Spaces:
Sleeping
Sleeping
Update app.py
#13
by
MrUnknown420
- opened
app.py
CHANGED
@@ -1,289 +1,286 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import json
|
3 |
-
import
|
4 |
-
from datetime import datetime
|
5 |
import gradio as gr
|
6 |
-
from datasets import list_datasets, load_dataset
|
7 |
-
from huggingface_hub import HfApi, HfFolder
|
8 |
from transformers import (
|
9 |
-
|
10 |
-
|
11 |
-
Trainer,
|
12 |
-
TrainingArguments,
|
13 |
-
DataCollatorForLanguageModeling
|
14 |
-
)
|
15 |
-
|
16 |
-
# ===============================
|
17 |
-
# Setup directories & logging
|
18 |
-
# ===============================
|
19 |
-
BASE_DIR = "storage"
|
20 |
-
MEMORY_DIR = os.path.join(BASE_DIR, "memory")
|
21 |
-
LOG_FILE = os.path.join(BASE_DIR, "logs.txt")
|
22 |
-
|
23 |
-
os.makedirs(MEMORY_DIR, exist_ok=True)
|
24 |
-
os.makedirs(BASE_DIR, exist_ok=True)
|
25 |
-
|
26 |
-
logging.basicConfig(
|
27 |
-
filename=LOG_FILE,
|
28 |
-
level=logging.INFO,
|
29 |
-
format="%(asctime)s - %(levelname)s - %(message)s"
|
30 |
)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
return [m.modelId for m in models]
|
45 |
-
|
46 |
-
def fetch_top_datasets(limit=10):
|
47 |
-
"""Fetch top datasets from Hugging Face Hub"""
|
48 |
-
api = HfApi()
|
49 |
-
datasets = api.list_datasets(sort="downloads", limit=limit)
|
50 |
-
return [d.id for d in datasets]
|
51 |
-
|
52 |
-
TOP_MODELS = fetch_top_models()
|
53 |
-
TOP_DATASETS = fetch_top_datasets()
|
54 |
-
|
55 |
-
# ===============================
|
56 |
-
# Memory Management
|
57 |
-
# ===============================
|
58 |
def get_memory_file(model_name):
|
59 |
-
|
|
|
60 |
|
61 |
def load_memory(model_name):
|
62 |
-
|
63 |
-
if os.path.exists(
|
64 |
-
with open(
|
65 |
-
return json.load(
|
66 |
return []
|
67 |
|
68 |
-
def save_memory(model_name,
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
#
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
training_args = TrainingArguments(
|
117 |
-
output_dir=output_dir,
|
118 |
-
overwrite_output_dir=True,
|
119 |
-
num_train_epochs=int(epochs),
|
120 |
-
per_device_train_batch_size=2,
|
121 |
-
save_steps=500,
|
122 |
-
save_total_limit=2,
|
123 |
-
logging_dir="./logs",
|
124 |
-
logging_steps=50
|
125 |
-
)
|
126 |
-
|
127 |
-
trainer = Trainer(
|
128 |
-
model=model,
|
129 |
-
args=training_args,
|
130 |
-
train_dataset=tokenized_dataset,
|
131 |
-
data_collator=data_collator
|
132 |
-
)
|
133 |
-
|
134 |
-
trainer.train()
|
135 |
-
model.save_pretrained(output_dir)
|
136 |
-
tokenizer.save_pretrained(output_dir)
|
137 |
-
|
138 |
-
log_event(f"โ
Training completed. Model saved to {output_dir}")
|
139 |
-
return f"โ
Training completed. Model saved to {output_dir}"
|
140 |
-
except Exception as e:
|
141 |
-
log_event(f"โ Training failed: {e}")
|
142 |
-
return f"โ Error during training: {str(e)}"
|
143 |
-
|
144 |
-
# ===============================
|
145 |
-
# Gradio UI โ Training Tab
|
146 |
-
# ===============================
|
147 |
-
with gr.Blocks() as training_tab:
|
148 |
-
gr.Markdown("## ๐ Train a Custom Model")
|
149 |
-
with gr.Row():
|
150 |
-
model_dropdown = gr.Dropdown(choices=TOP_MODELS, label="Choose Model", interactive=True)
|
151 |
-
dataset_dropdown = gr.Dropdown(choices=TOP_DATASETS, label="Choose Dataset", interactive=True)
|
152 |
-
with gr.Row():
|
153 |
-
model_text = gr.Textbox(label="Or enter custom model ID", placeholder="e.g. gpt2")
|
154 |
-
dataset_text = gr.Textbox(label="Or enter custom dataset ID", placeholder="e.g. wikitext")
|
155 |
-
epochs = gr.Number(value=1, label="Epochs")
|
156 |
-
output_dir = gr.Textbox(value="./trained_model", label="Output Directory")
|
157 |
-
train_btn = gr.Button("๐ Start Training")
|
158 |
-
train_output = gr.Textbox(label="Training Status")
|
159 |
-
|
160 |
-
def handle_train(model_d, model_t, dataset_d, dataset_t, epochs, output_dir):
|
161 |
-
model = model_t if model_t else model_d
|
162 |
-
dataset = dataset_t if dataset_t else dataset_d
|
163 |
-
return train_model(model, dataset, epochs, output_dir)
|
164 |
-
|
165 |
-
train_btn.click(
|
166 |
-
fn=handle_train,
|
167 |
-
inputs=[model_dropdown, model_text, dataset_dropdown, dataset_text, epochs, output_dir],
|
168 |
-
outputs=train_output
|
169 |
)
|
170 |
|
171 |
-
#
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
193 |
)
|
194 |
|
195 |
-
|
196 |
-
# Gradio UI โ Memory Tab
|
197 |
-
# ===============================
|
198 |
-
with gr.Blocks() as memory_tab:
|
199 |
-
gr.Markdown("## ๐ง Manage Memory")
|
200 |
-
|
201 |
-
with gr.Row():
|
202 |
-
memory_model_dropdown = gr.Dropdown(choices=TOP_MODELS, label="Select Model")
|
203 |
-
memory_model_text = gr.Textbox(label="Or enter custom model ID")
|
204 |
-
|
205 |
-
memory_output = gr.Textbox(label="Stored Memory", interactive=False)
|
206 |
-
load_btn = gr.Button("๐ Load Memory")
|
207 |
-
clear_btn = gr.Button("๐๏ธ Clear Memory")
|
208 |
-
|
209 |
-
def handle_load(model_d, model_t):
|
210 |
-
model = model_t if model_t else model_d
|
211 |
-
memory = load_memory(model)
|
212 |
-
return json.dumps(memory, indent=2)
|
213 |
-
|
214 |
-
def handle_clear(model_d, model_t):
|
215 |
-
model = model_t if model_t else model_d
|
216 |
-
f = get_memory_file(model)
|
217 |
-
if os.path.exists(f):
|
218 |
-
os.remove(f)
|
219 |
-
log_event(f"Cleared memory for {model}")
|
220 |
-
return "โ
Memory cleared."
|
221 |
-
return "โ ๏ธ No memory found."
|
222 |
-
|
223 |
-
load_btn.click(
|
224 |
-
fn=handle_load,
|
225 |
-
inputs=[memory_model_dropdown, memory_model_text],
|
226 |
-
outputs=memory_output
|
227 |
-
)
|
228 |
-
|
229 |
-
clear_btn.click(
|
230 |
-
fn=handle_clear,
|
231 |
-
inputs=[memory_model_dropdown, memory_model_text],
|
232 |
-
outputs=memory_output
|
233 |
-
)
|
234 |
|
235 |
-
#
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
gr.Markdown("## ๐ Application Logs")
|
240 |
-
log_display = gr.Textbox(value=open(LOG_FILE).read() if os.path.exists(LOG_FILE) else "No logs yet.", lines=20)
|
241 |
|
242 |
-
|
|
|
243 |
|
244 |
-
|
245 |
-
return open(LOG_FILE).read() if os.path.exists(LOG_FILE) else "No logs yet."
|
246 |
|
247 |
-
|
248 |
-
fn=refresh_logs,
|
249 |
-
outputs=log_display
|
250 |
-
)
|
251 |
|
252 |
-
#
|
253 |
-
#
|
254 |
-
#
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
if __name__ == "__main__":
|
289 |
-
demo.launch(
|
|
|
1 |
+
# app.py (Part 1 of 2)
|
2 |
+
|
3 |
import os
|
4 |
import json
|
5 |
+
import datetime
|
|
|
6 |
import gradio as gr
|
|
|
|
|
7 |
from transformers import (
|
8 |
+
AutoTokenizer, AutoModelForSequenceClassification,
|
9 |
+
Trainer, TrainingArguments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
+
from datasets import load_dataset
|
12 |
+
import torch
|
13 |
+
|
14 |
+
# =========================
|
15 |
+
# Ensure directories exist
|
16 |
+
# =========================
|
17 |
+
os.makedirs("trained_models", exist_ok=True)
|
18 |
+
os.makedirs("logs", exist_ok=True)
|
19 |
+
os.makedirs("memory", exist_ok=True)
|
20 |
+
|
21 |
+
# =========================
|
22 |
+
# Utility: Memory System
|
23 |
+
# =========================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def get_memory_file(model_name):
|
25 |
+
safe_name = model_name.replace("/", "_")
|
26 |
+
return os.path.join("memory", f"memory_{safe_name}.json")
|
27 |
|
28 |
def load_memory(model_name):
|
29 |
+
file = get_memory_file(model_name)
|
30 |
+
if os.path.exists(file):
|
31 |
+
with open(file, "r") as f:
|
32 |
+
return json.load(f)
|
33 |
return []
|
34 |
|
35 |
+
def save_memory(model_name, conversation):
|
36 |
+
file = get_memory_file(model_name)
|
37 |
+
memory = load_memory(model_name)
|
38 |
+
memory.append(conversation)
|
39 |
+
with open(file, "w") as f:
|
40 |
+
json.dump(memory, f, indent=2)
|
41 |
+
|
42 |
+
# =========================
|
43 |
+
# Utility: Logging
|
44 |
+
# =========================
|
45 |
+
def log_event(event):
|
46 |
+
log_file = os.path.join("logs", "events.log")
|
47 |
+
with open(log_file, "a") as f:
|
48 |
+
f.write(f"[{datetime.datetime.now()}] {event}\n")
|
49 |
+
|
50 |
+
# =========================
|
51 |
+
# Training Pipeline
|
52 |
+
# =========================
|
53 |
+
def train_model(model_name, dataset_name, epochs, output_dir="trained_models"):
|
54 |
+
log_event(f"Training started: model={model_name}, dataset={dataset_name}, epochs={epochs}")
|
55 |
+
|
56 |
+
# Load tokenizer + dataset
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
+
dataset = load_dataset(dataset_name, split="train[:200]") # smaller subset for CPU
|
59 |
+
|
60 |
+
def tokenize_fn(batch):
|
61 |
+
return tokenizer(batch["text"], truncation=True, padding="max_length", max_length=128)
|
62 |
+
|
63 |
+
dataset = dataset.map(tokenize_fn, batched=True)
|
64 |
+
dataset = dataset.rename_column("label", "labels")
|
65 |
+
dataset.set_format("torch", columns=["input_ids", "attention_mask", "labels"])
|
66 |
+
|
67 |
+
# Load model
|
68 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
69 |
+
|
70 |
+
# Training arguments
|
71 |
+
training_args = TrainingArguments(
|
72 |
+
output_dir=os.path.join(output_dir, model_name.replace("/", "_")),
|
73 |
+
overwrite_output_dir=True,
|
74 |
+
evaluation_strategy="epoch",
|
75 |
+
save_strategy="epoch",
|
76 |
+
num_train_epochs=epochs,
|
77 |
+
per_device_train_batch_size=8,
|
78 |
+
logging_dir="./logs",
|
79 |
+
logging_steps=10,
|
80 |
+
report_to="none", # prevent wandb errors
|
81 |
+
no_cuda=True # force CPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
)
|
83 |
|
84 |
+
# Progress tracking
|
85 |
+
progress = {"epoch": 0, "loss": []}
|
86 |
+
|
87 |
+
def compute_metrics(eval_pred):
|
88 |
+
logits, labels = eval_pred
|
89 |
+
preds = logits.argmax(-1)
|
90 |
+
acc = (preds == labels).astype(float).mean().item()
|
91 |
+
return {"accuracy": acc}
|
92 |
+
|
93 |
+
def log_callback(trainer, state, control, **kwargs):
|
94 |
+
if state.is_local_process_zero and state.log_history:
|
95 |
+
last_log = state.log_history[-1]
|
96 |
+
if "loss" in last_log:
|
97 |
+
progress["epoch"] = state.epoch
|
98 |
+
progress["loss"].append(last_log["loss"])
|
99 |
+
log_event(f"Epoch {state.epoch} - Loss: {last_log['loss']}")
|
100 |
+
|
101 |
+
# Trainer
|
102 |
+
trainer = Trainer(
|
103 |
+
model=model,
|
104 |
+
args=training_args,
|
105 |
+
train_dataset=dataset,
|
106 |
+
tokenizer=tokenizer,
|
107 |
+
compute_metrics=compute_metrics,
|
108 |
+
callbacks=[log_callback]
|
109 |
)
|
110 |
|
111 |
+
trainer.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
# Save trained model
|
114 |
+
save_dir = os.path.join(output_dir, model_name.replace("/", "_"))
|
115 |
+
model.save_pretrained(save_dir)
|
116 |
+
tokenizer.save_pretrained(save_dir)
|
|
|
|
|
117 |
|
118 |
+
log_event(f"Training finished: model saved at {save_dir}")
|
119 |
+
return f"โ
Training complete. Model saved at {save_dir}", progress
|
120 |
|
121 |
+
# app.py (Part 2 of 2) โ UI
|
|
|
122 |
|
123 |
+
import gradio as gr
|
|
|
|
|
|
|
124 |
|
125 |
+
# =========================
|
126 |
+
# Hugging Face Top 10 (demo defaults, can expand to auto-fetch later)
|
127 |
+
# =========================
|
128 |
+
TOP_MODELS = [
|
129 |
+
"distilbert-base-uncased", "bert-base-uncased", "roberta-base",
|
130 |
+
"google/electra-base-discriminator", "albert-base-v2",
|
131 |
+
"facebook/bart-base", "gpt2", "t5-small",
|
132 |
+
"microsoft/deberta-base", "xlnet-base-cased"
|
133 |
+
]
|
134 |
+
|
135 |
+
TOP_DATASETS = [
|
136 |
+
"imdb", "ag_news", "yelp_polarity",
|
137 |
+
"dbpedia_14", "amazon_polarity",
|
138 |
+
"tweet_eval", "glue", "sst2",
|
139 |
+
"cnn_dailymail", "emotion"
|
140 |
+
]
|
141 |
+
|
142 |
+
# =========================
|
143 |
+
# Inference (Test chat)
|
144 |
+
# =========================
|
145 |
+
def chat_with_model(model_name, user_input):
|
146 |
+
model_dir = os.path.join("trained_models", model_name.replace("/", "_"))
|
147 |
+
if not os.path.exists(model_dir):
|
148 |
+
return "โ Model not trained yet. Train it first."
|
149 |
+
|
150 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
151 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
|
152 |
+
|
153 |
+
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
|
154 |
+
outputs = model(**inputs)
|
155 |
+
prediction = torch.argmax(outputs.logits, dim=-1).item()
|
156 |
+
|
157 |
+
# Save memory
|
158 |
+
conversation = {"input": user_input, "prediction": prediction}
|
159 |
+
save_memory(model_name, conversation)
|
160 |
+
|
161 |
+
return f"๐ฎ Prediction: {prediction}"
|
162 |
+
|
163 |
+
# =========================
|
164 |
+
# View Memory
|
165 |
+
# =========================
|
166 |
+
def view_memory(model_name):
|
167 |
+
memory = load_memory(model_name)
|
168 |
+
if not memory:
|
169 |
+
return "๐ญ No memory yet for this model."
|
170 |
+
return json.dumps(memory, indent=2)
|
171 |
+
|
172 |
+
# =========================
|
173 |
+
# View Logs
|
174 |
+
# =========================
|
175 |
+
def view_logs():
|
176 |
+
log_file = os.path.join("logs", "events.log")
|
177 |
+
if not os.path.exists(log_file):
|
178 |
+
return "๐ญ No logs yet."
|
179 |
+
with open(log_file, "r") as f:
|
180 |
+
return f.read()
|
181 |
+
|
182 |
+
# =========================
|
183 |
+
# User Guide / Manual
|
184 |
+
# =========================
|
185 |
+
USER_GUIDE = """
|
186 |
+
# ๐ AI Model Builder Guide
|
187 |
+
|
188 |
+
Welcome to your **all-in-one AI Model Builder**.
|
189 |
+
This app allows you to **train, fine-tune, test, and manage AI models** directly in a Hugging Face Space.
|
190 |
+
|
191 |
+
---
|
192 |
+
|
193 |
+
## ๐น Step 1: Training a Model
|
194 |
+
1. Go to the **Training Tab**.
|
195 |
+
2. Select a **model** from the Top-10 list or type your own Hugging Face model ID.
|
196 |
+
3. Select a **dataset** from the Top-10 list or type your own Hugging Face dataset ID.
|
197 |
+
4. Choose the number of **epochs** (training cycles).
|
198 |
+
5. Click **Start Training**.
|
199 |
+
6. Training progress will appear, and the model will be saved under `trained_models/`.
|
200 |
+
|
201 |
+
---
|
202 |
+
|
203 |
+
## ๐น Step 2: Testing Your Model
|
204 |
+
1. Switch to the **Testing Tab**.
|
205 |
+
2. Type any input in the chat box.
|
206 |
+
3. The app will return a **prediction**.
|
207 |
+
4. Every conversation is saved in **per-model memory**.
|
208 |
+
|
209 |
+
---
|
210 |
+
|
211 |
+
## ๐น Step 3: Viewing Memory
|
212 |
+
- Go to the **Memory Tab**.
|
213 |
+
- See past chats and predictions for each model.
|
214 |
+
|
215 |
+
---
|
216 |
+
|
217 |
+
## ๐น Step 4: Viewing Logs
|
218 |
+
- All activity is logged.
|
219 |
+
- Open the **Logs Tab** to view training sessions, progress, and errors.
|
220 |
+
|
221 |
+
---
|
222 |
+
|
223 |
+
## ๐น Technical Notes
|
224 |
+
- Training runs on **CPU** (slower but free).
|
225 |
+
- Uses Hugging Face **Transformers + Datasets**.
|
226 |
+
- Stores:
|
227 |
+
- Models โ `trained_models/`
|
228 |
+
- Logs โ `logs/events.log`
|
229 |
+
- Memory โ `memory/memory_{model}.json`
|
230 |
+
"""
|
231 |
+
|
232 |
+
# =========================
|
233 |
+
# Build Gradio UI
|
234 |
+
# =========================
|
235 |
+
with gr.Blocks() as demo:
|
236 |
+
gr.Markdown("# ๐ง AI Model Builder\nTrain, Fine-tune, Test, and Manage Your Own AI Models")
|
237 |
+
|
238 |
+
with gr.Tab("๐ ๏ธ Training"):
|
239 |
+
with gr.Row():
|
240 |
+
model_dropdown = gr.Dropdown(choices=TOP_MODELS, label="Select Model", interactive=True)
|
241 |
+
model_textbox = gr.Textbox(label="Or enter custom model ID")
|
242 |
+
with gr.Row():
|
243 |
+
dataset_dropdown = gr.Dropdown(choices=TOP_DATASETS, label="Select Dataset", interactive=True)
|
244 |
+
dataset_textbox = gr.Textbox(label="Or enter custom dataset ID")
|
245 |
+
epochs = gr.Slider(1, 5, value=1, step=1, label="Epochs (Training Cycles)")
|
246 |
+
train_button = gr.Button("๐ Start Training")
|
247 |
+
train_output = gr.Textbox(label="Training Status")
|
248 |
+
progress_output = gr.JSON(label="Progress Details")
|
249 |
+
|
250 |
+
def run_training(model_dropdown, model_textbox, dataset_dropdown, dataset_textbox, epochs):
|
251 |
+
model_name = model_textbox if model_textbox else model_dropdown
|
252 |
+
dataset_name = dataset_textbox if dataset_textbox else dataset_dropdown
|
253 |
+
return train_model(model_name, dataset_name, epochs)
|
254 |
+
|
255 |
+
train_button.click(
|
256 |
+
run_training,
|
257 |
+
inputs=[model_dropdown, model_textbox, dataset_dropdown, dataset_textbox, epochs],
|
258 |
+
outputs=[train_output, progress_output]
|
259 |
+
)
|
260 |
|
261 |
+
with gr.Tab("๐ฌ Testing"):
|
262 |
+
test_model_name = gr.Textbox(label="Enter Model ID (must be trained first)")
|
263 |
+
test_input = gr.Textbox(label="Your Message")
|
264 |
+
test_button = gr.Button("๐ก Predict")
|
265 |
+
test_output = gr.Textbox(label="Model Response")
|
266 |
+
test_button.click(chat_with_model, inputs=[test_model_name, test_input], outputs=test_output)
|
267 |
+
|
268 |
+
with gr.Tab("๐งพ Memory"):
|
269 |
+
mem_model_name = gr.Textbox(label="Enter Model ID to View Memory")
|
270 |
+
mem_button = gr.Button("๐ Load Memory")
|
271 |
+
mem_output = gr.Textbox(label="Conversation Memory", lines=15)
|
272 |
+
mem_button.click(view_memory, inputs=mem_model_name, outputs=mem_output)
|
273 |
+
|
274 |
+
with gr.Tab("๐ Logs"):
|
275 |
+
log_button = gr.Button("๐ Show Logs")
|
276 |
+
log_output = gr.Textbox(label="Logs", lines=20)
|
277 |
+
log_button.click(view_logs, outputs=log_output)
|
278 |
+
|
279 |
+
with gr.Tab("๐ Guide"):
|
280 |
+
gr.Markdown(USER_GUIDE)
|
281 |
+
|
282 |
+
# =========================
|
283 |
+
# Launch
|
284 |
+
# =========================
|
285 |
if __name__ == "__main__":
|
286 |
+
demo.launch()
|