Spaces:
Sleeping
Sleeping
Update app.py
#6
by
MrUnknown420
- opened
app.py
CHANGED
@@ -1,124 +1,156 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
from datasets import load_dataset
|
3 |
-
from transformers import (
|
4 |
-
AutoTokenizer,
|
5 |
-
AutoModelForCausalLM,
|
6 |
-
Trainer,
|
7 |
-
TrainingArguments,
|
8 |
-
DataCollatorForLanguageModeling,
|
9 |
-
)
|
10 |
-
import torch
|
11 |
-
|
12 |
-
|
13 |
-
# Map specialization β dataset + base model
|
14 |
-
SPECIALIZATIONS = {
|
15 |
-
"Coding Assistant": {
|
16 |
-
"dataset": "codeparrot/github-code",
|
17 |
-
"model": "EleutherAI/gpt-neo-125M",
|
18 |
-
},
|
19 |
-
"Cybersecurity Helper": {
|
20 |
-
"dataset": "wikitext",
|
21 |
-
"model": "distilgpt2", # placeholder dataset, replace with cybersecurity text later
|
22 |
-
},
|
23 |
-
"App/Web Developer": {
|
24 |
-
"dataset": "wikitext",
|
25 |
-
"model": "gpt2",
|
26 |
-
},
|
27 |
-
"General Problem Solver": {
|
28 |
-
"dataset": "wikitext",
|
29 |
-
"model": "gpt2",
|
30 |
-
},
|
31 |
-
}
|
32 |
-
|
33 |
-
|
34 |
-
def train_model(specialization, epochs, lr):
|
35 |
-
try:
|
36 |
-
spec = SPECIALIZATIONS.get(specialization, SPECIALIZATIONS["General Problem Solver"])
|
37 |
-
|
38 |
-
dataset_name = spec["dataset"]
|
39 |
-
model_name = spec["model"]
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
dataset = load_dataset(dataset_name)
|
43 |
-
|
44 |
-
# Load tokenizer & model
|
45 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
46 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
47 |
|
48 |
-
def
|
49 |
-
return tokenizer(
|
50 |
-
|
51 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
52 |
-
|
53 |
-
# Data collator
|
54 |
-
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
55 |
|
56 |
-
|
57 |
training_args = TrainingArguments(
|
58 |
-
output_dir=
|
59 |
-
|
60 |
-
learning_rate=lr,
|
61 |
per_device_train_batch_size=2,
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
save_strategy="no",
|
66 |
-
logging_dir="./logs",
|
67 |
-
logging_steps=10,
|
68 |
-
)
|
69 |
-
|
70 |
-
trainer = Trainer(
|
71 |
-
model=model,
|
72 |
-
args=training_args,
|
73 |
-
train_dataset=tokenized_datasets["train"],
|
74 |
-
eval_dataset=tokenized_datasets["validation"],
|
75 |
-
tokenizer=tokenizer,
|
76 |
-
data_collator=data_collator,
|
77 |
)
|
78 |
|
|
|
79 |
trainer.train()
|
80 |
-
|
81 |
-
|
|
|
82 |
except Exception as e:
|
83 |
-
return f"
|
84 |
|
85 |
-
|
86 |
-
# Inference / Chat Function
|
87 |
-
def chat_fn(prompt, specialization):
|
88 |
try:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
inputs = tokenizer(prompt, return_tensors="pt")
|
95 |
-
outputs = model.generate(**inputs, max_length=
|
96 |
-
|
97 |
-
except Exception as e:
|
98 |
-
return f"β Chat error: {str(e)}"
|
99 |
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
121 |
chat_output = gr.Textbox(label="Response")
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
-
demo.launch(
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
import gradio as gr
|
4 |
+
from datetime import datetime
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
6 |
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# ========= MEMORY MANAGEMENT =========
|
9 |
+
MEMORY_DIR = "memories"
|
10 |
+
MODEL_DIR = "models"
|
11 |
+
|
12 |
+
os.makedirs(MEMORY_DIR, exist_ok=True)
|
13 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
14 |
+
|
15 |
+
def get_memory_file(model_name):
|
16 |
+
safe_name = model_name.replace("/", "_")
|
17 |
+
return os.path.join(MEMORY_DIR, f"{safe_name}_memory.json")
|
18 |
+
|
19 |
+
def load_memory(model_name):
|
20 |
+
filepath = get_memory_file(model_name)
|
21 |
+
if os.path.exists(filepath):
|
22 |
+
with open(filepath, "r") as f:
|
23 |
+
return json.load(f)
|
24 |
+
return []
|
25 |
+
|
26 |
+
def save_memory(model_name, memory_data):
|
27 |
+
filepath = get_memory_file(model_name)
|
28 |
+
with open(filepath, "w") as f:
|
29 |
+
json.dump(memory_data, f, indent=2)
|
30 |
+
|
31 |
+
def append_memory(model_name, role, content):
|
32 |
+
memory = load_memory(model_name)
|
33 |
+
memory.append({
|
34 |
+
"timestamp": datetime.now().isoformat(),
|
35 |
+
"role": role,
|
36 |
+
"content": content
|
37 |
+
})
|
38 |
+
save_memory(model_name, memory)
|
39 |
+
|
40 |
+
def clear_memory(model_name):
|
41 |
+
filepath = get_memory_file(model_name)
|
42 |
+
if os.path.exists(filepath):
|
43 |
+
os.remove(filepath)
|
44 |
+
return f"Memory cleared for {model_name}."
|
45 |
+
|
46 |
+
def download_memory(model_name):
|
47 |
+
filepath = get_memory_file(model_name)
|
48 |
+
if os.path.exists(filepath):
|
49 |
+
return filepath
|
50 |
+
return None
|
51 |
+
|
52 |
+
def upload_memory(model_name, file_obj):
|
53 |
+
if file_obj is None:
|
54 |
+
return "No file uploaded."
|
55 |
+
new_data = json.load(open(file_obj.name))
|
56 |
+
save_memory(model_name, new_data)
|
57 |
+
return f"Memory replaced for {model_name}."
|
58 |
+
|
59 |
+
def merge_memory(model_name, file_obj):
|
60 |
+
if file_obj is None:
|
61 |
+
return "No file uploaded."
|
62 |
+
current = load_memory(model_name)
|
63 |
+
new_data = json.load(open(file_obj.name))
|
64 |
+
merged = current + new_data
|
65 |
+
save_memory(model_name, merged)
|
66 |
+
return f"Memory merged for {model_name}."
|
67 |
+
|
68 |
+
# ========= MODEL MANAGEMENT =========
|
69 |
+
def train_model(model_name, dataset_name, epochs, output_dir):
|
70 |
+
try:
|
71 |
dataset = load_dataset(dataset_name)
|
|
|
|
|
72 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
74 |
|
75 |
+
def tokenize(batch):
|
76 |
+
return tokenizer(batch["text"], truncation=True, padding="max_length", max_length=128)
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
dataset = dataset.map(tokenize, batched=True)
|
79 |
training_args = TrainingArguments(
|
80 |
+
output_dir=output_dir,
|
81 |
+
overwrite_output_dir=True,
|
|
|
82 |
per_device_train_batch_size=2,
|
83 |
+
num_train_epochs=int(epochs),
|
84 |
+
save_strategy="epoch",
|
85 |
+
logging_dir=f"{output_dir}/logs"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
|
88 |
+
trainer = Trainer(model=model, args=training_args, train_dataset=dataset["train"])
|
89 |
trainer.train()
|
90 |
+
model.save_pretrained(output_dir)
|
91 |
+
tokenizer.save_pretrained(output_dir)
|
92 |
+
return f"Training complete. Model saved to {output_dir}"
|
93 |
except Exception as e:
|
94 |
+
return f"Error: {str(e)}"
|
95 |
|
96 |
+
def chat_with_model(model_name, prompt):
|
|
|
|
|
97 |
try:
|
98 |
+
model_path = os.path.join(MODEL_DIR, model_name.replace("/", "_"))
|
99 |
+
if os.path.exists(model_path):
|
100 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
101 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
102 |
+
else:
|
103 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
105 |
|
106 |
inputs = tokenizer(prompt, return_tensors="pt")
|
107 |
+
outputs = model.generate(**inputs, max_length=256, do_sample=True, temperature=0.7)
|
108 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
109 |
|
110 |
+
append_memory(model_name, "user", prompt)
|
111 |
+
append_memory(model_name, "assistant", response)
|
112 |
|
113 |
+
return response
|
114 |
+
except Exception as e:
|
115 |
+
return f"Error: {str(e)}"
|
116 |
|
117 |
+
# ========= INTERFACE =========
|
118 |
+
with gr.Blocks() as demo:
|
119 |
+
gr.Markdown("# π€ My AI Model Builder\nTrain, fine-tune, test, and manage AI models with memory.")
|
120 |
+
|
121 |
+
with gr.Tab("Train Model"):
|
122 |
+
model_name = gr.Textbox(label="Base Model (Hugging Face Hub ID)", value="gpt2")
|
123 |
+
dataset_name = gr.Textbox(label="Dataset Name (Hugging Face Dataset ID)", value="wikitext")
|
124 |
+
epochs = gr.Number(label="Epochs", value=1, precision=0)
|
125 |
+
output_dir = gr.Textbox(label="Output Directory", value="models/custom_model")
|
126 |
+
train_btn = gr.Button("Train Model")
|
127 |
+
train_output = gr.Textbox(label="Training Status")
|
128 |
+
train_btn.click(train_model, inputs=[model_name, dataset_name, epochs, output_dir], outputs=train_output)
|
129 |
+
|
130 |
+
with gr.Tab("Test Models / Chat"):
|
131 |
+
chat_model = gr.Textbox(label="Model Name", value="gpt2")
|
132 |
+
user_prompt = gr.Textbox(label="Enter Prompt")
|
133 |
+
chat_btn = gr.Button("Chat")
|
134 |
chat_output = gr.Textbox(label="Response")
|
135 |
+
chat_btn.click(chat_with_model, inputs=[chat_model, user_prompt], outputs=chat_output)
|
136 |
+
|
137 |
+
with gr.Tab("Memory Management"):
|
138 |
+
mem_model = gr.Textbox(label="Model Name", value="gpt2")
|
139 |
+
view_btn = gr.Button("View Memory")
|
140 |
+
memory_output = gr.JSON(label="Memory Log")
|
141 |
+
view_btn.click(load_memory, inputs=[mem_model], outputs=memory_output)
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
dl_btn = gr.Button("Download Memory")
|
145 |
+
up_btn = gr.File(label="Upload Memory JSON")
|
146 |
+
merge_btn = gr.File(label="Merge Memory JSON")
|
147 |
+
|
148 |
+
dl_file = gr.File()
|
149 |
+
dl_btn.click(download_memory, inputs=[mem_model], outputs=dl_file)
|
150 |
+
up_btn.upload(upload_memory, inputs=[mem_model, up_btn], outputs=memory_output)
|
151 |
+
merge_btn.upload(merge_memory, inputs=[mem_model, merge_btn], outputs=memory_output)
|
152 |
+
|
153 |
+
clear_btn = gr.Button("Clear Memory")
|
154 |
+
clear_btn.click(clear_memory, inputs=[mem_model], outputs=memory_output)
|
155 |
|
156 |
+
demo.launch()
|