Spaces:
Sleeping
Sleeping
Update app.py
#3
by
MrUnknown420
- opened
app.py
CHANGED
@@ -1,111 +1,138 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
3 |
from datasets import load_dataset, Dataset
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def get_dataset(dataset_name, config_name=None, user_file=None):
|
9 |
-
if user_file is not None:
|
10 |
-
with open(user_file, "r", encoding="utf-8") as f:
|
11 |
-
text_data = f.read().splitlines()
|
12 |
-
return Dataset.from_dict({"text": text_data})
|
13 |
-
|
14 |
-
if config_name:
|
15 |
-
return load_dataset(dataset_name, config_name, split="train")
|
16 |
-
else:
|
17 |
-
return load_dataset(dataset_name, split="train")
|
18 |
-
|
19 |
-
# --------------------------
|
20 |
-
# Training Function
|
21 |
-
# --------------------------
|
22 |
-
def train_model(model_name, dataset_name, config_name, user_file, output_dir, epochs=1):
|
23 |
try:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
49 |
trainer.train()
|
50 |
model.save_pretrained(output_dir)
|
51 |
tokenizer.save_pretrained(output_dir)
|
|
|
|
|
|
|
52 |
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
|
58 |
-
# --------------------------
|
59 |
-
# Chatbot with trained model
|
60 |
-
# --------------------------
|
61 |
-
def chat_with_model(user_input, model_name="custom_model"):
|
62 |
try:
|
63 |
-
|
64 |
-
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
|
|
|
|
70 |
except Exception as e:
|
71 |
-
return f"
|
72 |
|
73 |
-
#
|
74 |
# Gradio UI
|
75 |
-
#
|
76 |
with gr.Blocks() as demo:
|
77 |
-
gr.Markdown("
|
78 |
|
79 |
-
with gr.Tab("Train
|
80 |
model_name = gr.Textbox(label="Base Model (e.g. gpt2, distilgpt2)", value="gpt2")
|
81 |
-
dataset_name = gr.Textbox(label="Dataset (e.g. wikitext)", value="wikitext")
|
82 |
-
config_name = gr.
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
)
|
87 |
-
|
88 |
-
|
89 |
-
epochs = gr.Slider(1, 5, value=1, step=1, label="Epochs")
|
90 |
-
train_button = gr.Button("π Train Model")
|
91 |
train_output = gr.Textbox(label="Training Logs / Status")
|
92 |
|
93 |
train_button.click(
|
94 |
fn=train_model,
|
95 |
-
inputs=[model_name, dataset_name, config_name, user_file, output_dir, epochs],
|
96 |
-
outputs=train_output
|
97 |
)
|
98 |
|
99 |
-
with gr.Tab("Chat
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
|
104 |
chat_button.click(
|
105 |
fn=chat_with_model,
|
106 |
-
inputs=[
|
107 |
outputs=chat_output
|
108 |
)
|
109 |
|
110 |
-
|
111 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from datasets import load_dataset, Dataset
|
3 |
+
from transformers import (
|
4 |
+
AutoTokenizer,
|
5 |
+
AutoModelForCausalLM,
|
6 |
+
Trainer,
|
7 |
+
TrainingArguments,
|
8 |
+
pipeline
|
9 |
+
)
|
10 |
+
import os
|
11 |
+
|
12 |
+
# -------------------------
|
13 |
+
# Helpers
|
14 |
+
# -------------------------
|
15 |
def get_dataset(dataset_name, config_name=None, user_file=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
try:
|
17 |
+
if user_file is not None:
|
18 |
+
with open(user_file, "r", encoding="utf-8") as f:
|
19 |
+
text_data = f.read().splitlines()
|
20 |
+
return Dataset.from_dict({"text": text_data})
|
21 |
+
elif dataset_name:
|
22 |
+
return load_dataset(dataset_name, config_name, split="train")
|
23 |
+
except Exception as e:
|
24 |
+
return None
|
25 |
+
return None
|
26 |
+
|
27 |
+
def train_model(model_name, dataset_name, config_name, user_file, output_dir, epochs, lr):
|
28 |
+
dataset = get_dataset(dataset_name, config_name, user_file)
|
29 |
+
if dataset is None:
|
30 |
+
return "β Error: Could not load dataset. Check name or file.", None
|
31 |
+
|
32 |
+
# Tokenizer
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
+
|
35 |
+
# Fix GPT-2 style models (no pad token)
|
36 |
+
if tokenizer.pad_token is None:
|
37 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
38 |
+
|
39 |
+
def tokenize_function(examples):
|
40 |
+
text_key = "text" if "text" in examples else list(examples.keys())[0]
|
41 |
+
return tokenizer(examples[text_key],
|
42 |
+
truncation=True,
|
43 |
+
padding="max_length",
|
44 |
+
max_length=128)
|
45 |
+
|
46 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
47 |
+
|
48 |
+
# Model
|
49 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
50 |
+
model.resize_token_embeddings(len(tokenizer))
|
51 |
+
|
52 |
+
# Training args
|
53 |
+
training_args = TrainingArguments(
|
54 |
+
output_dir=output_dir,
|
55 |
+
evaluation_strategy="no",
|
56 |
+
learning_rate=float(lr),
|
57 |
+
per_device_train_batch_size=2,
|
58 |
+
num_train_epochs=int(epochs),
|
59 |
+
weight_decay=0.01,
|
60 |
+
save_strategy="epoch",
|
61 |
+
logging_dir=os.path.join(output_dir, "logs"),
|
62 |
+
push_to_hub=False
|
63 |
+
)
|
64 |
+
|
65 |
+
trainer = Trainer(
|
66 |
+
model=model,
|
67 |
+
args=training_args,
|
68 |
+
train_dataset=tokenized_dataset
|
69 |
+
)
|
70 |
|
71 |
+
try:
|
72 |
trainer.train()
|
73 |
model.save_pretrained(output_dir)
|
74 |
tokenizer.save_pretrained(output_dir)
|
75 |
+
return f"β
Training complete! Model saved to `{output_dir}`", output_dir
|
76 |
+
except Exception as e:
|
77 |
+
return f"β Training failed: {str(e)}", None
|
78 |
|
79 |
+
# -------------------------
|
80 |
+
# Chat interface
|
81 |
+
# -------------------------
|
82 |
+
chat_history = []
|
83 |
|
84 |
+
def chat_with_model(user_input, model_dir):
|
85 |
+
global chat_history
|
86 |
+
if not model_dir or not os.path.exists(model_dir):
|
87 |
+
return "β οΈ No trained model found. Please train first."
|
88 |
|
|
|
|
|
|
|
|
|
89 |
try:
|
90 |
+
generator = pipeline("text-generation", model=model_dir)
|
91 |
+
conversation = " ".join([f"User: {u}\nAI: {a}" for u, a in chat_history])
|
92 |
+
prompt = f"{conversation}\nUser: {user_input}\nAI:"
|
93 |
|
94 |
+
response = generator(prompt, max_length=200, num_return_sequences=1)[0]["generated_text"]
|
95 |
+
# Extract AI response after last "AI:"
|
96 |
+
ai_reply = response.split("AI:")[-1].strip()
|
97 |
|
98 |
+
chat_history.append((user_input, ai_reply))
|
99 |
+
return ai_reply
|
100 |
except Exception as e:
|
101 |
+
return f"β Chat error: {str(e)}"
|
102 |
|
103 |
+
# -------------------------
|
104 |
# Gradio UI
|
105 |
+
# -------------------------
|
106 |
with gr.Blocks() as demo:
|
107 |
+
gr.Markdown("# π§ Personal AI Model Builder\nTrain + Chat with your own AI assistant.")
|
108 |
|
109 |
+
with gr.Tab("1οΈβ£ Train Model"):
|
110 |
model_name = gr.Textbox(label="Base Model (e.g. gpt2, distilgpt2)", value="gpt2")
|
111 |
+
dataset_name = gr.Textbox(label="HuggingFace Dataset (optional, e.g. wikitext)", value="wikitext")
|
112 |
+
config_name = gr.Textbox(label="Dataset Config (e.g. wikitext-2-raw-v1)", value="wikitext-2-raw-v1")
|
113 |
+
user_file = gr.File(label="Or Upload Your Own TXT Dataset", file_types=[".txt"], type="filepath")
|
114 |
+
output_dir = gr.Textbox(label="Output Directory", value="./custom_model")
|
115 |
+
epochs = gr.Number(label="Epochs", value=1, precision=0)
|
116 |
+
lr = gr.Textbox(label="Learning Rate", value="5e-5")
|
117 |
+
|
118 |
+
train_button = gr.Button("π Train My Model")
|
|
|
|
|
119 |
train_output = gr.Textbox(label="Training Logs / Status")
|
120 |
|
121 |
train_button.click(
|
122 |
fn=train_model,
|
123 |
+
inputs=[model_name, dataset_name, config_name, user_file, output_dir, epochs, lr],
|
124 |
+
outputs=[train_output, output_dir]
|
125 |
)
|
126 |
|
127 |
+
with gr.Tab("2οΈβ£ Chat With Model"):
|
128 |
+
chat_input = gr.Textbox(label="Your Message")
|
129 |
+
chat_button = gr.Button("π¬ Send")
|
130 |
+
chat_output = gr.Textbox(label="AI Reply")
|
131 |
|
132 |
chat_button.click(
|
133 |
fn=chat_with_model,
|
134 |
+
inputs=[chat_input, output_dir],
|
135 |
outputs=chat_output
|
136 |
)
|
137 |
|
138 |
+
demo.launch()
|
|