Spaces:
Sleeping
Sleeping
Update app.py
#1
by
MrUnknown420
- opened
app.py
CHANGED
@@ -1,51 +1,121 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
num_train_epochs=1,
|
20 |
-
per_device_train_batch_size=2,
|
21 |
-
save_steps=10,
|
22 |
-
save_total_limit=1
|
23 |
-
)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
train_dataset=tokenized["train"]
|
29 |
-
)
|
30 |
|
31 |
-
|
32 |
-
model.save_pretrained("./custom_model")
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
return f"β Error: {str(e)}"
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import (
|
3 |
+
AutoModelForCausalLM,
|
4 |
+
AutoTokenizer,
|
5 |
+
Trainer,
|
6 |
+
TrainingArguments,
|
7 |
+
DataCollatorForLanguageModeling,
|
8 |
+
)
|
9 |
+
from datasets import load_dataset, Dataset
|
10 |
+
import torch
|
11 |
+
import os
|
12 |
|
13 |
+
# Default model path
|
14 |
+
MODEL_DIR = "./custom_model"
|
|
|
|
|
15 |
|
16 |
+
# ---------- Dataset Handling ----------
|
17 |
+
def get_dataset(dataset_name, config_name=None, user_file=None):
|
18 |
+
if user_file is not None:
|
19 |
+
# Load user-uploaded text dataset
|
20 |
+
with open(user_file.name, "r", encoding="utf-8") as f:
|
21 |
+
text_data = f.read().splitlines()
|
22 |
+
return Dataset.from_dict({"text": text_data})
|
23 |
|
24 |
+
if config_name:
|
25 |
+
return load_dataset(dataset_name, config_name)
|
26 |
+
else:
|
27 |
+
return load_dataset(dataset_name)
|
28 |
|
29 |
+
# ---------- Training ----------
|
30 |
+
def train_model(model_name, dataset_name, config_name, user_file, epochs, output_dir):
|
31 |
+
# Load tokenizer & model
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
34 |
|
35 |
+
# Load dataset
|
36 |
+
dataset = get_dataset(dataset_name, config_name, user_file)
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# Tokenize
|
39 |
+
def tokenize_function(examples):
|
40 |
+
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
|
|
|
|
|
41 |
|
42 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
|
|
43 |
|
44 |
+
# Data collator
|
45 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
|
|
46 |
|
47 |
+
# Training args
|
48 |
+
training_args = TrainingArguments(
|
49 |
+
output_dir=output_dir,
|
50 |
+
evaluation_strategy="no",
|
51 |
+
learning_rate=2e-5,
|
52 |
+
per_device_train_batch_size=2,
|
53 |
+
num_train_epochs=int(epochs),
|
54 |
+
weight_decay=0.01,
|
55 |
+
save_total_limit=1,
|
56 |
+
logging_steps=5,
|
57 |
+
)
|
58 |
+
|
59 |
+
# Trainer
|
60 |
+
trainer = Trainer(
|
61 |
+
model=model,
|
62 |
+
args=training_args,
|
63 |
+
train_dataset=tokenized_dataset["train"] if "train" in tokenized_dataset else tokenized_dataset,
|
64 |
+
tokenizer=tokenizer,
|
65 |
+
data_collator=data_collator,
|
66 |
)
|
67 |
|
68 |
+
trainer.train()
|
69 |
+
trainer.save_model(output_dir)
|
70 |
+
tokenizer.save_pretrained(output_dir)
|
71 |
+
|
72 |
+
return f"β
Training complete! Model saved to {output_dir}"
|
73 |
+
|
74 |
+
# ---------- Chat ----------
|
75 |
+
def chat_with_model(prompt, history):
|
76 |
+
if not os.path.exists(MODEL_DIR):
|
77 |
+
return "β οΈ No trained model found yet. Train one first!"
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_DIR)
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_DIR)
|
80 |
+
|
81 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
82 |
+
with torch.no_grad():
|
83 |
+
outputs = model.generate(**inputs, max_length=200, pad_token_id=tokenizer.eos_token_id)
|
84 |
+
|
85 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
86 |
+
return response
|
87 |
+
|
88 |
+
# ---------- UI ----------
|
89 |
+
with gr.Blocks() as demo:
|
90 |
+
gr.Markdown("# π§ Custom AI Model Builder")
|
91 |
+
gr.Markdown("Train and chat with your **own model** directly in Hugging Face.")
|
92 |
+
|
93 |
+
with gr.Tab("Train Model"):
|
94 |
+
model_name = gr.Textbox(label="Base Model (e.g. gpt2, distilgpt2, codeparrot-small)", value="distilgpt2")
|
95 |
+
dataset_name = gr.Textbox(label="Dataset Name (HuggingFace hub, e.g. wikitext, imdb)", value="wikitext")
|
96 |
+
config_name = gr.Textbox(label="Config (optional, e.g. wikitext-2-raw-v1)", value="wikitext-2-raw-v1")
|
97 |
+
user_file = gr.File(label="Or Upload Your Own TXT Dataset", file_types=[".txt"], type="file")
|
98 |
+
epochs = gr.Number(label="Epochs", value=1, precision=0)
|
99 |
+
output_dir = gr.Textbox(label="Output Directory", value=MODEL_DIR)
|
100 |
+
train_button = gr.Button("π Start Training")
|
101 |
+
train_output = gr.Textbox(label="Training Logs")
|
102 |
+
|
103 |
+
train_button.click(
|
104 |
+
train_model,
|
105 |
+
inputs=[model_name, dataset_name, config_name, user_file, epochs, output_dir],
|
106 |
+
outputs=train_output,
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Tab("Chat with Model"):
|
110 |
+
chatbot = gr.Chatbot()
|
111 |
+
msg = gr.Textbox(label="Message")
|
112 |
+
send = gr.Button("Send")
|
113 |
+
|
114 |
+
def respond(message, chat_history):
|
115 |
+
response = chat_with_model(message, chat_history)
|
116 |
+
chat_history.append((message, response))
|
117 |
+
return "", chat_history
|
118 |
+
|
119 |
+
send.click(respond, [msg, chatbot], [msg, chatbot])
|
120 |
+
|
121 |
demo.launch()
|