 + 8 * (n + k);
pw.print(n - (-3 + (int)Math.sqrt(d)) / 2);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class Main {
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st = new StringTokenizer("");
static PrintWriter pw = new PrintWriter(System.out);
public static String next() throws IOException {
while (!st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static long nextLong() throws IOException {
return Long.parseLong(next());
}
public static void main(String[] args) throws IOException {
new Main().run();
}
void run() throws IOException {
long n = nextInt();
long k = nextInt();
long d = 9 + 8 * (n + k);
pw.print(n - (-3 + (int)Math.sqrt(d)) / 2);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 562 | 968 |
3,822 |
import java.io.*;
import java.util.*;
public class a{
static BufferedReader br;
static PrintWriter pw;
static int N, M, K;
static ArrayList<Integer> graph[][];
public static void main(String args[]) throws IOException{
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(br.readLine());
N = Integer.parseInt(st.nextToken());
M = Integer.parseInt(st.nextToken());
K = Integer.parseInt(st.nextToken());
if(K % 2 == 1){
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
pw.print("-1 ");
}
pw.println();
}
br.close(); pw.close();
return;
}
graph = new ArrayList[N][M];
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
graph[i][j] = new ArrayList<Integer>();
}
}
for(int i = 0; i < N; i++){
st = new StringTokenizer(br.readLine());
for(int j = 0; j < M-1; j++){
int w = Integer.parseInt(st.nextToken());
graph[i][j].add(w);
}
}
for(int i = 0; i < N; i++){
graph[i][M-1].add(0);
}
for(int i = 0; i < N-1; i++){
st = new StringTokenizer(br.readLine());
for(int j = 0; j < M; j++){
int w = Integer.parseInt(st.nextToken());
graph[i][j].add(w);
}
}
K /= 2;
for(int i = 0; i < M; i++) graph[N-1][i].add(0);
long ans[][][] = new long[K+1][N][M];
for(int i = 0; i < N; i++){
Arrays.fill(ans[0][i], 0);
}
for(int i = 1; i <= K; i++){
for(int x = 0; x < N; x++){
for(int y = 0; y < M; y++){
long cur = (long)1e17;
if(x < N-1){
cur = (long)Math.min(cur, graph[x][y].get(1) + ans[i-1][x+1][y]);
}
if(y < M-1){
cur = (long)Math.min(cur, graph[x][y].get(0) + ans[i-1][x][y+1]);
}
if(x > 0){
cur = (long)Math.min(cur, graph[x-1][y].get(1) + ans[i-1][x-1][y]);
//pw.println("CUR: " + cur + " X: " + x + " Y: " + y + " get = " + graph[x-1][y].get(0));
}
if(y > 0){
cur = (long)Math.min(cur, graph[x][y-1].get(0) + ans[i-1][x][y-1]);
}
ans[i][x][y] = cur;
}
}
}
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
pw.print(ans[K][i][j] * 2 + " ");
}
pw.println();
}
br.close(); pw.close();
}
static class pii implements Comparable<pii>{
int f, s, k;
pii(int f, int s, int k){
this.f = f;
this.s = s;
this.k = k;
}
public int compareTo(pii x){
return Integer.compare(f, x.f);
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class a{
static BufferedReader br;
static PrintWriter pw;
static int N, M, K;
static ArrayList<Integer> graph[][];
public static void main(String args[]) throws IOException{
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(br.readLine());
N = Integer.parseInt(st.nextToken());
M = Integer.parseInt(st.nextToken());
K = Integer.parseInt(st.nextToken());
if(K % 2 == 1){
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
pw.print("-1 ");
}
pw.println();
}
br.close(); pw.close();
return;
}
graph = new ArrayList[N][M];
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
graph[i][j] = new ArrayList<Integer>();
}
}
for(int i = 0; i < N; i++){
st = new StringTokenizer(br.readLine());
for(int j = 0; j < M-1; j++){
int w = Integer.parseInt(st.nextToken());
graph[i][j].add(w);
}
}
for(int i = 0; i < N; i++){
graph[i][M-1].add(0);
}
for(int i = 0; i < N-1; i++){
st = new StringTokenizer(br.readLine());
for(int j = 0; j < M; j++){
int w = Integer.parseInt(st.nextToken());
graph[i][j].add(w);
}
}
K /= 2;
for(int i = 0; i < M; i++) graph[N-1][i].add(0);
long ans[][][] = new long[K+1][N][M];
for(int i = 0; i < N; i++){
Arrays.fill(ans[0][i], 0);
}
for(int i = 1; i <= K; i++){
for(int x = 0; x < N; x++){
for(int y = 0; y < M; y++){
long cur = (long)1e17;
if(x < N-1){
cur = (long)Math.min(cur, graph[x][y].get(1) + ans[i-1][x+1][y]);
}
if(y < M-1){
cur = (long)Math.min(cur, graph[x][y].get(0) + ans[i-1][x][y+1]);
}
if(x > 0){
cur = (long)Math.min(cur, graph[x-1][y].get(1) + ans[i-1][x-1][y]);
//pw.println("CUR: " + cur + " X: " + x + " Y: " + y + " get = " + graph[x-1][y].get(0));
}
if(y > 0){
cur = (long)Math.min(cur, graph[x][y-1].get(0) + ans[i-1][x][y-1]);
}
ans[i][x][y] = cur;
}
}
}
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
pw.print(ans[K][i][j] * 2 + " ");
}
pw.println();
}
br.close(); pw.close();
}
static class pii implements Comparable<pii>{
int f, s, k;
pii(int f, int s, int k){
this.f = f;
this.s = s;
this.k = k;
}
public int compareTo(pii x){
return Integer.compare(f, x.f);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class a{
static BufferedReader br;
static PrintWriter pw;
static int N, M, K;
static ArrayList<Integer> graph[][];
public static void main(String args[]) throws IOException{
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(br.readLine());
N = Integer.parseInt(st.nextToken());
M = Integer.parseInt(st.nextToken());
K = Integer.parseInt(st.nextToken());
if(K % 2 == 1){
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
pw.print("-1 ");
}
pw.println();
}
br.close(); pw.close();
return;
}
graph = new ArrayList[N][M];
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
graph[i][j] = new ArrayList<Integer>();
}
}
for(int i = 0; i < N; i++){
st = new StringTokenizer(br.readLine());
for(int j = 0; j < M-1; j++){
int w = Integer.parseInt(st.nextToken());
graph[i][j].add(w);
}
}
for(int i = 0; i < N; i++){
graph[i][M-1].add(0);
}
for(int i = 0; i < N-1; i++){
st = new StringTokenizer(br.readLine());
for(int j = 0; j < M; j++){
int w = Integer.parseInt(st.nextToken());
graph[i][j].add(w);
}
}
K /= 2;
for(int i = 0; i < M; i++) graph[N-1][i].add(0);
long ans[][][] = new long[K+1][N][M];
for(int i = 0; i < N; i++){
Arrays.fill(ans[0][i], 0);
}
for(int i = 1; i <= K; i++){
for(int x = 0; x < N; x++){
for(int y = 0; y < M; y++){
long cur = (long)1e17;
if(x < N-1){
cur = (long)Math.min(cur, graph[x][y].get(1) + ans[i-1][x+1][y]);
}
if(y < M-1){
cur = (long)Math.min(cur, graph[x][y].get(0) + ans[i-1][x][y+1]);
}
if(x > 0){
cur = (long)Math.min(cur, graph[x-1][y].get(1) + ans[i-1][x-1][y]);
//pw.println("CUR: " + cur + " X: " + x + " Y: " + y + " get = " + graph[x-1][y].get(0));
}
if(y > 0){
cur = (long)Math.min(cur, graph[x][y-1].get(0) + ans[i-1][x][y-1]);
}
ans[i][x][y] = cur;
}
}
}
for(int i = 0; i < N; i++){
for(int j = 0; j < M; j++){
pw.print(ans[K][i][j] * 2 + " ");
}
pw.println();
}
br.close(); pw.close();
}
static class pii implements Comparable<pii>{
int f, s, k;
pii(int f, int s, int k){
this.f = f;
this.s = s;
this.k = k;
}
public int compareTo(pii x){
return Integer.compare(f, x.f);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,196 | 3,812 |
3,609 |
import java.io.*;
import java.util.*;
import java.math.*;
public class C implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
Random rnd;
short[] qx, qy;
boolean[][] used;
final int[] dx = {1, -1, 0, 0};
final int[] dy = {0, 0, 1, -1};
void solve() throws IOException {
int n = nextInt(), m = nextInt();
qx = new short[n * m];
qy = new short[n * m];
used = new boolean[n][m];
int k = nextInt(), qs = 0, qt = 0;
for(int i = 0; i < k; i++) {
int x = nextInt() - 1, y = nextInt() - 1;
used[x][y] = true;
qx[qt] = (short) x;
qy[qt] = (short) y;
++qt;
}
int rx = 0, ry = 0;
while(qs < qt) {
int cx = qx[qs], cy = qy[qs];
++qs;
rx = cx;
ry = cy;
for(int z = 0; z < 4; z++) {
int nx = cx + dx[z], ny = cy + dy[z];
if(nx >= 0 && ny >= 0 && nx < n && ny < m && !used[nx][ny]) {
used[nx][ny] = true;
qx[qt] = (short) nx;
qy[qt] = (short) ny;
++qt;
}
}
}
out.println((rx + 1) + " " + (ry + 1));
}
public static void main(String[] args) {
final boolean oldChecker = false;
if(oldChecker) {
new Thread(null, new C(), "yarrr", 1 << 24).start();
} else {
new C().run();
}
}
public void run() {
try {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
} catch (FileNotFoundException e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
rnd = new Random();
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(42);
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class C implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
Random rnd;
short[] qx, qy;
boolean[][] used;
final int[] dx = {1, -1, 0, 0};
final int[] dy = {0, 0, 1, -1};
void solve() throws IOException {
int n = nextInt(), m = nextInt();
qx = new short[n * m];
qy = new short[n * m];
used = new boolean[n][m];
int k = nextInt(), qs = 0, qt = 0;
for(int i = 0; i < k; i++) {
int x = nextInt() - 1, y = nextInt() - 1;
used[x][y] = true;
qx[qt] = (short) x;
qy[qt] = (short) y;
++qt;
}
int rx = 0, ry = 0;
while(qs < qt) {
int cx = qx[qs], cy = qy[qs];
++qs;
rx = cx;
ry = cy;
for(int z = 0; z < 4; z++) {
int nx = cx + dx[z], ny = cy + dy[z];
if(nx >= 0 && ny >= 0 && nx < n && ny < m && !used[nx][ny]) {
used[nx][ny] = true;
qx[qt] = (short) nx;
qy[qt] = (short) ny;
++qt;
}
}
}
out.println((rx + 1) + " " + (ry + 1));
}
public static void main(String[] args) {
final boolean oldChecker = false;
if(oldChecker) {
new Thread(null, new C(), "yarrr", 1 << 24).start();
} else {
new C().run();
}
}
public void run() {
try {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
} catch (FileNotFoundException e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
rnd = new Random();
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(42);
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
public class C implements Runnable {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
Random rnd;
short[] qx, qy;
boolean[][] used;
final int[] dx = {1, -1, 0, 0};
final int[] dy = {0, 0, 1, -1};
void solve() throws IOException {
int n = nextInt(), m = nextInt();
qx = new short[n * m];
qy = new short[n * m];
used = new boolean[n][m];
int k = nextInt(), qs = 0, qt = 0;
for(int i = 0; i < k; i++) {
int x = nextInt() - 1, y = nextInt() - 1;
used[x][y] = true;
qx[qt] = (short) x;
qy[qt] = (short) y;
++qt;
}
int rx = 0, ry = 0;
while(qs < qt) {
int cx = qx[qs], cy = qy[qs];
++qs;
rx = cx;
ry = cy;
for(int z = 0; z < 4; z++) {
int nx = cx + dx[z], ny = cy + dy[z];
if(nx >= 0 && ny >= 0 && nx < n && ny < m && !used[nx][ny]) {
used[nx][ny] = true;
qx[qt] = (short) nx;
qy[qt] = (short) ny;
++qt;
}
}
}
out.println((rx + 1) + " " + (ry + 1));
}
public static void main(String[] args) {
final boolean oldChecker = false;
if(oldChecker) {
new Thread(null, new C(), "yarrr", 1 << 24).start();
} else {
new C().run();
}
}
public void run() {
try {
try {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter(new FileWriter("output.txt"));
} catch (FileNotFoundException e) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
rnd = new Random();
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
System.exit(42);
}
}
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,013 | 3,601 |
600 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ankur
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
long k = in.nextLong();
HashMap<Long, Integer> hm = new HashMap<>();
long ar[] = in.nextLongArray(n);
for (int i = 0; i < n; i++) {
long dist = ar[i] + k;
long min = k;
for (int j = 0; j < n; j++) {
min = Math.min(min, Math.abs(ar[j] - dist));
}
if (min == k) {
hm.put(dist, 1);
}
dist = ar[i] - k;
min = k;
for (int j = 0; j < n; j++) {
min = Math.min(min, Math.abs(ar[j] - dist));
}
if (min == k) {
hm.put(dist, 1);
}
}
out.print(hm.size());
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
//*-*------clare------
//remeber while comparing 2 non primitive data type not to use ==
//remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort
//again silly mistakes ,yr kb tk krta rhega ye mistakes
//try to write simple codes ,break it into simple things
//knowledge>rating
/*
public class Main
implements Runnable{
public static void main(String[] args) {
new Thread(null,new Main(),"Main",1<<26).start();
}
public void run() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();//chenge the name of task
solver.solve(1, in, out);
out.close();
}
*/
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long[] nextLongArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ankur
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
long k = in.nextLong();
HashMap<Long, Integer> hm = new HashMap<>();
long ar[] = in.nextLongArray(n);
for (int i = 0; i < n; i++) {
long dist = ar[i] + k;
long min = k;
for (int j = 0; j < n; j++) {
min = Math.min(min, Math.abs(ar[j] - dist));
}
if (min == k) {
hm.put(dist, 1);
}
dist = ar[i] - k;
min = k;
for (int j = 0; j < n; j++) {
min = Math.min(min, Math.abs(ar[j] - dist));
}
if (min == k) {
hm.put(dist, 1);
}
}
out.print(hm.size());
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
//*-*------clare------
//remeber while comparing 2 non primitive data type not to use ==
//remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort
//again silly mistakes ,yr kb tk krta rhega ye mistakes
//try to write simple codes ,break it into simple things
//knowledge>rating
/*
public class Main
implements Runnable{
public static void main(String[] args) {
new Thread(null,new Main(),"Main",1<<26).start();
}
public void run() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();//chenge the name of task
solver.solve(1, in, out);
out.close();
}
*/
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long[] nextLongArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author ankur
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
long k = in.nextLong();
HashMap<Long, Integer> hm = new HashMap<>();
long ar[] = in.nextLongArray(n);
for (int i = 0; i < n; i++) {
long dist = ar[i] + k;
long min = k;
for (int j = 0; j < n; j++) {
min = Math.min(min, Math.abs(ar[j] - dist));
}
if (min == k) {
hm.put(dist, 1);
}
dist = ar[i] - k;
min = k;
for (int j = 0; j < n; j++) {
min = Math.min(min, Math.abs(ar[j] - dist));
}
if (min == k) {
hm.put(dist, 1);
}
}
out.print(hm.size());
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
//*-*------clare------
//remeber while comparing 2 non primitive data type not to use ==
//remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort
//again silly mistakes ,yr kb tk krta rhega ye mistakes
//try to write simple codes ,break it into simple things
//knowledge>rating
/*
public class Main
implements Runnable{
public static void main(String[] args) {
new Thread(null,new Main(),"Main",1<<26).start();
}
public void run() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();//chenge the name of task
solver.solve(1, in, out);
out.close();
}
*/
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long[] nextLongArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,344 | 599 |
4,036 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG1 solver = new TaskG1();
solver.solve(1, in, out);
out.close();
}
static class TaskG1 {
final int mod = (int) 1e9 + 7;
int[][][] dp;
int rec(int mask, int time, int T, int genre, int[] ts, int[] gs) {
if (time > T)
return 0;
if (time == T)
return 1;
if (mask == (1 << ts.length) - 1)
return 0;
int res = dp[genre][time][mask];
if (res != -1)
return res;
res = 0;
for (int i = 0; i < ts.length; i++) {
if ((mask & (1 << i)) == 0 && (mask == 0 || gs[i] != genre)) {
res += rec(mask | (1 << i), time + ts[i], T, gs[i], ts, gs);
if (res >= mod)
res -= mod;
}
}
return dp[genre][time][mask] = res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] ts = new int[n];
int[] gs = new int[n];
int T = in.nextInt();
for (int i = 0; i < n; i++) {
ts[i] = in.nextInt();
gs[i] = in.nextInt() - 1;
}
dp = new int[3][T][1 << n];
for (int[][] aux : dp) {
for (int[] aux2 : aux)
Arrays.fill(aux2, -1);
}
int ans = rec(0, 0, T, 0, ts, gs);
out.println(ans);
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG1 solver = new TaskG1();
solver.solve(1, in, out);
out.close();
}
static class TaskG1 {
final int mod = (int) 1e9 + 7;
int[][][] dp;
int rec(int mask, int time, int T, int genre, int[] ts, int[] gs) {
if (time > T)
return 0;
if (time == T)
return 1;
if (mask == (1 << ts.length) - 1)
return 0;
int res = dp[genre][time][mask];
if (res != -1)
return res;
res = 0;
for (int i = 0; i < ts.length; i++) {
if ((mask & (1 << i)) == 0 && (mask == 0 || gs[i] != genre)) {
res += rec(mask | (1 << i), time + ts[i], T, gs[i], ts, gs);
if (res >= mod)
res -= mod;
}
}
return dp[genre][time][mask] = res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] ts = new int[n];
int[] gs = new int[n];
int T = in.nextInt();
for (int i = 0; i < n; i++) {
ts[i] = in.nextInt();
gs[i] = in.nextInt() - 1;
}
dp = new int[3][T][1 << n];
for (int[][] aux : dp) {
for (int[] aux2 : aux)
Arrays.fill(aux2, -1);
}
int ans = rec(0, 0, T, 0, ts, gs);
out.println(ans);
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG1 solver = new TaskG1();
solver.solve(1, in, out);
out.close();
}
static class TaskG1 {
final int mod = (int) 1e9 + 7;
int[][][] dp;
int rec(int mask, int time, int T, int genre, int[] ts, int[] gs) {
if (time > T)
return 0;
if (time == T)
return 1;
if (mask == (1 << ts.length) - 1)
return 0;
int res = dp[genre][time][mask];
if (res != -1)
return res;
res = 0;
for (int i = 0; i < ts.length; i++) {
if ((mask & (1 << i)) == 0 && (mask == 0 || gs[i] != genre)) {
res += rec(mask | (1 << i), time + ts[i], T, gs[i], ts, gs);
if (res >= mod)
res -= mod;
}
}
return dp[genre][time][mask] = res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] ts = new int[n];
int[] gs = new int[n];
int T = in.nextInt();
for (int i = 0; i < n; i++) {
ts[i] = in.nextInt();
gs[i] = in.nextInt() - 1;
}
dp = new int[3][T][1 << n];
for (int[][] aux : dp) {
for (int[] aux2 : aux)
Arrays.fill(aux2, -1);
}
int ans = rec(0, 0, T, 0, ts, gs);
out.println(ans);
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,170 | 4,025 |
1,595 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class C {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = null;
PrintWriter out;
public void solution() throws IOException {
int n = nextInt();
int a[] = new int[n];
int b[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
b[i] = a[i];
}
Arrays.sort(a);
int ans = 0;
for (int i = 0; i < n; i++) {
if (a[i] != b[i]) {
ans++;
}
}
if (ans == 2 || ans == 0) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
public String nextToken() throws IOException {
if (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(bf.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public void print(int a[]) {
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
}
public static void main(String args[]) throws IOException {
new C().solution();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class C {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = null;
PrintWriter out;
public void solution() throws IOException {
int n = nextInt();
int a[] = new int[n];
int b[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
b[i] = a[i];
}
Arrays.sort(a);
int ans = 0;
for (int i = 0; i < n; i++) {
if (a[i] != b[i]) {
ans++;
}
}
if (ans == 2 || ans == 0) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
public String nextToken() throws IOException {
if (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(bf.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public void print(int a[]) {
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
}
public static void main(String args[]) throws IOException {
new C().solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class C {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = null;
PrintWriter out;
public void solution() throws IOException {
int n = nextInt();
int a[] = new int[n];
int b[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
b[i] = a[i];
}
Arrays.sort(a);
int ans = 0;
for (int i = 0; i < n; i++) {
if (a[i] != b[i]) {
ans++;
}
}
if (ans == 2 || ans == 0) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
public String nextToken() throws IOException {
if (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(bf.readLine());
}
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
public void print(int a[]) {
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
}
public static void main(String args[]) throws IOException {
new C().solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 699 | 1,592 |
1,839 |
import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
long totalBlocks = 0;
long a[] = new long[n];
for(int i = 0; i < n; ++i) {
a[i] = sc.nextLong();
totalBlocks += a[i];
}
Arrays.sort(a);
long selected = 0;
for(int i = 0; i < n; ++i) {
if(a[i] > selected)
selected++;
}
long leftCols = a[n - 1] - selected;
long remBlocks = totalBlocks - leftCols - n;
System.out.print(remBlocks);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
long totalBlocks = 0;
long a[] = new long[n];
for(int i = 0; i < n; ++i) {
a[i] = sc.nextLong();
totalBlocks += a[i];
}
Arrays.sort(a);
long selected = 0;
for(int i = 0; i < n; ++i) {
if(a[i] > selected)
selected++;
}
long leftCols = a[n - 1] - selected;
long remBlocks = totalBlocks - leftCols - n;
System.out.print(remBlocks);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
long totalBlocks = 0;
long a[] = new long[n];
for(int i = 0; i < n; ++i) {
a[i] = sc.nextLong();
totalBlocks += a[i];
}
Arrays.sort(a);
long selected = 0;
for(int i = 0; i < n; ++i) {
if(a[i] > selected)
selected++;
}
long leftCols = a[n - 1] - selected;
long remBlocks = totalBlocks - leftCols - n;
System.out.print(remBlocks);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 499 | 1,835 |
3,550 |
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uu[h] ^ vv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uu[h] ^ vv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uu[h] ^ vv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uu[h] ^ vv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,897 | 3,543 |
3,451 |
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class A{
Scanner sc=new Scanner(System.in);
void run(){
String s=sc.nextLine();
int n=s.length();
int ans=0;
for(int len=1; len<n; len++){
for(int i=0; i+len<=n; i++){
String t=s.substring(i, i+len);
// println(t);
if(s.indexOf(t,i+1)!=-1){
ans=len;
break;
}
}
}
println(ans+"");
}
void println(String s){
System.out.println(s);
}
void print(String s){
System.out.print(s);
}
public static void main(String[] args){
new A().run();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class A{
Scanner sc=new Scanner(System.in);
void run(){
String s=sc.nextLine();
int n=s.length();
int ans=0;
for(int len=1; len<n; len++){
for(int i=0; i+len<=n; i++){
String t=s.substring(i, i+len);
// println(t);
if(s.indexOf(t,i+1)!=-1){
ans=len;
break;
}
}
}
println(ans+"");
}
void println(String s){
System.out.println(s);
}
void print(String s){
System.out.print(s);
}
public static void main(String[] args){
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class A{
Scanner sc=new Scanner(System.in);
void run(){
String s=sc.nextLine();
int n=s.length();
int ans=0;
for(int len=1; len<n; len++){
for(int i=0; i+len<=n; i++){
String t=s.substring(i, i+len);
// println(t);
if(s.indexOf(t,i+1)!=-1){
ans=len;
break;
}
}
}
println(ans+"");
}
void println(String s){
System.out.println(s);
}
void print(String s){
System.out.print(s);
}
public static void main(String[] args){
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 532 | 3,445 |
3,640 |
import java.awt.Point;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.net.URISyntaxException;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args)throws IOException, URISyntaxException {
Reader.init(new FileInputStream("input.txt"));
StringBuilder s=new StringBuilder();
boolean[][]vis=new boolean[Reader.nextInt()][Reader.nextInt()];
int k=Reader.nextInt(),r,c;
Queue<Point>q=new LinkedList<Point>();
while(k-->0) {
r=Reader.nextInt()-1;
c=Reader.nextInt()-1;
vis[r][c]=true;
q.add(new Point(r,c));
}
Point end=null;
int[]x={0,0,1,-1},y={1,-1,0,0};
int a,b,i;
while(!q.isEmpty()) {
end=q.poll();
for(i=0;i<4;i++) {
a=end.x+x[i];
b=end.y+y[i];
if(a>=0&&b>=0&&a<vis.length&&b<vis[a].length&&!vis[a][b]) {
vis[a][b]=true;
q.add(new Point(a,b));
}
}
}
s.append(end.x+1).append(' ').append(end.y+1);
PrintWriter p=new PrintWriter("output.txt");
p.println(s);
p.close();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) throws UnsupportedEncodingException {
reader = new BufferedReader(
new InputStreamReader(input, "UTF-8") );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static String nextLine() throws IOException {
return reader.readLine();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.net.URISyntaxException;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args)throws IOException, URISyntaxException {
Reader.init(new FileInputStream("input.txt"));
StringBuilder s=new StringBuilder();
boolean[][]vis=new boolean[Reader.nextInt()][Reader.nextInt()];
int k=Reader.nextInt(),r,c;
Queue<Point>q=new LinkedList<Point>();
while(k-->0) {
r=Reader.nextInt()-1;
c=Reader.nextInt()-1;
vis[r][c]=true;
q.add(new Point(r,c));
}
Point end=null;
int[]x={0,0,1,-1},y={1,-1,0,0};
int a,b,i;
while(!q.isEmpty()) {
end=q.poll();
for(i=0;i<4;i++) {
a=end.x+x[i];
b=end.y+y[i];
if(a>=0&&b>=0&&a<vis.length&&b<vis[a].length&&!vis[a][b]) {
vis[a][b]=true;
q.add(new Point(a,b));
}
}
}
s.append(end.x+1).append(' ').append(end.y+1);
PrintWriter p=new PrintWriter("output.txt");
p.println(s);
p.close();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) throws UnsupportedEncodingException {
reader = new BufferedReader(
new InputStreamReader(input, "UTF-8") );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static String nextLine() throws IOException {
return reader.readLine();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.awt.Point;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.net.URISyntaxException;
import java.util.LinkedList;
import java.util.Queue;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args)throws IOException, URISyntaxException {
Reader.init(new FileInputStream("input.txt"));
StringBuilder s=new StringBuilder();
boolean[][]vis=new boolean[Reader.nextInt()][Reader.nextInt()];
int k=Reader.nextInt(),r,c;
Queue<Point>q=new LinkedList<Point>();
while(k-->0) {
r=Reader.nextInt()-1;
c=Reader.nextInt()-1;
vis[r][c]=true;
q.add(new Point(r,c));
}
Point end=null;
int[]x={0,0,1,-1},y={1,-1,0,0};
int a,b,i;
while(!q.isEmpty()) {
end=q.poll();
for(i=0;i<4;i++) {
a=end.x+x[i];
b=end.y+y[i];
if(a>=0&&b>=0&&a<vis.length&&b<vis[a].length&&!vis[a][b]) {
vis[a][b]=true;
q.add(new Point(a,b));
}
}
}
s.append(end.x+1).append(' ').append(end.y+1);
PrintWriter p=new PrintWriter("output.txt");
p.println(s);
p.close();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) throws UnsupportedEncodingException {
reader = new BufferedReader(
new InputStreamReader(input, "UTF-8") );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static String nextLine() throws IOException {
return reader.readLine();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
static long nextLong() throws IOException {
return Long.parseLong( next() );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 870 | 3,632 |
3,250 |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BigInteger a = new BigInteger(next());
System.out.println(BigInteger.valueOf(5).modPow(a, BigInteger.valueOf(100)));
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BigInteger a = new BigInteger(next());
System.out.println(BigInteger.valueOf(5).modPow(a, BigInteger.valueOf(100)));
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class A {
static StringTokenizer st;
static BufferedReader br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BigInteger a = new BigInteger(next());
System.out.println(BigInteger.valueOf(5).modPow(a, BigInteger.valueOf(100)));
pw.close();
}
private static int nextInt() throws IOException {
return Integer.parseInt(next());
}
private static long nextLong() throws IOException {
return Long.parseLong(next());
}
private static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
private static String next() throws IOException {
while (st==null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 544 | 3,244 |
2,276 |
import java.util.Scanner;
//http://codeforces.com/contest/909/problem/C
public class PythInd {
public static final int MOD = 1000000007;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.nextLine());
String[] sTypes = new String[n];
for (int i = 0; i < n; i++) {
sTypes[i] = sc.nextLine();
}
sc.close();
// dp[i][j] = number of ways to have a for loop indented
// j times at the ith position.
int[][] dp = new int[n][n];
dp[0][0] = 1;
for (int i = 0; i < dp.length - 1; i++) {
if (sTypes[i].equals("s")) {
int curSum = 0;
for (int j = i + 1; j >= 0; j--) {
curSum = (dp[i][j] + curSum) % MOD;
dp[i + 1][j] += curSum;
dp[i + 1][j] %= MOD;
}
} else {
for (int j = 1; j <= i + 1; j++) {
dp[i + 1][j] += dp[i][j - 1];
dp[i + 1][j] %= MOD;
}
}
}
int ans = 0;
for (int i = 0; i < dp[0].length; i++) {
ans = (ans + dp[n - 1][i]) % MOD;
}
System.out.println(ans);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
//http://codeforces.com/contest/909/problem/C
public class PythInd {
public static final int MOD = 1000000007;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.nextLine());
String[] sTypes = new String[n];
for (int i = 0; i < n; i++) {
sTypes[i] = sc.nextLine();
}
sc.close();
// dp[i][j] = number of ways to have a for loop indented
// j times at the ith position.
int[][] dp = new int[n][n];
dp[0][0] = 1;
for (int i = 0; i < dp.length - 1; i++) {
if (sTypes[i].equals("s")) {
int curSum = 0;
for (int j = i + 1; j >= 0; j--) {
curSum = (dp[i][j] + curSum) % MOD;
dp[i + 1][j] += curSum;
dp[i + 1][j] %= MOD;
}
} else {
for (int j = 1; j <= i + 1; j++) {
dp[i + 1][j] += dp[i][j - 1];
dp[i + 1][j] %= MOD;
}
}
}
int ans = 0;
for (int i = 0; i < dp[0].length; i++) {
ans = (ans + dp[n - 1][i]) % MOD;
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
//http://codeforces.com/contest/909/problem/C
public class PythInd {
public static final int MOD = 1000000007;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = Integer.parseInt(sc.nextLine());
String[] sTypes = new String[n];
for (int i = 0; i < n; i++) {
sTypes[i] = sc.nextLine();
}
sc.close();
// dp[i][j] = number of ways to have a for loop indented
// j times at the ith position.
int[][] dp = new int[n][n];
dp[0][0] = 1;
for (int i = 0; i < dp.length - 1; i++) {
if (sTypes[i].equals("s")) {
int curSum = 0;
for (int j = i + 1; j >= 0; j--) {
curSum = (dp[i][j] + curSum) % MOD;
dp[i + 1][j] += curSum;
dp[i + 1][j] %= MOD;
}
} else {
for (int j = 1; j <= i + 1; j++) {
dp[i + 1][j] += dp[i][j - 1];
dp[i + 1][j] %= MOD;
}
}
}
int ans = 0;
for (int i = 0; i < dp[0].length; i++) {
ans = (ans + dp[n - 1][i]) % MOD;
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 720 | 2,271 |
1,797 |
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.PrintStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author coderbd
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int m, n, k;
n = in.readInt();
m = in.readInt();
k = in.readInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.readInt() - 1;
Arrays.sort(a);
int ans = -1;
if (k >= m)
ans = 0;
else for (int i = 0; i < n; i++) {
k += a[n-i-1];
if (k >= m) {
ans = i + 1;
break;
}
}
System.out.println(ans);
}
}
class InputReader {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0L;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
}
catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m *= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value == -1;
}
public String next() {
return readString();
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void printLine(char[] array) {
writer.print(array);
}
public void printFormat(String format, Object...objects) {
writer.printf(format, objects);
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.PrintStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author coderbd
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int m, n, k;
n = in.readInt();
m = in.readInt();
k = in.readInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.readInt() - 1;
Arrays.sort(a);
int ans = -1;
if (k >= m)
ans = 0;
else for (int i = 0; i < n; i++) {
k += a[n-i-1];
if (k >= m) {
ans = i + 1;
break;
}
}
System.out.println(ans);
}
}
class InputReader {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0L;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
}
catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m *= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value == -1;
}
public String next() {
return readString();
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void printLine(char[] array) {
writer.print(array);
}
public void printFormat(String format, Object...objects) {
writer.printf(format, objects);
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.util.InputMismatchException;
import java.io.PrintStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.Writer;
import java.math.BigInteger;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
* @author coderbd
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int m, n, k;
n = in.readInt();
m = in.readInt();
k = in.readInt();
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = in.readInt() - 1;
Arrays.sort(a);
int ans = -1;
if (k >= m)
ans = 0;
else for (int i = 0; i < n; i++) {
k += a[n-i-1];
if (k >= m) {
ans = i + 1;
break;
}
}
System.out.println(ans);
}
}
class InputReader {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1)
return -1;
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
return -1;
}
if (numChars <= 0)
return -1;
}
return buf[curChar];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0L;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public static boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r')
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
}
catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m *= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1)
read();
return value == -1;
}
public String next() {
return readString();
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void printLine(char[] array) {
writer.print(array);
}
public void printFormat(String format, Object...objects) {
writer.printf(format, objects);
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,962 | 1,793 |
1,522 |
// @author Sanzhar
import java.io.*;
import java.util.*;
import java.awt.Point;
public class Template {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
public void run() throws Exception {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
in.close();
}
public void solve() throws Exception {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
boolean[] ok = new boolean[n];
Arrays.fill(ok, true);
Arrays.sort(a);
if (k != 1) {
for (int i = 0; i < n; i++) {
if (a[i] % k == 0) {
int x = a[i] / k;
int ind = Arrays.binarySearch(a, x);
if (ind >= 0 && ok[ind]) {
ok[i] = false;
}
}
}
}
int ans = 0;
for (int i = 0; i < n; i++) {
if (ok[i]) {
ans++;
}
}
out.println(ans);
}
public static void main(String[] args) throws Exception {
new Template().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// @author Sanzhar
import java.io.*;
import java.util.*;
import java.awt.Point;
public class Template {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
public void run() throws Exception {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
in.close();
}
public void solve() throws Exception {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
boolean[] ok = new boolean[n];
Arrays.fill(ok, true);
Arrays.sort(a);
if (k != 1) {
for (int i = 0; i < n; i++) {
if (a[i] % k == 0) {
int x = a[i] / k;
int ind = Arrays.binarySearch(a, x);
if (ind >= 0 && ok[ind]) {
ok[i] = false;
}
}
}
}
int ans = 0;
for (int i = 0; i < n; i++) {
if (ok[i]) {
ans++;
}
}
out.println(ans);
}
public static void main(String[] args) throws Exception {
new Template().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// @author Sanzhar
import java.io.*;
import java.util.*;
import java.awt.Point;
public class Template {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(in.readLine());
} catch (Exception e) {
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
public void run() throws Exception {
//in = new BufferedReader(new FileReader("input.txt"));
//out = new PrintWriter(new FileWriter("output.txt"));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.flush();
out.close();
in.close();
}
public void solve() throws Exception {
int n = nextInt();
int k = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
boolean[] ok = new boolean[n];
Arrays.fill(ok, true);
Arrays.sort(a);
if (k != 1) {
for (int i = 0; i < n; i++) {
if (a[i] % k == 0) {
int x = a[i] / k;
int ind = Arrays.binarySearch(a, x);
if (ind >= 0 && ok[ind]) {
ok[i] = false;
}
}
}
}
int ans = 0;
for (int i = 0; i < n; i++) {
if (ok[i]) {
ans++;
}
}
out.println(ans);
}
public static void main(String[] args) throws Exception {
new Template().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 754 | 1,520 |
3,248 |
import java.util.Scanner;
/**
* Created by mmaikovych on 18.02.16.
*/
public class EER_A {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
scanner.nextLine();
System.out.println(25);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* Created by mmaikovych on 18.02.16.
*/
public class EER_A {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
scanner.nextLine();
System.out.println(25);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* Created by mmaikovych on 18.02.16.
*/
public class EER_A {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
scanner.nextLine();
System.out.println(25);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 417 | 3,242 |
4,316 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Darshandarji
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
boolean[][] g = new boolean[n][n];
for (int i = 0; i < m; ++i) {
int a = in.nextInt() - 1;
int b = in.nextInt() - 1;
g[a][b] = true;
g[b][a] = true;
}
/*for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
g[i][j] = true;*/
long[] am = new long[n + 1];
long[][] ways = new long[1 << n][n];
for (int start = 0; start < n; ++start) {
for (int mask = 0; mask < (1 << (n - start)); ++mask)
for (int last = start; last < n; ++last) {
ways[mask][last - start] = 0;
}
ways[1][0] = 1;
for (int mask = 0; mask < (1 << (n - start)); ++mask) {
int cnt = 0;
int tmp = mask;
while (tmp > 0) {
++cnt;
tmp = tmp & (tmp - 1);
}
for (int last = start; last < n; ++last)
if (ways[mask][last - start] > 0) {
long amm = ways[mask][last - start];
for (int i = start; i < n; ++i)
if ((mask & (1 << (i - start))) == 0 && g[last][i]) {
ways[mask | (1 << (i - start))][i - start] += amm;
}
if (g[last][start])
am[cnt] += ways[mask][last - start];
}
}
}
long res = 0;
for (int cnt = 3; cnt <= n; ++cnt) {
if (am[cnt] % (2) != 0)
throw new RuntimeException();
res += am[cnt] / (2);
}
out.println(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Darshandarji
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
boolean[][] g = new boolean[n][n];
for (int i = 0; i < m; ++i) {
int a = in.nextInt() - 1;
int b = in.nextInt() - 1;
g[a][b] = true;
g[b][a] = true;
}
/*for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
g[i][j] = true;*/
long[] am = new long[n + 1];
long[][] ways = new long[1 << n][n];
for (int start = 0; start < n; ++start) {
for (int mask = 0; mask < (1 << (n - start)); ++mask)
for (int last = start; last < n; ++last) {
ways[mask][last - start] = 0;
}
ways[1][0] = 1;
for (int mask = 0; mask < (1 << (n - start)); ++mask) {
int cnt = 0;
int tmp = mask;
while (tmp > 0) {
++cnt;
tmp = tmp & (tmp - 1);
}
for (int last = start; last < n; ++last)
if (ways[mask][last - start] > 0) {
long amm = ways[mask][last - start];
for (int i = start; i < n; ++i)
if ((mask & (1 << (i - start))) == 0 && g[last][i]) {
ways[mask | (1 << (i - start))][i - start] += amm;
}
if (g[last][start])
am[cnt] += ways[mask][last - start];
}
}
}
long res = 0;
for (int cnt = 3; cnt <= n; ++cnt) {
if (am[cnt] % (2) != 0)
throw new RuntimeException();
res += am[cnt] / (2);
}
out.println(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Darshandarji
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskD solver = new TaskD();
solver.solve(1, in, out);
out.close();
}
static class TaskD {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int m = in.nextInt();
boolean[][] g = new boolean[n][n];
for (int i = 0; i < m; ++i) {
int a = in.nextInt() - 1;
int b = in.nextInt() - 1;
g[a][b] = true;
g[b][a] = true;
}
/*for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
g[i][j] = true;*/
long[] am = new long[n + 1];
long[][] ways = new long[1 << n][n];
for (int start = 0; start < n; ++start) {
for (int mask = 0; mask < (1 << (n - start)); ++mask)
for (int last = start; last < n; ++last) {
ways[mask][last - start] = 0;
}
ways[1][0] = 1;
for (int mask = 0; mask < (1 << (n - start)); ++mask) {
int cnt = 0;
int tmp = mask;
while (tmp > 0) {
++cnt;
tmp = tmp & (tmp - 1);
}
for (int last = start; last < n; ++last)
if (ways[mask][last - start] > 0) {
long amm = ways[mask][last - start];
for (int i = start; i < n; ++i)
if ((mask & (1 << (i - start))) == 0 && g[last][i]) {
ways[mask | (1 << (i - start))][i - start] += amm;
}
if (g[last][start])
am[cnt] += ways[mask][last - start];
}
}
}
long res = 0;
for (int cnt = 3; cnt <= n; ++cnt) {
if (am[cnt] % (2) != 0)
throw new RuntimeException();
res += am[cnt] / (2);
}
out.println(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,331 | 4,305 |
2,121 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG solver = new TaskG();
solver.solve(1, in, out);
out.close();
}
static class TaskG {
static final long MODULO = (long) 1e9 + 7;
static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO;
static final int[] ONE = new int[]{1};
int k;
int n;
long[] globalRes;
int[] p2;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
globalRes = new long[k + 1];
p2 = new int[n + 1];
p2[0] = 1;
for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO);
Vertex[] vs = new Vertex[n];
for (int i = 0; i < n; ++i) vs[i] = new Vertex();
for (int i = 0; i < n - 1; ++i) {
Vertex a = vs[in.nextInt() - 1];
Vertex b = vs[in.nextInt() - 1];
a.adj.add(b);
b.adj.add(a);
}
vs[0].dfs(null);
long[][] ways = new long[k + 1][k + 1];
ways[0][0] = 1;
for (int i = 1; i <= k; ++i) {
for (int j = 1; j <= k; ++j) {
ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO;
}
}
long sum = 0;
for (int i = 1; i <= k; ++i) {
long s = globalRes[i];
s %= MODULO;
sum = (sum + s * ways[k][i]) % MODULO;
}
out.println(sum);
}
class Vertex {
int[] res;
int subtreeSize;
List<Vertex> adj = new ArrayList<>();
public void dfs(Vertex parent) {
subtreeSize = 1;
int[] prod = ONE;
for (Vertex child : adj)
if (child != parent) {
child.dfs(this);
subtreeSize += child.subtreeSize;
}
int mult = 2;//p2[n - subtreeSize];
for (Vertex child : adj)
if (child != parent) {
int[] c = child.res;
prod = mul(prod, c);
subFrom(globalRes, c, 1);
}
addTo(globalRes, prod, mult);
res = insertEdge(prod);
}
private int[] insertEdge(int[] a) {
int len = a.length + 1;
if (len > k) len = k + 1;
int[] b = new int[len];
b[0] = a[0] * 2;
if (b[0] >= MODULO) b[0] -= MODULO;
for (int i = 1; i < len; ++i) {
long s = a[i - 1];
if (i < a.length) s += a[i];
if (s >= MODULO) s -= MODULO;
s = s * 2;
if (s >= MODULO) s -= MODULO;
b[i] = (int) s;
}
b[1] -= 1;
if (b[1] < 0) b[1] += MODULO;
return b;
}
private void addTo(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + b[i] * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private void subFrom(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + (MODULO - b[i]) * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private int[] mul(int[] a, int[] b) {
int len = a.length + b.length - 1;
if (len > k) len = k + 1;
int[] c = new int[len];
for (int i = 0; i < len; ++i) {
long s = 0;
int left = Math.max(0, i - (b.length - 1));
int right = Math.min(a.length - 1, i);
for (int ia = left; ia <= right; ++ia) {
int ib = i - ia;
s += a[ia] * (long) b[ib];
if (s < 0) s -= BIG;
}
c[i] = (int) (s % MODULO);
}
return c;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG solver = new TaskG();
solver.solve(1, in, out);
out.close();
}
static class TaskG {
static final long MODULO = (long) 1e9 + 7;
static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO;
static final int[] ONE = new int[]{1};
int k;
int n;
long[] globalRes;
int[] p2;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
globalRes = new long[k + 1];
p2 = new int[n + 1];
p2[0] = 1;
for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO);
Vertex[] vs = new Vertex[n];
for (int i = 0; i < n; ++i) vs[i] = new Vertex();
for (int i = 0; i < n - 1; ++i) {
Vertex a = vs[in.nextInt() - 1];
Vertex b = vs[in.nextInt() - 1];
a.adj.add(b);
b.adj.add(a);
}
vs[0].dfs(null);
long[][] ways = new long[k + 1][k + 1];
ways[0][0] = 1;
for (int i = 1; i <= k; ++i) {
for (int j = 1; j <= k; ++j) {
ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO;
}
}
long sum = 0;
for (int i = 1; i <= k; ++i) {
long s = globalRes[i];
s %= MODULO;
sum = (sum + s * ways[k][i]) % MODULO;
}
out.println(sum);
}
class Vertex {
int[] res;
int subtreeSize;
List<Vertex> adj = new ArrayList<>();
public void dfs(Vertex parent) {
subtreeSize = 1;
int[] prod = ONE;
for (Vertex child : adj)
if (child != parent) {
child.dfs(this);
subtreeSize += child.subtreeSize;
}
int mult = 2;//p2[n - subtreeSize];
for (Vertex child : adj)
if (child != parent) {
int[] c = child.res;
prod = mul(prod, c);
subFrom(globalRes, c, 1);
}
addTo(globalRes, prod, mult);
res = insertEdge(prod);
}
private int[] insertEdge(int[] a) {
int len = a.length + 1;
if (len > k) len = k + 1;
int[] b = new int[len];
b[0] = a[0] * 2;
if (b[0] >= MODULO) b[0] -= MODULO;
for (int i = 1; i < len; ++i) {
long s = a[i - 1];
if (i < a.length) s += a[i];
if (s >= MODULO) s -= MODULO;
s = s * 2;
if (s >= MODULO) s -= MODULO;
b[i] = (int) s;
}
b[1] -= 1;
if (b[1] < 0) b[1] += MODULO;
return b;
}
private void addTo(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + b[i] * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private void subFrom(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + (MODULO - b[i]) * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private int[] mul(int[] a, int[] b) {
int len = a.length + b.length - 1;
if (len > k) len = k + 1;
int[] c = new int[len];
for (int i = 0; i < len; ++i) {
long s = 0;
int left = Math.max(0, i - (b.length - 1));
int right = Math.min(a.length - 1, i);
for (int ia = left; ia <= right; ++ia) {
int ib = i - ia;
s += a[ia] * (long) b[ib];
if (s < 0) s -= BIG;
}
c[i] = (int) (s % MODULO);
}
return c;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG solver = new TaskG();
solver.solve(1, in, out);
out.close();
}
static class TaskG {
static final long MODULO = (long) 1e9 + 7;
static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO;
static final int[] ONE = new int[]{1};
int k;
int n;
long[] globalRes;
int[] p2;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
globalRes = new long[k + 1];
p2 = new int[n + 1];
p2[0] = 1;
for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO);
Vertex[] vs = new Vertex[n];
for (int i = 0; i < n; ++i) vs[i] = new Vertex();
for (int i = 0; i < n - 1; ++i) {
Vertex a = vs[in.nextInt() - 1];
Vertex b = vs[in.nextInt() - 1];
a.adj.add(b);
b.adj.add(a);
}
vs[0].dfs(null);
long[][] ways = new long[k + 1][k + 1];
ways[0][0] = 1;
for (int i = 1; i <= k; ++i) {
for (int j = 1; j <= k; ++j) {
ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO;
}
}
long sum = 0;
for (int i = 1; i <= k; ++i) {
long s = globalRes[i];
s %= MODULO;
sum = (sum + s * ways[k][i]) % MODULO;
}
out.println(sum);
}
class Vertex {
int[] res;
int subtreeSize;
List<Vertex> adj = new ArrayList<>();
public void dfs(Vertex parent) {
subtreeSize = 1;
int[] prod = ONE;
for (Vertex child : adj)
if (child != parent) {
child.dfs(this);
subtreeSize += child.subtreeSize;
}
int mult = 2;//p2[n - subtreeSize];
for (Vertex child : adj)
if (child != parent) {
int[] c = child.res;
prod = mul(prod, c);
subFrom(globalRes, c, 1);
}
addTo(globalRes, prod, mult);
res = insertEdge(prod);
}
private int[] insertEdge(int[] a) {
int len = a.length + 1;
if (len > k) len = k + 1;
int[] b = new int[len];
b[0] = a[0] * 2;
if (b[0] >= MODULO) b[0] -= MODULO;
for (int i = 1; i < len; ++i) {
long s = a[i - 1];
if (i < a.length) s += a[i];
if (s >= MODULO) s -= MODULO;
s = s * 2;
if (s >= MODULO) s -= MODULO;
b[i] = (int) s;
}
b[1] -= 1;
if (b[1] < 0) b[1] += MODULO;
return b;
}
private void addTo(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + b[i] * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private void subFrom(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + (MODULO - b[i]) * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private int[] mul(int[] a, int[] b) {
int len = a.length + b.length - 1;
if (len > k) len = k + 1;
int[] c = new int[len];
for (int i = 0; i < len; ++i) {
long s = 0;
int left = Math.max(0, i - (b.length - 1));
int right = Math.min(a.length - 1, i);
for (int ia = left; ia <= right; ++ia) {
int ib = i - ia;
s += a[ia] * (long) b[ib];
if (s < 0) s -= BIG;
}
c[i] = (int) (s % MODULO);
}
return c;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,740 | 2,117 |
2,984 |
import java.util.*;
public class p343A
{
static long n = 0;
static void resistance(long a, long b)
{
n += a/b;
a %= b;
if(a!=0) resistance(b, a);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
long a = in.nextLong();
long b = in.nextLong();
resistance(a, b);
System.out.println(n);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class p343A
{
static long n = 0;
static void resistance(long a, long b)
{
n += a/b;
a %= b;
if(a!=0) resistance(b, a);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
long a = in.nextLong();
long b = in.nextLong();
resistance(a, b);
System.out.println(n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
public class p343A
{
static long n = 0;
static void resistance(long a, long b)
{
n += a/b;
a %= b;
if(a!=0) resistance(b, a);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
long a = in.nextLong();
long b = in.nextLong();
resistance(a, b);
System.out.println(n);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 440 | 2,978 |
1,342 |
import java.io.*;
import java.util.Locale;
import java.util.StringTokenizer;
public class B implements Runnable {
private static final boolean ONLINE_JUDGE = true;//System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
}
}
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new B().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
int n = readInt();
int[] rect1 = solve1(n);
int[] rect2 = solve2(n, rect1);
out.printf("! %s %s %s %s %s %s %s %s\n", rect1[0], rect1[1], rect1[2], rect1[3],
rect2[0], rect2[1], rect2[2], rect2[3]);
out.flush();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int ask(int x1, int y1, int x2, int y2) {
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
return readInt();
}
int ask(int x1, int y1, int x2, int y2, int[] rect) {
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
int res = readInt();
if (rect[0] >= x1 && rect[2] <= x2 && rect[1] >= y1 && rect[3] <= y2) {
res--;
}
return res;
}
int[] dropTopAndLeft1(int x2, int y2) {
int x1 = x2, y1 = y2;
int left = 1, right = x2;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(mid, 1, x2, y2);
if (count >= 1) {
x1 = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
left = 1;
right = y2;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, mid, x2, y2);
if (count >= 1) {
y1 = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
return new int[]{x1, y1, x2, y2};
}
private int[] solve1(int n) {
int x = -1;
int left = 1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(1, 1, mid, n);
if (count >= 1) {
x = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
left = 1;
right = n;
int y = -1;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(1, 1, x, mid);
if (count >= 1) {
y = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
return dropTopAndLeft1(x, y);
}
private int[] solve2(int n, int[] rect) {
int x = -1;
int left = 1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(mid, 1, n, n, rect);
if (count >= 1) {
x = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
left = 1;
right = n;
int y = -1;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x, mid, n, n, rect);
if (count >= 1) {
y = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
return dropTopAndLeft2(x, y, n, rect);
}
int[] dropTopAndLeft2(int x1, int y1, int n, int[] rect) {
int x2 = x1, y2 = y1;
int left = x1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, y1, mid, n, rect);
if (count >= 1) {
x2 = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
left = y1;
right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, y1, x2, mid, rect);
if (count == 1) {
y2 = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
return new int[]{x1, y1, x2, y2};
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.Locale;
import java.util.StringTokenizer;
public class B implements Runnable {
private static final boolean ONLINE_JUDGE = true;//System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
}
}
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new B().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
int n = readInt();
int[] rect1 = solve1(n);
int[] rect2 = solve2(n, rect1);
out.printf("! %s %s %s %s %s %s %s %s\n", rect1[0], rect1[1], rect1[2], rect1[3],
rect2[0], rect2[1], rect2[2], rect2[3]);
out.flush();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int ask(int x1, int y1, int x2, int y2) {
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
return readInt();
}
int ask(int x1, int y1, int x2, int y2, int[] rect) {
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
int res = readInt();
if (rect[0] >= x1 && rect[2] <= x2 && rect[1] >= y1 && rect[3] <= y2) {
res--;
}
return res;
}
int[] dropTopAndLeft1(int x2, int y2) {
int x1 = x2, y1 = y2;
int left = 1, right = x2;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(mid, 1, x2, y2);
if (count >= 1) {
x1 = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
left = 1;
right = y2;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, mid, x2, y2);
if (count >= 1) {
y1 = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
return new int[]{x1, y1, x2, y2};
}
private int[] solve1(int n) {
int x = -1;
int left = 1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(1, 1, mid, n);
if (count >= 1) {
x = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
left = 1;
right = n;
int y = -1;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(1, 1, x, mid);
if (count >= 1) {
y = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
return dropTopAndLeft1(x, y);
}
private int[] solve2(int n, int[] rect) {
int x = -1;
int left = 1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(mid, 1, n, n, rect);
if (count >= 1) {
x = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
left = 1;
right = n;
int y = -1;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x, mid, n, n, rect);
if (count >= 1) {
y = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
return dropTopAndLeft2(x, y, n, rect);
}
int[] dropTopAndLeft2(int x1, int y1, int n, int[] rect) {
int x2 = x1, y2 = y1;
int left = x1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, y1, mid, n, rect);
if (count >= 1) {
x2 = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
left = y1;
right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, y1, x2, mid, rect);
if (count == 1) {
y2 = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
return new int[]{x1, y1, x2, y2};
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.Locale;
import java.util.StringTokenizer;
public class B implements Runnable {
private static final boolean ONLINE_JUDGE = true;//System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
} else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
}
}
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new B().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
int n = readInt();
int[] rect1 = solve1(n);
int[] rect2 = solve2(n, rect1);
out.printf("! %s %s %s %s %s %s %s %s\n", rect1[0], rect1[1], rect1[2], rect1[3],
rect2[0], rect2[1], rect2[2], rect2[3]);
out.flush();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int ask(int x1, int y1, int x2, int y2) {
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
return readInt();
}
int ask(int x1, int y1, int x2, int y2, int[] rect) {
out.println("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.flush();
int res = readInt();
if (rect[0] >= x1 && rect[2] <= x2 && rect[1] >= y1 && rect[3] <= y2) {
res--;
}
return res;
}
int[] dropTopAndLeft1(int x2, int y2) {
int x1 = x2, y1 = y2;
int left = 1, right = x2;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(mid, 1, x2, y2);
if (count >= 1) {
x1 = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
left = 1;
right = y2;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, mid, x2, y2);
if (count >= 1) {
y1 = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
return new int[]{x1, y1, x2, y2};
}
private int[] solve1(int n) {
int x = -1;
int left = 1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(1, 1, mid, n);
if (count >= 1) {
x = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
left = 1;
right = n;
int y = -1;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(1, 1, x, mid);
if (count >= 1) {
y = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
return dropTopAndLeft1(x, y);
}
private int[] solve2(int n, int[] rect) {
int x = -1;
int left = 1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(mid, 1, n, n, rect);
if (count >= 1) {
x = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
left = 1;
right = n;
int y = -1;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x, mid, n, n, rect);
if (count >= 1) {
y = mid;
left = mid + 1;
}
if (count == 0) {
right = mid - 1;
}
}
return dropTopAndLeft2(x, y, n, rect);
}
int[] dropTopAndLeft2(int x1, int y1, int n, int[] rect) {
int x2 = x1, y2 = y1;
int left = x1, right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, y1, mid, n, rect);
if (count >= 1) {
x2 = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
left = y1;
right = n;
while (left <= right) {
int mid = (left + right) >> 1;
int count = ask(x1, y1, x2, mid, rect);
if (count == 1) {
y2 = mid;
right = mid - 1;
}
if (count == 0) {
left = mid + 1;
}
}
return new int[]{x1, y1, x2, y2};
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,005 | 1,340 |
585 |
//package contests.CF495;
import java.io.*;
import java.util.HashSet;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int d = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++) {
arr[i] = sc.nextInt();
}
HashSet<Integer> set = new HashSet<>();
for (int i = 0; i < arr.length; i++) {
set.add(arr[i]+d);
set.add(arr[i]-d);
}
int cnt = 0;
for (int loc: set) {
int minDist = (int)2e9;
for (int i = 0; i < n; i++) {
minDist = Math.min(minDist, Math.abs(arr[i]-loc));
}
if(minDist == d)
cnt++;
}
pw.println(cnt);
pw.flush();
pw.close();
}
static int[][] packD(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from) if(f != -1) p[f]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) if(from[i] != -1) {g[from[i]][--p[from[i]]] = to[i];}
return g;
}
static void shuffle(int[] a)
{
int n = a.length;
for(int i = 0; i < n; i++)
{
int r = i + (int)(Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
static class Scanner
{
StringTokenizer st; BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s)));}
public String next() throws IOException {while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());return st.nextToken();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready();}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package contests.CF495;
import java.io.*;
import java.util.HashSet;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int d = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++) {
arr[i] = sc.nextInt();
}
HashSet<Integer> set = new HashSet<>();
for (int i = 0; i < arr.length; i++) {
set.add(arr[i]+d);
set.add(arr[i]-d);
}
int cnt = 0;
for (int loc: set) {
int minDist = (int)2e9;
for (int i = 0; i < n; i++) {
minDist = Math.min(minDist, Math.abs(arr[i]-loc));
}
if(minDist == d)
cnt++;
}
pw.println(cnt);
pw.flush();
pw.close();
}
static int[][] packD(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from) if(f != -1) p[f]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) if(from[i] != -1) {g[from[i]][--p[from[i]]] = to[i];}
return g;
}
static void shuffle(int[] a)
{
int n = a.length;
for(int i = 0; i < n; i++)
{
int r = i + (int)(Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
static class Scanner
{
StringTokenizer st; BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s)));}
public String next() throws IOException {while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());return st.nextToken();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package contests.CF495;
import java.io.*;
import java.util.HashSet;
import java.util.StringTokenizer;
public class A {
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int d = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < arr.length; i++) {
arr[i] = sc.nextInt();
}
HashSet<Integer> set = new HashSet<>();
for (int i = 0; i < arr.length; i++) {
set.add(arr[i]+d);
set.add(arr[i]-d);
}
int cnt = 0;
for (int loc: set) {
int minDist = (int)2e9;
for (int i = 0; i < n; i++) {
minDist = Math.min(minDist, Math.abs(arr[i]-loc));
}
if(minDist == d)
cnt++;
}
pw.println(cnt);
pw.flush();
pw.close();
}
static int[][] packD(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from) if(f != -1) p[f]++;
for (int i = 0; i < n; i++) g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) if(from[i] != -1) {g[from[i]][--p[from[i]]] = to[i];}
return g;
}
static void shuffle(int[] a)
{
int n = a.length;
for(int i = 0; i < n; i++)
{
int r = i + (int)(Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
static class Scanner
{
StringTokenizer st; BufferedReader br;
public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));}
public Scanner(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s)));}
public String next() throws IOException {while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine());return st.nextToken();}
public int nextInt() throws IOException {return Integer.parseInt(next());}
public long nextLong() throws IOException {return Long.parseLong(next());}
public String nextLine() throws IOException {return br.readLine();}
public boolean ready() throws IOException {return br.ready();}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 911 | 584 |
2,775 |
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
int S=Integer.parseInt(s1[1]);
if(S%n==0)
System.out.println(S/n);
else
System.out.println(S/n+1);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
int S=Integer.parseInt(s1[1]);
if(S%n==0)
System.out.println(S/n);
else
System.out.println(S/n+1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class A
{
public static void main(String ar[]) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String s1[]=br.readLine().split(" ");
int n=Integer.parseInt(s1[0]);
int S=Integer.parseInt(s1[1]);
if(S%n==0)
System.out.println(S/n);
else
System.out.println(S/n+1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 447 | 2,769 |
344 |
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C implements Runnable {
private static final boolean USE_FILE_IO = false;
private static final String FILE_IN = "c.in";
private static final String FILE_OUT = "c.out";
BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer = new StringTokenizer("");
public static void main(String[] args) {
new Thread(new C()).start();
}
int n, h, t;
char[] c;
private void solve() throws IOException {
n = nextInt();
c = nextToken().toCharArray();
if (c.length != n) {
throw new IllegalStateException();
}
for (char l : c)
if (l == 'H') {
h++;
}
t = n - h;
if (h == 0) {
out.print(0);
return;
}
int answer = Integer.MAX_VALUE;
for (int hLo = 0; hLo < n; hLo++)
if (c[hLo] == 'H') {
int hHi = (hLo + h) % n;
int current = 0;
int j = hLo;
while (j != hHi) {
if (c[j] == 'T') {
current++;
}
j = (j + 1) % n;
}
answer = Math.min(answer, current);
}
out.print(answer);
}
public void run() {
long timeStart = System.currentTimeMillis();
try {
if (USE_FILE_IO) {
in = new BufferedReader(new FileReader(FILE_IN));
out = new PrintWriter(new FileWriter(FILE_OUT));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
}
solve();
in.close();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
long timeEnd = System.currentTimeMillis();
System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
}
private String nextToken() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private BigInteger nextBigInt() throws IOException {
return new BigInteger(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C implements Runnable {
private static final boolean USE_FILE_IO = false;
private static final String FILE_IN = "c.in";
private static final String FILE_OUT = "c.out";
BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer = new StringTokenizer("");
public static void main(String[] args) {
new Thread(new C()).start();
}
int n, h, t;
char[] c;
private void solve() throws IOException {
n = nextInt();
c = nextToken().toCharArray();
if (c.length != n) {
throw new IllegalStateException();
}
for (char l : c)
if (l == 'H') {
h++;
}
t = n - h;
if (h == 0) {
out.print(0);
return;
}
int answer = Integer.MAX_VALUE;
for (int hLo = 0; hLo < n; hLo++)
if (c[hLo] == 'H') {
int hHi = (hLo + h) % n;
int current = 0;
int j = hLo;
while (j != hHi) {
if (c[j] == 'T') {
current++;
}
j = (j + 1) % n;
}
answer = Math.min(answer, current);
}
out.print(answer);
}
public void run() {
long timeStart = System.currentTimeMillis();
try {
if (USE_FILE_IO) {
in = new BufferedReader(new FileReader(FILE_IN));
out = new PrintWriter(new FileWriter(FILE_OUT));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
}
solve();
in.close();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
long timeEnd = System.currentTimeMillis();
System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
}
private String nextToken() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private BigInteger nextBigInt() throws IOException {
return new BigInteger(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
import java.util.StringTokenizer;
public class C implements Runnable {
private static final boolean USE_FILE_IO = false;
private static final String FILE_IN = "c.in";
private static final String FILE_OUT = "c.out";
BufferedReader in;
PrintWriter out;
StringTokenizer tokenizer = new StringTokenizer("");
public static void main(String[] args) {
new Thread(new C()).start();
}
int n, h, t;
char[] c;
private void solve() throws IOException {
n = nextInt();
c = nextToken().toCharArray();
if (c.length != n) {
throw new IllegalStateException();
}
for (char l : c)
if (l == 'H') {
h++;
}
t = n - h;
if (h == 0) {
out.print(0);
return;
}
int answer = Integer.MAX_VALUE;
for (int hLo = 0; hLo < n; hLo++)
if (c[hLo] == 'H') {
int hHi = (hLo + h) % n;
int current = 0;
int j = hLo;
while (j != hHi) {
if (c[j] == 'T') {
current++;
}
j = (j + 1) % n;
}
answer = Math.min(answer, current);
}
out.print(answer);
}
public void run() {
long timeStart = System.currentTimeMillis();
try {
if (USE_FILE_IO) {
in = new BufferedReader(new FileReader(FILE_IN));
out = new PrintWriter(new FileWriter(FILE_OUT));
} else {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
}
solve();
in.close();
out.close();
} catch (IOException e) {
throw new IllegalStateException(e);
}
long timeEnd = System.currentTimeMillis();
System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
}
private String nextToken() throws IOException {
while (!tokenizer.hasMoreTokens()) {
String line = in.readLine();
if (line == null) {
return null;
}
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private BigInteger nextBigInt() throws IOException {
return new BigInteger(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 923 | 343 |
2,366 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int l, r, sum = 0;
int[] a = new int[n+5];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
for (int i = 0; i < n; i++)
for (int j = i+1; j < n; j++)
if (a[i] > a[j]) sum++;
int q = in.nextInt();
while (q-- > 0){
l = in.nextInt();
r = in.nextInt();
sum += (r-l+1)/2;
if (sum % 2 == 1) out.println("odd");
else out.println("even");
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int l, r, sum = 0;
int[] a = new int[n+5];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
for (int i = 0; i < n; i++)
for (int j = i+1; j < n; j++)
if (a[i] > a[j]) sum++;
int q = in.nextInt();
while (q-- > 0){
l = in.nextInt();
r = in.nextInt();
sum += (r-l+1)/2;
if (sum % 2 == 1) out.println("odd");
else out.println("even");
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
static class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int l, r, sum = 0;
int[] a = new int[n+5];
for (int i = 0; i < n; i++) a[i] = in.nextInt();
for (int i = 0; i < n; i++)
for (int j = i+1; j < n; j++)
if (a[i] > a[j]) sum++;
int q = in.nextInt();
while (q-- > 0){
l = in.nextInt();
r = in.nextInt();
sum += (r-l+1)/2;
if (sum % 2 == 1) out.println("odd");
else out.println("even");
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 781 | 2,361 |
4,294 |
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.OutputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
double special(int[] loyalties, int[] levels, int playerlevelsum) {
int poss = 1 << loyalties.length;
double res = 0;
for(int pos = 0; pos < poss; pos++) {
double occurs = 1;
int happy = 0;
int badlevelssum = 0;
for(int i = 0; i < loyalties.length; i++) {
if(((pos >> i) & 1) == 1) { //happy senator
happy++;
occurs *= (double) loyalties[i] / 100;
} else { //unhappy senator
badlevelssum += levels[i];
occurs *= (double) (100 - loyalties[i]) / 100;
}
}
double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) :
1;
// System.err.println(pos + " " + (happy <= levels.length / 2) + " " + playerlevelsum + " " + (playerlevelsum + badlevelssum) + " " + occurs + " " + winprob + " " + occurs * winprob);
res += occurs * winprob;
}
return res;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int senators = in.readInt(); // n, [1, 8]
int sweets = in.readInt(); // k, [1, 8]
int playerlevelsum = in.readInt(); // A, [1, 9999]
int[] levels = new int[senators]; // [1, 9999]
int[] loyalties = new int[senators]; // [0, 100] divisible by 10
IOUtils.readIntArrays(in, levels, loyalties);
ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>()));
for(int senator = 0; senator < senators; senator++) {
ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>();
for(ArrayList<Integer> al : possibilities) {
int sumsofar = 0;
for(int val : al) sumsofar += val;
int minadd = senator == senators - 1 ? sweets - sumsofar : 0;
for(int moar = minadd; moar <= sweets - sumsofar; moar++) {
ArrayList<Integer> copy = new ArrayList<>(al);
copy.add(moar);
newpossibilities.add(copy);
}
}
possibilities = newpossibilities;
}
double res = 0;
// out.printLine(possibilities.size());
for(ArrayList<Integer> al : possibilities) {
int[] newloyalties = new int[senators];
for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i));
// out.printLine(al);
// out.printLine(newloyalties);
// double works = dp(0, 0, newloyalties);
double special = special(newloyalties, levels, playerlevelsum);
double tot = special;
res = Math.max(res, tot);
}
out.printLine(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for(int i = 0; i < objects.length; i++) {
if(i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for(int i = 0; i < arrays[0].length; i++) {
for(int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.OutputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
double special(int[] loyalties, int[] levels, int playerlevelsum) {
int poss = 1 << loyalties.length;
double res = 0;
for(int pos = 0; pos < poss; pos++) {
double occurs = 1;
int happy = 0;
int badlevelssum = 0;
for(int i = 0; i < loyalties.length; i++) {
if(((pos >> i) & 1) == 1) { //happy senator
happy++;
occurs *= (double) loyalties[i] / 100;
} else { //unhappy senator
badlevelssum += levels[i];
occurs *= (double) (100 - loyalties[i]) / 100;
}
}
double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) :
1;
// System.err.println(pos + " " + (happy <= levels.length / 2) + " " + playerlevelsum + " " + (playerlevelsum + badlevelssum) + " " + occurs + " " + winprob + " " + occurs * winprob);
res += occurs * winprob;
}
return res;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int senators = in.readInt(); // n, [1, 8]
int sweets = in.readInt(); // k, [1, 8]
int playerlevelsum = in.readInt(); // A, [1, 9999]
int[] levels = new int[senators]; // [1, 9999]
int[] loyalties = new int[senators]; // [0, 100] divisible by 10
IOUtils.readIntArrays(in, levels, loyalties);
ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>()));
for(int senator = 0; senator < senators; senator++) {
ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>();
for(ArrayList<Integer> al : possibilities) {
int sumsofar = 0;
for(int val : al) sumsofar += val;
int minadd = senator == senators - 1 ? sweets - sumsofar : 0;
for(int moar = minadd; moar <= sweets - sumsofar; moar++) {
ArrayList<Integer> copy = new ArrayList<>(al);
copy.add(moar);
newpossibilities.add(copy);
}
}
possibilities = newpossibilities;
}
double res = 0;
// out.printLine(possibilities.size());
for(ArrayList<Integer> al : possibilities) {
int[] newloyalties = new int[senators];
for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i));
// out.printLine(al);
// out.printLine(newloyalties);
// double works = dp(0, 0, newloyalties);
double special = special(newloyalties, levels, playerlevelsum);
double tot = special;
res = Math.max(res, tot);
}
out.printLine(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for(int i = 0; i < objects.length; i++) {
if(i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for(int i = 0; i < arrays[0].length; i++) {
for(int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.OutputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Alex
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskB solver = new TaskB();
solver.solve(1, in, out);
out.close();
}
static class TaskB {
double special(int[] loyalties, int[] levels, int playerlevelsum) {
int poss = 1 << loyalties.length;
double res = 0;
for(int pos = 0; pos < poss; pos++) {
double occurs = 1;
int happy = 0;
int badlevelssum = 0;
for(int i = 0; i < loyalties.length; i++) {
if(((pos >> i) & 1) == 1) { //happy senator
happy++;
occurs *= (double) loyalties[i] / 100;
} else { //unhappy senator
badlevelssum += levels[i];
occurs *= (double) (100 - loyalties[i]) / 100;
}
}
double winprob = (happy <= levels.length / 2) ? (double) playerlevelsum / (playerlevelsum + badlevelssum) :
1;
// System.err.println(pos + " " + (happy <= levels.length / 2) + " " + playerlevelsum + " " + (playerlevelsum + badlevelssum) + " " + occurs + " " + winprob + " " + occurs * winprob);
res += occurs * winprob;
}
return res;
}
public void solve(int testNumber, InputReader in, OutputWriter out) {
int senators = in.readInt(); // n, [1, 8]
int sweets = in.readInt(); // k, [1, 8]
int playerlevelsum = in.readInt(); // A, [1, 9999]
int[] levels = new int[senators]; // [1, 9999]
int[] loyalties = new int[senators]; // [0, 100] divisible by 10
IOUtils.readIntArrays(in, levels, loyalties);
ArrayList<ArrayList<Integer>> possibilities = new ArrayList<>(Arrays.asList(new ArrayList<>()));
for(int senator = 0; senator < senators; senator++) {
ArrayList<ArrayList<Integer>> newpossibilities = new ArrayList<>();
for(ArrayList<Integer> al : possibilities) {
int sumsofar = 0;
for(int val : al) sumsofar += val;
int minadd = senator == senators - 1 ? sweets - sumsofar : 0;
for(int moar = minadd; moar <= sweets - sumsofar; moar++) {
ArrayList<Integer> copy = new ArrayList<>(al);
copy.add(moar);
newpossibilities.add(copy);
}
}
possibilities = newpossibilities;
}
double res = 0;
// out.printLine(possibilities.size());
for(ArrayList<Integer> al : possibilities) {
int[] newloyalties = new int[senators];
for(int i = 0; i < senators; i++) newloyalties[i] = Math.min(100, loyalties[i] + 10 * al.get(i));
// out.printLine(al);
// out.printLine(newloyalties);
// double works = dp(0, 0, newloyalties);
double special = special(newloyalties, levels, playerlevelsum);
double tot = special;
res = Math.max(res, tot);
}
out.printLine(res);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if(numChars == -1)
throw new InputMismatchException();
if(curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch(IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if(c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while(!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if(filter != null)
return filter.isSpaceChar(c);
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for(int i = 0; i < objects.length; i++) {
if(i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
static class IOUtils {
public static void readIntArrays(InputReader in, int[]... arrays) {
for(int i = 0; i < arrays[0].length; i++) {
for(int j = 0; j < arrays.length; j++)
arrays[j][i] = in.readInt();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,805 | 4,283 |
2,532 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
public class CF1141F {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] split = br.readLine().split(" ");
int[] terms = new int[n];
int[] sums = new int[n+1];
for(int i=0; i<n; i++) {
terms[i] = Integer.parseInt(split[i]);
sums[i+1] = sums[i]+terms[i];
}
ArrayList<Block> blocks = new ArrayList<>();
for(int i=0; i<n; i++)
for(int j=i; j<n; j++){
int s = sums[j+1]-sums[i];
blocks.add(new Block(i, j, s));
}
Collections.sort(blocks);
ArrayList<Block> best = new ArrayList<>();
int i = 0;
while(i<blocks.size()){
int curSum = blocks.get(i).sum;
ArrayList<Block> curBlocks = new ArrayList<>();
while(i<blocks.size() && blocks.get(i).sum==curSum) curBlocks.add(blocks.get(i++));
int[] memo = new int[curBlocks.size()+1];
Arrays.fill(memo, -1);
memo[curBlocks.size()] = 0;
for(int j=curBlocks.size()-1; j>=0; j--){
int idx = Collections.binarySearch(curBlocks, new Block(curBlocks.get(j).r+1, curBlocks.get(j).r+1, curBlocks.get(j).sum));
if(idx<0) idx = -(idx+1);
memo[j] = Math.max(memo[j+1], 1+memo[idx]);
}
if(memo[0]>best.size()){
best = new ArrayList<>();
int idx = 0;
while(memo[idx]>=1){
if(memo[idx]>memo[idx+1]) best.add(curBlocks.get(idx));
idx++;
}
}
}
StringBuilder sb = new StringBuilder();
sb.append(best.size()).append("\n");
for(Block b : best){
sb.append(b.l+1).append(" ").append(b.r+1).append("\n");
}
System.out.print(sb);
}
static class Block implements Comparable<Block>{
int l, r, sum;
Block(int a, int b, int c){
l = a;
r = b;
sum = c;
}
@Override
public int compareTo(Block o) {
if(sum==o.sum){
if(l==o.l) return r-o.r;
return l-o.l;
}
return sum-o.sum;
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
public class CF1141F {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] split = br.readLine().split(" ");
int[] terms = new int[n];
int[] sums = new int[n+1];
for(int i=0; i<n; i++) {
terms[i] = Integer.parseInt(split[i]);
sums[i+1] = sums[i]+terms[i];
}
ArrayList<Block> blocks = new ArrayList<>();
for(int i=0; i<n; i++)
for(int j=i; j<n; j++){
int s = sums[j+1]-sums[i];
blocks.add(new Block(i, j, s));
}
Collections.sort(blocks);
ArrayList<Block> best = new ArrayList<>();
int i = 0;
while(i<blocks.size()){
int curSum = blocks.get(i).sum;
ArrayList<Block> curBlocks = new ArrayList<>();
while(i<blocks.size() && blocks.get(i).sum==curSum) curBlocks.add(blocks.get(i++));
int[] memo = new int[curBlocks.size()+1];
Arrays.fill(memo, -1);
memo[curBlocks.size()] = 0;
for(int j=curBlocks.size()-1; j>=0; j--){
int idx = Collections.binarySearch(curBlocks, new Block(curBlocks.get(j).r+1, curBlocks.get(j).r+1, curBlocks.get(j).sum));
if(idx<0) idx = -(idx+1);
memo[j] = Math.max(memo[j+1], 1+memo[idx]);
}
if(memo[0]>best.size()){
best = new ArrayList<>();
int idx = 0;
while(memo[idx]>=1){
if(memo[idx]>memo[idx+1]) best.add(curBlocks.get(idx));
idx++;
}
}
}
StringBuilder sb = new StringBuilder();
sb.append(best.size()).append("\n");
for(Block b : best){
sb.append(b.l+1).append(" ").append(b.r+1).append("\n");
}
System.out.print(sb);
}
static class Block implements Comparable<Block>{
int l, r, sum;
Block(int a, int b, int c){
l = a;
r = b;
sum = c;
}
@Override
public int compareTo(Block o) {
if(sum==o.sum){
if(l==o.l) return r-o.r;
return l-o.l;
}
return sum-o.sum;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
public class CF1141F {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] split = br.readLine().split(" ");
int[] terms = new int[n];
int[] sums = new int[n+1];
for(int i=0; i<n; i++) {
terms[i] = Integer.parseInt(split[i]);
sums[i+1] = sums[i]+terms[i];
}
ArrayList<Block> blocks = new ArrayList<>();
for(int i=0; i<n; i++)
for(int j=i; j<n; j++){
int s = sums[j+1]-sums[i];
blocks.add(new Block(i, j, s));
}
Collections.sort(blocks);
ArrayList<Block> best = new ArrayList<>();
int i = 0;
while(i<blocks.size()){
int curSum = blocks.get(i).sum;
ArrayList<Block> curBlocks = new ArrayList<>();
while(i<blocks.size() && blocks.get(i).sum==curSum) curBlocks.add(blocks.get(i++));
int[] memo = new int[curBlocks.size()+1];
Arrays.fill(memo, -1);
memo[curBlocks.size()] = 0;
for(int j=curBlocks.size()-1; j>=0; j--){
int idx = Collections.binarySearch(curBlocks, new Block(curBlocks.get(j).r+1, curBlocks.get(j).r+1, curBlocks.get(j).sum));
if(idx<0) idx = -(idx+1);
memo[j] = Math.max(memo[j+1], 1+memo[idx]);
}
if(memo[0]>best.size()){
best = new ArrayList<>();
int idx = 0;
while(memo[idx]>=1){
if(memo[idx]>memo[idx+1]) best.add(curBlocks.get(idx));
idx++;
}
}
}
StringBuilder sb = new StringBuilder();
sb.append(best.size()).append("\n");
for(Block b : best){
sb.append(b.l+1).append(" ").append(b.r+1).append("\n");
}
System.out.print(sb);
}
static class Block implements Comparable<Block>{
int l, r, sum;
Block(int a, int b, int c){
l = a;
r = b;
sum = c;
}
@Override
public int compareTo(Block o) {
if(sum==o.sum){
if(l==o.l) return r-o.r;
return l-o.l;
}
return sum-o.sum;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 962 | 2,526 |
2,399 |
//app.は全部けす
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
//流す前にfinalにする
public final class EcRound35DApplication {
public static void main(String[] args) {
Input input = new Input();
input = SystemInput();
List<String> resultList = run(input);
for(String result:resultList){
System.out.println(result);
}
}
//流す前にstaticにする
private static void tester(Integer no,List<Integer> inputList,List<String> answer) {
Input input = new Input();
input.setInput(inputList);
List<String> result = run(input);
if(result.equals(answer)) {
System.out.println("No." + no + ":OK");
}
else {
System.out.println("No." + no + ":failed");
System.out.println("result:" + result);
System.out.println("answer:" + answer);
}
}
//流す前にstaticにする
private static Input SystemInput() {
Input input = new Input();
Scanner sc = new Scanner(System.in);
List<Integer> inputList = new ArrayList<Integer>();
while(sc.hasNextInt()) {
inputList.add(sc.nextInt());
}
input.setInput(inputList);
sc.close();
return input;
}
//流す前にstaticにする
private static List<String> run(Input input) {
List<String> result = new ArrayList<String>();
List<Integer> permutation = input.getPermutationList();
Integer count;
count = inversion(permutation);
for(Integer i = 0;i < input.getQueryNum();i++) {
count = count + change(input.getQuery(i));
result.add(evenOdd(count));
}
return result;
}
//カウントする
private static Integer inversion(List<Integer>permutation) {
String result = new String();
Integer inversionCount = 0;
for(Integer i = 0; i < permutation.size(); i++) {
for(Integer j = i + 1; j < permutation.size(); j++) {
if(permutation.get(i) > permutation.get(j)) {
inversionCount++;
}
}
}
return inversionCount;
}
//交換時追加分カウント
private static Integer change(Query query) {
Integer result;
result = query.getLength() * (query.getLength() - 1) / 2;
return result;
}
//判定する
private static String evenOdd(Integer i) {
if(i % 2 == 0) {
return "even";
}
else {
return "odd";
}
}
private static class Query{
private Integer l;
private Integer r;
public void setQuery(Integer l,Integer r) {
this.l = l;
this.r = r;
}
public Integer getL() {
return l;
}
public void setL(Integer l) {
this.l = l;
}
public Integer getR() {
return r;
}
public void setR(Integer r) {
this.r = r;
}
public Integer getLength(){
return r - l + 1;
}
}
//流す前にstaticにする
private static class Input{
private Integer length;
private List<Integer> permutationList = new ArrayList<Integer>();
private Integer queryNum;
private List<Query> queryList = new ArrayList<Query>();
public void setInput(List<Integer> inputList) {
this.length = inputList.get(0);
setPermutationList(inputList.subList(1, length+1));
this.queryNum = inputList.get(length+1);
for(Integer j = length+2; j < inputList.size()-1; j = j + 2) {
addQueryList(inputList.get(j),inputList.get(j+1));
}
// checkInput();
}
public void checkInput() {
System.out.println("permutation length:" + permutationList.size());
System.out.println("permutation:" + permutationList);
System.out.println("query length:" + queryList.size());
System.out.println("queries:");
for(Integer i = 0;i < queryList.size();i++) {
System.out.println(this.getQueryL(i) + " " + this.getQueryR(i));
}
}
public Integer getLength() {
return length;
}
public void setLength(Integer length) {
this.length = length;
}
public List<Integer> getPermutationList() {
return permutationList;
}
public void setPermutationList(List<Integer> permutationList) {
this.permutationList = permutationList;
}
public Integer getPermutation(Integer i) {
return permutationList.get(i);
}
public void addPermutationList(Integer newPermutation) {
this.permutationList.add(newPermutation);
}
public Integer getQueryNum() {
return queryNum;
}
public void setQueryNum(Integer queryNum) {
this.queryNum = queryNum;
}
public Query getQuery(Integer i) {
return queryList.get(i);
}
public Integer getQueryL(Integer i) {
return queryList.get(i).getL();
}
public Integer getQueryR(Integer i) {
return queryList.get(i).getR();
}
public List<Query> getQueryList() {
return queryList;
}
public void setQueryList(List<Query> queryList) {
this.queryList = queryList;
}
public void addQueryList(Query newQuery) {
this.queryList.add(newQuery);
}
public void addQueryList(Integer l,Integer r) {
Query newQuery = new Query();
newQuery.setQuery(l, r);
addQueryList(newQuery);
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//app.は全部けす
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
//流す前にfinalにする
public final class EcRound35DApplication {
public static void main(String[] args) {
Input input = new Input();
input = SystemInput();
List<String> resultList = run(input);
for(String result:resultList){
System.out.println(result);
}
}
//流す前にstaticにする
private static void tester(Integer no,List<Integer> inputList,List<String> answer) {
Input input = new Input();
input.setInput(inputList);
List<String> result = run(input);
if(result.equals(answer)) {
System.out.println("No." + no + ":OK");
}
else {
System.out.println("No." + no + ":failed");
System.out.println("result:" + result);
System.out.println("answer:" + answer);
}
}
//流す前にstaticにする
private static Input SystemInput() {
Input input = new Input();
Scanner sc = new Scanner(System.in);
List<Integer> inputList = new ArrayList<Integer>();
while(sc.hasNextInt()) {
inputList.add(sc.nextInt());
}
input.setInput(inputList);
sc.close();
return input;
}
//流す前にstaticにする
private static List<String> run(Input input) {
List<String> result = new ArrayList<String>();
List<Integer> permutation = input.getPermutationList();
Integer count;
count = inversion(permutation);
for(Integer i = 0;i < input.getQueryNum();i++) {
count = count + change(input.getQuery(i));
result.add(evenOdd(count));
}
return result;
}
//カウントする
private static Integer inversion(List<Integer>permutation) {
String result = new String();
Integer inversionCount = 0;
for(Integer i = 0; i < permutation.size(); i++) {
for(Integer j = i + 1; j < permutation.size(); j++) {
if(permutation.get(i) > permutation.get(j)) {
inversionCount++;
}
}
}
return inversionCount;
}
//交換時追加分カウント
private static Integer change(Query query) {
Integer result;
result = query.getLength() * (query.getLength() - 1) / 2;
return result;
}
//判定する
private static String evenOdd(Integer i) {
if(i % 2 == 0) {
return "even";
}
else {
return "odd";
}
}
private static class Query{
private Integer l;
private Integer r;
public void setQuery(Integer l,Integer r) {
this.l = l;
this.r = r;
}
public Integer getL() {
return l;
}
public void setL(Integer l) {
this.l = l;
}
public Integer getR() {
return r;
}
public void setR(Integer r) {
this.r = r;
}
public Integer getLength(){
return r - l + 1;
}
}
//流す前にstaticにする
private static class Input{
private Integer length;
private List<Integer> permutationList = new ArrayList<Integer>();
private Integer queryNum;
private List<Query> queryList = new ArrayList<Query>();
public void setInput(List<Integer> inputList) {
this.length = inputList.get(0);
setPermutationList(inputList.subList(1, length+1));
this.queryNum = inputList.get(length+1);
for(Integer j = length+2; j < inputList.size()-1; j = j + 2) {
addQueryList(inputList.get(j),inputList.get(j+1));
}
// checkInput();
}
public void checkInput() {
System.out.println("permutation length:" + permutationList.size());
System.out.println("permutation:" + permutationList);
System.out.println("query length:" + queryList.size());
System.out.println("queries:");
for(Integer i = 0;i < queryList.size();i++) {
System.out.println(this.getQueryL(i) + " " + this.getQueryR(i));
}
}
public Integer getLength() {
return length;
}
public void setLength(Integer length) {
this.length = length;
}
public List<Integer> getPermutationList() {
return permutationList;
}
public void setPermutationList(List<Integer> permutationList) {
this.permutationList = permutationList;
}
public Integer getPermutation(Integer i) {
return permutationList.get(i);
}
public void addPermutationList(Integer newPermutation) {
this.permutationList.add(newPermutation);
}
public Integer getQueryNum() {
return queryNum;
}
public void setQueryNum(Integer queryNum) {
this.queryNum = queryNum;
}
public Query getQuery(Integer i) {
return queryList.get(i);
}
public Integer getQueryL(Integer i) {
return queryList.get(i).getL();
}
public Integer getQueryR(Integer i) {
return queryList.get(i).getR();
}
public List<Query> getQueryList() {
return queryList;
}
public void setQueryList(List<Query> queryList) {
this.queryList = queryList;
}
public void addQueryList(Query newQuery) {
this.queryList.add(newQuery);
}
public void addQueryList(Integer l,Integer r) {
Query newQuery = new Query();
newQuery.setQuery(l, r);
addQueryList(newQuery);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//app.は全部けす
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Scanner;
//流す前にfinalにする
public final class EcRound35DApplication {
public static void main(String[] args) {
Input input = new Input();
input = SystemInput();
List<String> resultList = run(input);
for(String result:resultList){
System.out.println(result);
}
}
//流す前にstaticにする
private static void tester(Integer no,List<Integer> inputList,List<String> answer) {
Input input = new Input();
input.setInput(inputList);
List<String> result = run(input);
if(result.equals(answer)) {
System.out.println("No." + no + ":OK");
}
else {
System.out.println("No." + no + ":failed");
System.out.println("result:" + result);
System.out.println("answer:" + answer);
}
}
//流す前にstaticにする
private static Input SystemInput() {
Input input = new Input();
Scanner sc = new Scanner(System.in);
List<Integer> inputList = new ArrayList<Integer>();
while(sc.hasNextInt()) {
inputList.add(sc.nextInt());
}
input.setInput(inputList);
sc.close();
return input;
}
//流す前にstaticにする
private static List<String> run(Input input) {
List<String> result = new ArrayList<String>();
List<Integer> permutation = input.getPermutationList();
Integer count;
count = inversion(permutation);
for(Integer i = 0;i < input.getQueryNum();i++) {
count = count + change(input.getQuery(i));
result.add(evenOdd(count));
}
return result;
}
//カウントする
private static Integer inversion(List<Integer>permutation) {
String result = new String();
Integer inversionCount = 0;
for(Integer i = 0; i < permutation.size(); i++) {
for(Integer j = i + 1; j < permutation.size(); j++) {
if(permutation.get(i) > permutation.get(j)) {
inversionCount++;
}
}
}
return inversionCount;
}
//交換時追加分カウント
private static Integer change(Query query) {
Integer result;
result = query.getLength() * (query.getLength() - 1) / 2;
return result;
}
//判定する
private static String evenOdd(Integer i) {
if(i % 2 == 0) {
return "even";
}
else {
return "odd";
}
}
private static class Query{
private Integer l;
private Integer r;
public void setQuery(Integer l,Integer r) {
this.l = l;
this.r = r;
}
public Integer getL() {
return l;
}
public void setL(Integer l) {
this.l = l;
}
public Integer getR() {
return r;
}
public void setR(Integer r) {
this.r = r;
}
public Integer getLength(){
return r - l + 1;
}
}
//流す前にstaticにする
private static class Input{
private Integer length;
private List<Integer> permutationList = new ArrayList<Integer>();
private Integer queryNum;
private List<Query> queryList = new ArrayList<Query>();
public void setInput(List<Integer> inputList) {
this.length = inputList.get(0);
setPermutationList(inputList.subList(1, length+1));
this.queryNum = inputList.get(length+1);
for(Integer j = length+2; j < inputList.size()-1; j = j + 2) {
addQueryList(inputList.get(j),inputList.get(j+1));
}
// checkInput();
}
public void checkInput() {
System.out.println("permutation length:" + permutationList.size());
System.out.println("permutation:" + permutationList);
System.out.println("query length:" + queryList.size());
System.out.println("queries:");
for(Integer i = 0;i < queryList.size();i++) {
System.out.println(this.getQueryL(i) + " " + this.getQueryR(i));
}
}
public Integer getLength() {
return length;
}
public void setLength(Integer length) {
this.length = length;
}
public List<Integer> getPermutationList() {
return permutationList;
}
public void setPermutationList(List<Integer> permutationList) {
this.permutationList = permutationList;
}
public Integer getPermutation(Integer i) {
return permutationList.get(i);
}
public void addPermutationList(Integer newPermutation) {
this.permutationList.add(newPermutation);
}
public Integer getQueryNum() {
return queryNum;
}
public void setQueryNum(Integer queryNum) {
this.queryNum = queryNum;
}
public Query getQuery(Integer i) {
return queryList.get(i);
}
public Integer getQueryL(Integer i) {
return queryList.get(i).getL();
}
public Integer getQueryR(Integer i) {
return queryList.get(i).getR();
}
public List<Query> getQueryList() {
return queryList;
}
public void setQueryList(List<Query> queryList) {
this.queryList = queryList;
}
public void addQueryList(Query newQuery) {
this.queryList.add(newQuery);
}
public void addQueryList(Integer l,Integer r) {
Query newQuery = new Query();
newQuery.setQuery(l, r);
addQueryList(newQuery);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,608 | 2,394 |
3,847 |
/* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
for(int q=0;q<t;q++){
String s = br.readLine();
int n = Integer.parseInt(s);
int a[] = new int[1000];
int index=0;
for(int i=0;i<n;i++){
int x = Integer.parseInt(br.readLine());
for(int j=index;j>=0;j--){
if(x-1==a[j]){
a[j]=x;
for(int k=0;k<j;k++){
System.out.print(a[k]+".");
}
System.out.print(a[j]);
System.out.println();
for(int k=j+1;k<1000;k++){
if(a[k]!=0)
a[k]=0;
else
break;
}
index=j+1;
// System.out.println(a[j]+"*"+j);
break;
}
}
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
for(int q=0;q<t;q++){
String s = br.readLine();
int n = Integer.parseInt(s);
int a[] = new int[1000];
int index=0;
for(int i=0;i<n;i++){
int x = Integer.parseInt(br.readLine());
for(int j=index;j>=0;j--){
if(x-1==a[j]){
a[j]=x;
for(int k=0;k<j;k++){
System.out.print(a[k]+".");
}
System.out.print(a[j]);
System.out.println();
for(int k=j+1;k<1000;k++){
if(a[k]!=0)
a[k]=0;
else
break;
}
index=j+1;
// System.out.println(a[j]+"*"+j);
break;
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
public static void main (String[] args) throws java.lang.Exception
{
// your code goes here
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
for(int q=0;q<t;q++){
String s = br.readLine();
int n = Integer.parseInt(s);
int a[] = new int[1000];
int index=0;
for(int i=0;i<n;i++){
int x = Integer.parseInt(br.readLine());
for(int j=index;j>=0;j--){
if(x-1==a[j]){
a[j]=x;
for(int k=0;k<j;k++){
System.out.print(a[k]+".");
}
System.out.print(a[j]);
System.out.println();
for(int k=j+1;k<1000;k++){
if(a[k]!=0)
a[k]=0;
else
break;
}
index=j+1;
// System.out.println(a[j]+"*"+j);
break;
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 648 | 3,837 |
1,067 |
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
long b=0;long p=1;
Scanner s=new Scanner(System.in);
long m=s.nextLong();
long x=1;
do{
p=(m+b)/x;
b=10*b+10;
x++;
}while(p/(long)Math.pow(10, x-1)!=0);
rest :
x--;b=b/10-1;
b=x*p-b;
b=m-b;
b=x-b-1;
p/=(long)Math.pow(10, b);
p%=10;
System.out.println(p);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
long b=0;long p=1;
Scanner s=new Scanner(System.in);
long m=s.nextLong();
long x=1;
do{
p=(m+b)/x;
b=10*b+10;
x++;
}while(p/(long)Math.pow(10, x-1)!=0);
rest :
x--;b=b/10-1;
b=x*p-b;
b=m-b;
b=x-b-1;
p/=(long)Math.pow(10, b);
p%=10;
System.out.println(p);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
long b=0;long p=1;
Scanner s=new Scanner(System.in);
long m=s.nextLong();
long x=1;
do{
p=(m+b)/x;
b=10*b+10;
x++;
}while(p/(long)Math.pow(10, x-1)!=0);
rest :
x--;b=b/10-1;
b=x*p-b;
b=m-b;
b=x-b-1;
p/=(long)Math.pow(10, b);
p%=10;
System.out.println(p);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 482 | 1,066 |
681 |
import jdk.nashorn.internal.objects.NativeArray;
import javax.swing.JOptionPane ;
import javax.swing.plaf.basic.BasicInternalFrameTitlePane;
import java.sql.SQLSyntaxErrorException;
import java.util.Arrays;
import java.util.Scanner;
import java.util.Vector;
import static jdk.nashorn.internal.objects.NativeArray.sort;
import static jdk.nashorn.internal.runtime.ScriptObject.toPropertyDescriptor;
public class Dialog1 {
private static int n ;
private static String s ;
private static char[] a;
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
n = input.nextInt() ;
s = input.next() ;
a = s.toCharArray();
for(int i = 0 ; i < 200 ; ++i) {
int cur = i ;
boolean fl = true ;
for(int j = 0 ; j < n ; ++j) {
if(a[j] == '+')
++cur ;
else
--cur ;
if(cur < 0)
fl = false ;
}
if(fl) {
System.out.print(cur);
return ;
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import jdk.nashorn.internal.objects.NativeArray;
import javax.swing.JOptionPane ;
import javax.swing.plaf.basic.BasicInternalFrameTitlePane;
import java.sql.SQLSyntaxErrorException;
import java.util.Arrays;
import java.util.Scanner;
import java.util.Vector;
import static jdk.nashorn.internal.objects.NativeArray.sort;
import static jdk.nashorn.internal.runtime.ScriptObject.toPropertyDescriptor;
public class Dialog1 {
private static int n ;
private static String s ;
private static char[] a;
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
n = input.nextInt() ;
s = input.next() ;
a = s.toCharArray();
for(int i = 0 ; i < 200 ; ++i) {
int cur = i ;
boolean fl = true ;
for(int j = 0 ; j < n ; ++j) {
if(a[j] == '+')
++cur ;
else
--cur ;
if(cur < 0)
fl = false ;
}
if(fl) {
System.out.print(cur);
return ;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import jdk.nashorn.internal.objects.NativeArray;
import javax.swing.JOptionPane ;
import javax.swing.plaf.basic.BasicInternalFrameTitlePane;
import java.sql.SQLSyntaxErrorException;
import java.util.Arrays;
import java.util.Scanner;
import java.util.Vector;
import static jdk.nashorn.internal.objects.NativeArray.sort;
import static jdk.nashorn.internal.runtime.ScriptObject.toPropertyDescriptor;
public class Dialog1 {
private static int n ;
private static String s ;
private static char[] a;
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
n = input.nextInt() ;
s = input.next() ;
a = s.toCharArray();
for(int i = 0 ; i < 200 ; ++i) {
int cur = i ;
boolean fl = true ;
for(int j = 0 ; j < n ; ++j) {
if(a[j] == '+')
++cur ;
else
--cur ;
if(cur < 0)
fl = false ;
}
if(fl) {
System.out.print(cur);
return ;
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 581 | 680 |
4,164 |
import java.util.*;
import java.text.*;
import java.math.*;
public class Main{
static double EPS=1e-10;
static double PI=Math.acos(-1.0);
static double p[][]=new double[25][25];
static double f[]=new double[1<<20];
static int n;
public static void PR(String s){
System.out.print(s);
}
public static void PR(double s)
{
java.text.DecimalFormat d=new java.text.DecimalFormat("#.0000000");
System.out.print(d.format(s));
}
public static void DP()
{
int i,j,k,cnt;
for(i=0;i<(1<<n);i++) f[i]=0;
f[(1<<n)-1]=1;
for(k=(1<<n)-1;k>=0;k--)
{
cnt=0;
for(i=0;i<n;i++) if((k&(1<<i))!=0) cnt++;
for(i=0;i<n;i++) if((k&(1<<i))!=0)
{
for(j=0;j<n;j++) if(i!=j&&(k&(1<<j))!=0)
{
f[k^(1<<j)]+=f[k]*p[i][j]/((cnt-1)*cnt/2);
}
}
}
}
public static void main(String[] args){
Scanner S=new Scanner(System.in);
while(S.hasNext())
{
n=S.nextInt();
int i,j;
for(i=0;i<n;i++) for(j=0;j<n;j++) p[i][j]=S.nextDouble();
DP();
for(i=0;i<n;i++)
{
if(i!=0) PR(" ");
PR(f[1<<i]);
}
PR("\n");
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.text.*;
import java.math.*;
public class Main{
static double EPS=1e-10;
static double PI=Math.acos(-1.0);
static double p[][]=new double[25][25];
static double f[]=new double[1<<20];
static int n;
public static void PR(String s){
System.out.print(s);
}
public static void PR(double s)
{
java.text.DecimalFormat d=new java.text.DecimalFormat("#.0000000");
System.out.print(d.format(s));
}
public static void DP()
{
int i,j,k,cnt;
for(i=0;i<(1<<n);i++) f[i]=0;
f[(1<<n)-1]=1;
for(k=(1<<n)-1;k>=0;k--)
{
cnt=0;
for(i=0;i<n;i++) if((k&(1<<i))!=0) cnt++;
for(i=0;i<n;i++) if((k&(1<<i))!=0)
{
for(j=0;j<n;j++) if(i!=j&&(k&(1<<j))!=0)
{
f[k^(1<<j)]+=f[k]*p[i][j]/((cnt-1)*cnt/2);
}
}
}
}
public static void main(String[] args){
Scanner S=new Scanner(System.in);
while(S.hasNext())
{
n=S.nextInt();
int i,j;
for(i=0;i<n;i++) for(j=0;j<n;j++) p[i][j]=S.nextDouble();
DP();
for(i=0;i<n;i++)
{
if(i!=0) PR(" ");
PR(f[1<<i]);
}
PR("\n");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.text.*;
import java.math.*;
public class Main{
static double EPS=1e-10;
static double PI=Math.acos(-1.0);
static double p[][]=new double[25][25];
static double f[]=new double[1<<20];
static int n;
public static void PR(String s){
System.out.print(s);
}
public static void PR(double s)
{
java.text.DecimalFormat d=new java.text.DecimalFormat("#.0000000");
System.out.print(d.format(s));
}
public static void DP()
{
int i,j,k,cnt;
for(i=0;i<(1<<n);i++) f[i]=0;
f[(1<<n)-1]=1;
for(k=(1<<n)-1;k>=0;k--)
{
cnt=0;
for(i=0;i<n;i++) if((k&(1<<i))!=0) cnt++;
for(i=0;i<n;i++) if((k&(1<<i))!=0)
{
for(j=0;j<n;j++) if(i!=j&&(k&(1<<j))!=0)
{
f[k^(1<<j)]+=f[k]*p[i][j]/((cnt-1)*cnt/2);
}
}
}
}
public static void main(String[] args){
Scanner S=new Scanner(System.in);
while(S.hasNext())
{
n=S.nextInt();
int i,j;
for(i=0;i<n;i++) for(j=0;j<n;j++) p[i][j]=S.nextDouble();
DP();
for(i=0;i<n;i++)
{
if(i!=0) PR(" ");
PR(f[1<<i]);
}
PR("\n");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 746 | 4,153 |
752 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.StringTokenizer;
public class C364 {
static HashMap<Character, Integer> freq;
static int unique = 0;
public static void main(String[] args) throws Exception {
FastScanner in = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt();
char[] s = in.next().toCharArray();
freq = new HashMap<Character, Integer>();
for(int i = 0; i < n; i++) {
char c = s[i];
if(!freq.containsKey(c))
freq.put(c, 0);
}
int k = freq.size();
int l = 0, r = 0, best = n;
inc(s[0]);
while(r < n) {
if(unique == k) { // got all, move left
best = Math.min(best, r+1-l);
dec(s[l++]);
}
else { // advance r
if(++r == n)
break;
inc(s[r]);
}
}
pw.println(best);
pw.flush();
pw.close();
}
static void inc(char c) {
int cur = freq.get(c);
if(cur == 0)
unique++;
freq.put(c, cur+1);
}
static void dec(char c) {
int cur = freq.get(c);
if(cur == 1)
unique--;
freq.put(c, cur-1);
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
String next() throws Exception {
while(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.StringTokenizer;
public class C364 {
static HashMap<Character, Integer> freq;
static int unique = 0;
public static void main(String[] args) throws Exception {
FastScanner in = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt();
char[] s = in.next().toCharArray();
freq = new HashMap<Character, Integer>();
for(int i = 0; i < n; i++) {
char c = s[i];
if(!freq.containsKey(c))
freq.put(c, 0);
}
int k = freq.size();
int l = 0, r = 0, best = n;
inc(s[0]);
while(r < n) {
if(unique == k) { // got all, move left
best = Math.min(best, r+1-l);
dec(s[l++]);
}
else { // advance r
if(++r == n)
break;
inc(s[r]);
}
}
pw.println(best);
pw.flush();
pw.close();
}
static void inc(char c) {
int cur = freq.get(c);
if(cur == 0)
unique++;
freq.put(c, cur+1);
}
static void dec(char c) {
int cur = freq.get(c);
if(cur == 1)
unique--;
freq.put(c, cur-1);
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
String next() throws Exception {
while(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.HashMap;
import java.util.StringTokenizer;
public class C364 {
static HashMap<Character, Integer> freq;
static int unique = 0;
public static void main(String[] args) throws Exception {
FastScanner in = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt();
char[] s = in.next().toCharArray();
freq = new HashMap<Character, Integer>();
for(int i = 0; i < n; i++) {
char c = s[i];
if(!freq.containsKey(c))
freq.put(c, 0);
}
int k = freq.size();
int l = 0, r = 0, best = n;
inc(s[0]);
while(r < n) {
if(unique == k) { // got all, move left
best = Math.min(best, r+1-l);
dec(s[l++]);
}
else { // advance r
if(++r == n)
break;
inc(s[r]);
}
}
pw.println(best);
pw.flush();
pw.close();
}
static void inc(char c) {
int cur = freq.get(c);
if(cur == 0)
unique++;
freq.put(c, cur+1);
}
static void dec(char c) {
int cur = freq.get(c);
if(cur == 1)
unique--;
freq.put(c, cur-1);
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
String next() throws Exception {
while(!st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
int nextInt() throws Exception {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 768 | 751 |
350 |
//package round43;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
char[] x = in.next().toCharArray();
int t = 0;
for(int i = 0;i < n;i++){
if(x[i] == 'T'){
t++;
}
}
int min = 9999;
for(int i = 0;i < n;i++){
int y = 0;
for(int j = i;j < i + t;j++){
if(x[j % n] == 'T'){
y++;
}
}
min = Math.min(min, t - y);
}
out.println(min);
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
//package round43;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
char[] x = in.next().toCharArray();
int t = 0;
for(int i = 0;i < n;i++){
if(x[i] == 'T'){
t++;
}
}
int min = 9999;
for(int i = 0;i < n;i++){
int y = 0;
for(int j = i;j < i + t;j++){
if(x[j % n] == 'T'){
y++;
}
}
min = Math.min(min, t - y);
}
out.println(min);
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
//package round43;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
public class C {
Scanner in;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
char[] x = in.next().toCharArray();
int t = 0;
for(int i = 0;i < n;i++){
if(x[i] == 'T'){
t++;
}
}
int min = 9999;
for(int i = 0;i < n;i++){
int y = 0;
for(int j = i;j < i + t;j++){
if(x[j % n] == 'T'){
y++;
}
}
min = Math.min(min, t - y);
}
out.println(min);
}
void run() throws Exception
{
in = INPUT.isEmpty() ? new Scanner(System.in) : new Scanner(INPUT);
out = new PrintWriter(System.out);
solve();
out.flush();
}
public static void main(String[] args) throws Exception
{
new C().run();
}
int ni() { return Integer.parseInt(in.next()); }
void tr(Object... o) { if(INPUT.length() != 0)System.out.println(o.length > 1 || o[0].getClass().isArray() ? Arrays.deepToString(o) : o[0]); }
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 632 | 349 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.