Sentence Similarity
sentence-transformers
Safetensors
English
modernbert
biencoder
text-classification
sentence-pair-classification
semantic-similarity
semantic-search
retrieval
reranking
Generated from Trainer
dataset_size:483820
loss:MultipleNegativesSymmetricRankingLoss
Eval Results
text-embeddings-inference
Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the LangCache Sentence Pairs (all) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-modernbert-base
- Maximum Sequence Length: 100 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'He was a close friend of Ángel Cabrera and is a cousin of golfer Tony Croatto .',
'He was a close friend of Ángel Cabrera , and is a cousin of golfer Tony Croatto .',
'UWIRE also distributes its members content to professional media outlets , including Yahoo , CNN and CBS News .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[0.9961, 0.9961, 0.1250],
# [0.9961, 0.9961, 0.1162],
# [0.1250, 0.1162, 1.0078]], dtype=torch.bfloat16)
Evaluation
Metrics
Binary Classification
- Dataset:
test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.7276 |
cosine_accuracy_threshold | 0.8018 |
cosine_f1 | 0.723 |
cosine_f1_threshold | 0.7345 |
cosine_precision | 0.6233 |
cosine_recall | 0.8607 |
cosine_ap | 0.7251 |
cosine_mcc | 0.4685 |
Training Details
Training Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 26,850 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 8 tokens
- mean: 27.35 tokens
- max: 53 tokens
- min: 8 tokens
- mean: 27.27 tokens
- max: 52 tokens
- 1: 100.00%
- Samples:
sentence1 sentence2 label The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The newer punts are still very much in existence today and run in the same fleets as the older boats .
1
After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .
Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .
1
The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .
The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .
1
- Loss:
MultipleNegativesSymmetricRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 26,850 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string int details - min: 8 tokens
- mean: 27.35 tokens
- max: 53 tokens
- min: 8 tokens
- mean: 27.27 tokens
- max: 52 tokens
- 1: 100.00%
- Samples:
sentence1 sentence2 label The newer Punts are still very much in existence today and race in the same fleets as the older boats .
The newer punts are still very much in existence today and run in the same fleets as the older boats .
1
After losing his second election , he resigned as opposition leader and was replaced by Geoff Pearsall .
Max Bingham resigned as opposition leader after losing his second election , and was replaced by Geoff Pearsall .
1
The 12F was officially homologated on August 21 , 1929 and exhibited at the Paris Salon in 1930 .
The 12F was officially homologated on 21 August 1929 and displayed at the 1930 Paris Salon .
1
- Loss:
MultipleNegativesSymmetricRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 100per_device_eval_batch_size
: 100learning_rate
: 0.0001adam_beta2
: 0.98adam_epsilon
: 1e-06max_steps
: 200000warmup_steps
: 1000load_best_model_at_end
: Trueoptim
: adamw_torchddp_find_unused_parameters
: Falsepush_to_hub
: Truehub_model_id
: redis/langcache-embed-v3batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 100per_device_eval_batch_size
: 100per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0001weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.98adam_epsilon
: 1e-06max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: 200000lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 1000log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config
: Nonedeepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Falseddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: redis/langcache-embed-v3hub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | test_cosine_ap |
---|---|---|---|---|
-1 | -1 | - | - | 0.6476 |
0.2067 | 1000 | 0.0165 | 0.1033 | 0.6705 |
0.4133 | 2000 | 0.0067 | 0.0977 | 0.6597 |
0.6200 | 3000 | 0.0061 | 0.0955 | 0.6670 |
0.8266 | 4000 | 0.0063 | 0.0945 | 0.6678 |
1.0333 | 5000 | 0.0059 | 0.0950 | 0.6786 |
1.2399 | 6000 | 0.0054 | 0.0880 | 0.6779 |
1.4466 | 7000 | 0.0054 | 0.0876 | 0.6791 |
1.6532 | 8000 | 0.0054 | 0.0833 | 0.6652 |
1.8599 | 9000 | 0.0051 | 0.0821 | 0.6760 |
2.0665 | 10000 | 0.0048 | 0.0818 | 0.6767 |
2.2732 | 11000 | 0.0044 | 0.0796 | 0.6732 |
2.4799 | 12000 | 0.0048 | 0.0790 | 0.6717 |
2.6865 | 13000 | 0.0043 | 0.0804 | 0.6748 |
2.8932 | 14000 | 0.0048 | 0.0790 | 0.6745 |
3.0998 | 15000 | 0.0033 | 0.0775 | 0.6693 |
3.3065 | 16000 | 0.0044 | 0.0769 | 0.6767 |
3.5131 | 17000 | 0.005 | 0.0770 | 0.6768 |
3.7198 | 18000 | 0.0044 | 0.0760 | 0.6761 |
3.9264 | 19000 | 0.0039 | 0.0741 | 0.6799 |
4.1331 | 20000 | 0.0044 | 0.0750 | 0.6888 |
4.3397 | 21000 | 0.0041 | 0.0751 | 0.7019 |
4.5464 | 22000 | 0.0044 | 0.0707 | 0.7009 |
4.7530 | 23000 | 0.0039 | 0.0726 | 0.7041 |
4.9597 | 24000 | 0.0042 | 0.0712 | 0.6971 |
5.1664 | 25000 | 0.0038 | 0.0718 | 0.6978 |
5.3730 | 26000 | 0.004 | 0.0703 | 0.7035 |
5.5797 | 27000 | 0.004 | 0.0706 | 0.6976 |
5.7863 | 28000 | 0.0042 | 0.0699 | 0.6964 |
5.9930 | 29000 | 0.0044 | 0.0699 | 0.6911 |
6.1996 | 30000 | 0.0035 | 0.0702 | 0.6791 |
6.4063 | 31000 | 0.0035 | 0.0690 | 0.6955 |
6.6129 | 32000 | 0.0037 | 0.0693 | 0.6917 |
6.8196 | 33000 | 0.0035 | 0.0691 | 0.6972 |
7.0262 | 34000 | 0.004 | 0.0695 | 0.7083 |
7.2329 | 35000 | 0.0037 | 0.0690 | 0.6994 |
7.4396 | 36000 | 0.0036 | 0.0670 | 0.7060 |
7.6462 | 37000 | 0.0042 | 0.0682 | 0.6963 |
7.8529 | 38000 | 0.0037 | 0.0678 | 0.7049 |
8.0595 | 39000 | 0.0039 | 0.0682 | 0.7014 |
8.2662 | 40000 | 0.0039 | 0.0684 | 0.6969 |
8.4728 | 41000 | 0.0041 | 0.0677 | 0.7007 |
8.6795 | 42000 | 0.0038 | 0.0671 | 0.7126 |
8.8861 | 43000 | 0.0035 | 0.0684 | 0.7150 |
9.0928 | 44000 | 0.0035 | 0.0671 | 0.7043 |
9.2994 | 45000 | 0.0038 | 0.0681 | 0.7021 |
9.5061 | 46000 | 0.0038 | 0.0687 | 0.7129 |
9.7128 | 47000 | 0.0038 | 0.0684 | 0.7215 |
9.9194 | 48000 | 0.0039 | 0.0668 | 0.7179 |
10.1261 | 49000 | 0.0031 | 0.0661 | 0.7129 |
10.3327 | 50000 | 0.0033 | 0.0664 | 0.7119 |
10.5394 | 51000 | 0.0034 | 0.0668 | 0.7162 |
10.7460 | 52000 | 0.0038 | 0.0666 | 0.7181 |
10.9527 | 53000 | 0.0034 | 0.0674 | 0.7046 |
11.1593 | 54000 | 0.0034 | 0.0657 | 0.7100 |
11.3660 | 55000 | 0.0035 | 0.0656 | 0.7163 |
11.5726 | 56000 | 0.0034 | 0.0656 | 0.7003 |
11.7793 | 57000 | 0.0036 | 0.0643 | 0.7009 |
11.9859 | 58000 | 0.0038 | 0.0649 | 0.7166 |
12.1926 | 59000 | 0.0039 | 0.0659 | 0.7168 |
12.3993 | 60000 | 0.0039 | 0.0647 | 0.7080 |
12.6059 | 61000 | 0.0032 | 0.0649 | 0.7114 |
12.8126 | 62000 | 0.0034 | 0.0646 | 0.7165 |
13.0192 | 63000 | 0.0034 | 0.0654 | 0.7197 |
13.2259 | 64000 | 0.0035 | 0.0657 | 0.7179 |
13.4325 | 65000 | 0.0031 | 0.0652 | 0.7107 |
13.6392 | 66000 | 0.0032 | 0.0649 | 0.7089 |
13.8458 | 67000 | 0.0034 | 0.0655 | 0.7089 |
14.0525 | 68000 | 0.0031 | 0.0668 | 0.7163 |
14.2591 | 69000 | 0.0035 | 0.0644 | 0.7213 |
14.4658 | 70000 | 0.0035 | 0.0634 | 0.7057 |
14.6725 | 71000 | 0.0035 | 0.0635 | 0.7049 |
14.8791 | 72000 | 0.0033 | 0.0627 | 0.7094 |
15.0858 | 73000 | 0.0037 | 0.0620 | 0.7140 |
15.2924 | 74000 | 0.0035 | 0.0628 | 0.7237 |
15.4991 | 75000 | 0.003 | 0.0625 | 0.7127 |
15.7057 | 76000 | 0.0036 | 0.0635 | 0.7127 |
15.9124 | 77000 | 0.0037 | 0.0621 | 0.7104 |
16.1190 | 78000 | 0.0033 | 0.0624 | 0.7132 |
16.3257 | 79000 | 0.0035 | 0.0632 | 0.7132 |
16.5323 | 80000 | 0.003 | 0.0626 | 0.7193 |
16.7390 | 81000 | 0.0033 | 0.0628 | 0.7179 |
16.9456 | 82000 | 0.0036 | 0.0630 | 0.7210 |
17.1523 | 83000 | 0.0033 | 0.0628 | 0.7222 |
17.3590 | 84000 | 0.0034 | 0.0629 | 0.7226 |
17.5656 | 85000 | 0.0029 | 0.0621 | 0.7207 |
17.7723 | 86000 | 0.0032 | 0.0618 | 0.7182 |
17.9789 | 87000 | 0.0034 | 0.0620 | 0.7177 |
18.1856 | 88000 | 0.0034 | 0.0625 | 0.7148 |
18.3922 | 89000 | 0.0032 | 0.0624 | 0.7131 |
18.5989 | 90000 | 0.0032 | 0.0622 | 0.7126 |
18.8055 | 91000 | 0.0031 | 0.0617 | 0.7185 |
19.0122 | 92000 | 0.0032 | 0.0620 | 0.7231 |
19.2188 | 93000 | 0.0028 | 0.0623 | 0.7202 |
19.4255 | 94000 | 0.003 | 0.0625 | 0.7194 |
19.6322 | 95000 | 0.003 | 0.0619 | 0.7139 |
19.8388 | 96000 | 0.0031 | 0.0621 | 0.7151 |
20.0455 | 97000 | 0.0031 | 0.0617 | 0.7188 |
20.2521 | 98000 | 0.0031 | 0.0619 | 0.7161 |
20.4588 | 99000 | 0.0027 | 0.0612 | 0.7164 |
20.6654 | 100000 | 0.0033 | 0.0616 | 0.7173 |
20.8721 | 101000 | 0.0033 | 0.0614 | 0.7182 |
21.0787 | 102000 | 0.003 | 0.0611 | 0.7194 |
21.2854 | 103000 | 0.0031 | 0.0614 | 0.7191 |
21.4920 | 104000 | 0.0031 | 0.0615 | 0.7187 |
21.6987 | 105000 | 0.0035 | 0.0609 | 0.7143 |
21.9054 | 106000 | 0.0033 | 0.0614 | 0.7180 |
22.1120 | 107000 | 0.0029 | 0.0608 | 0.7215 |
22.3187 | 108000 | 0.0032 | 0.0609 | 0.7250 |
22.5253 | 109000 | 0.0029 | 0.0611 | 0.7248 |
22.7320 | 110000 | 0.003 | 0.0612 | 0.7224 |
22.9386 | 111000 | 0.0029 | 0.0612 | 0.7180 |
23.1453 | 112000 | 0.0032 | 0.0610 | 0.7169 |
23.3519 | 113000 | 0.0032 | 0.0609 | 0.7174 |
23.5586 | 114000 | 0.0028 | 0.0613 | 0.7204 |
23.7652 | 115000 | 0.0033 | 0.0613 | 0.7222 |
23.9719 | 116000 | 0.0033 | 0.0613 | 0.7240 |
24.1785 | 117000 | 0.003 | 0.0610 | 0.7244 |
24.3852 | 118000 | 0.0027 | 0.0613 | 0.7239 |
24.5919 | 119000 | 0.0028 | 0.0615 | 0.7248 |
24.7985 | 120000 | 0.003 | 0.0608 | 0.7259 |
25.0052 | 121000 | 0.0033 | 0.0605 | 0.7270 |
25.2118 | 122000 | 0.0035 | 0.0604 | 0.7240 |
25.4185 | 123000 | 0.003 | 0.0607 | 0.7245 |
25.6251 | 124000 | 0.003 | 0.0608 | 0.7238 |
25.8318 | 125000 | 0.0032 | 0.0605 | 0.7208 |
26.0384 | 126000 | 0.0029 | 0.0605 | 0.7208 |
26.2451 | 127000 | 0.0034 | 0.0603 | 0.7212 |
26.4517 | 128000 | 0.003 | 0.0605 | 0.7222 |
26.6584 | 129000 | 0.003 | 0.0604 | 0.7236 |
26.8651 | 130000 | 0.003 | 0.0608 | 0.7271 |
27.0717 | 131000 | 0.0028 | 0.0608 | 0.7242 |
27.2784 | 132000 | 0.0028 | 0.0612 | 0.7239 |
27.4850 | 133000 | 0.0025 | 0.0609 | 0.7270 |
27.6917 | 134000 | 0.0026 | 0.0607 | 0.7277 |
27.8983 | 135000 | 0.003 | 0.0608 | 0.7263 |
28.1050 | 136000 | 0.003 | 0.0609 | 0.7250 |
28.3116 | 137000 | 0.0029 | 0.0607 | 0.7262 |
28.5183 | 138000 | 0.0029 | 0.0609 | 0.7269 |
28.7249 | 139000 | 0.0029 | 0.0607 | 0.7250 |
28.9316 | 140000 | 0.0025 | 0.0608 | 0.7254 |
29.1383 | 141000 | 0.0031 | 0.0609 | 0.7262 |
29.3449 | 142000 | 0.0027 | 0.0606 | 0.7247 |
29.5516 | 143000 | 0.003 | 0.0607 | 0.7244 |
29.7582 | 144000 | 0.0028 | 0.0606 | 0.7240 |
29.9649 | 145000 | 0.0028 | 0.0605 | 0.7228 |
30.1715 | 146000 | 0.0032 | 0.0604 | 0.7251 |
30.3782 | 147000 | 0.0033 | 0.0603 | 0.7240 |
30.5848 | 148000 | 0.0029 | 0.0604 | 0.7242 |
30.7915 | 149000 | 0.0032 | 0.0603 | 0.7241 |
30.9981 | 150000 | 0.0028 | 0.0602 | 0.7246 |
31.2048 | 151000 | 0.0029 | 0.0602 | 0.7261 |
31.4114 | 152000 | 0.003 | 0.0602 | 0.7258 |
31.6181 | 153000 | 0.0031 | 0.0603 | 0.7253 |
31.8248 | 154000 | 0.003 | 0.0602 | 0.7250 |
32.0314 | 155000 | 0.0033 | 0.0602 | 0.7248 |
32.2381 | 156000 | 0.0031 | 0.0601 | 0.7248 |
32.4447 | 157000 | 0.0027 | 0.0602 | 0.7240 |
32.6514 | 158000 | 0.0026 | 0.0602 | 0.7243 |
32.8580 | 159000 | 0.0028 | 0.0602 | 0.7249 |
33.0647 | 160000 | 0.0033 | 0.0602 | 0.7251 |
33.2713 | 161000 | 0.0031 | 0.0602 | 0.7252 |
33.4780 | 162000 | 0.0027 | 0.0600 | 0.7247 |
33.6846 | 163000 | 0.0031 | 0.0601 | 0.7247 |
33.8913 | 164000 | 0.0032 | 0.0601 | 0.7251 |
34.0980 | 165000 | 0.0026 | 0.0602 | 0.7252 |
34.3046 | 166000 | 0.0034 | 0.0602 | 0.7252 |
34.5113 | 167000 | 0.0028 | 0.0602 | 0.7250 |
34.7179 | 168000 | 0.0029 | 0.0601 | 0.7249 |
34.9246 | 169000 | 0.0028 | 0.0602 | 0.7253 |
35.1312 | 170000 | 0.0026 | 0.0601 | 0.7249 |
35.3379 | 171000 | 0.0027 | 0.0601 | 0.7247 |
35.5445 | 172000 | 0.0031 | 0.0601 | 0.7245 |
35.7512 | 173000 | 0.003 | 0.0600 | 0.7245 |
35.9578 | 174000 | 0.003 | 0.0601 | 0.7250 |
36.1645 | 175000 | 0.0027 | 0.0600 | 0.7246 |
36.3712 | 176000 | 0.0028 | 0.0601 | 0.7248 |
36.5778 | 177000 | 0.0027 | 0.0601 | 0.7250 |
36.7845 | 178000 | 0.0028 | 0.0601 | 0.7252 |
36.9911 | 179000 | 0.0029 | 0.0601 | 0.7252 |
37.1978 | 180000 | 0.0029 | 0.0602 | 0.7251 |
37.4044 | 181000 | 0.0025 | 0.0601 | 0.7250 |
37.6111 | 182000 | 0.003 | 0.0601 | 0.7250 |
37.8177 | 183000 | 0.0028 | 0.0601 | 0.7251 |
38.0244 | 184000 | 0.0028 | 0.0601 | 0.7252 |
38.2310 | 185000 | 0.0034 | 0.0600 | 0.7251 |
38.4377 | 186000 | 0.0028 | 0.0601 | 0.7251 |
38.6443 | 187000 | 0.0035 | 0.0601 | 0.7250 |
38.8510 | 188000 | 0.003 | 0.0600 | 0.7250 |
39.0577 | 189000 | 0.0028 | 0.0601 | 0.7252 |
39.2643 | 190000 | 0.0027 | 0.0600 | 0.7250 |
39.4710 | 191000 | 0.0026 | 0.0601 | 0.7250 |
39.6776 | 192000 | 0.0028 | 0.0600 | 0.7251 |
39.8843 | 193000 | 0.0027 | 0.0600 | 0.7251 |
40.0909 | 194000 | 0.0031 | 0.0601 | 0.7252 |
40.2976 | 195000 | 0.0031 | 0.0600 | 0.7252 |
40.5042 | 196000 | 0.0029 | 0.0601 | 0.7251 |
40.7109 | 197000 | 0.0032 | 0.0600 | 0.7251 |
40.9175 | 198000 | 0.0028 | 0.0600 | 0.7251 |
41.1242 | 199000 | 0.0029 | 0.0600 | 0.7252 |
41.3309 | 200000 | 0.003 | 0.0600 | 0.7251 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 215
Model tree for redis/langcache-embed-v3
Base model
answerdotai/ModernBERT-base
Finetuned
Alibaba-NLP/gte-modernbert-base
Dataset used to train redis/langcache-embed-v3
Evaluation results
- Cosine Accuracy on testself-reported0.728
- Cosine Accuracy Threshold on testself-reported0.802
- Cosine F1 on testself-reported0.723
- Cosine F1 Threshold on testself-reported0.735
- Cosine Precision on testself-reported0.623
- Cosine Recall on testself-reported0.861
- Cosine Ap on testself-reported0.725
- Cosine Mcc on testself-reported0.468