Dataset Viewer
repo
stringclasses 885
values | file
stringclasses 741
values | content
stringlengths 4
215k
|
---|---|---|
https://github.com/qiskit-community/qiskit-dell-runtime
|
qiskit-community
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# Copyright 2021 Dell (www.dell.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from qiskit.providers import JobV1
from qiskit.providers import JobStatus, JobError
from qiskit import transpile
from qiskit_aer import Aer
import functools
def requires_submit(func):
"""
Decorator to ensure that a submit has been performed before
calling the method.
Args:
func (callable): test function to be decorated.
Returns:
callable: the decorated function.
"""
@functools.wraps(func)
def _wrapper(self, *args, **kwargs):
if self.my_job is None:
raise JobError("Job not submitted yet!. You have to .submit() first!")
return func(self, *args, **kwargs)
return _wrapper
class EmulatorJob(JobV1):
def __init__(self, backend, job_id, circuit, shots):
super().__init__(backend, job_id)
self.circuit = circuit
self.shots = shots
self.my_job = None
@requires_submit
def result(self, timeout=None):
return self.my_job.result(timeout=timeout)
def submit(self):
backend = Aer.get_backend('aer_simulator')
self.my_job = backend.run(self.circuit, shots = self.shots)
@requires_submit
def cancel(self):
return self.my_job.cancel()
@requires_submit
def status(self):
return self.my_job.status()
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test the Sabre Swap pass"""
import unittest
import itertools
import ddt
import numpy.random
from qiskit.circuit import Clbit, ControlFlowOp, Qubit
from qiskit.circuit.library import CCXGate, HGate, Measure, SwapGate
from qiskit.circuit.classical import expr
from qiskit.circuit.random import random_circuit
from qiskit.compiler.transpiler import transpile
from qiskit.converters import circuit_to_dag, dag_to_circuit
from qiskit.providers.fake_provider import FakeMumbai, FakeMumbaiV2
from qiskit.transpiler.passes import SabreSwap, TrivialLayout, CheckMap
from qiskit.transpiler import CouplingMap, Layout, PassManager, Target, TranspilerError
from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit
from qiskit.test import QiskitTestCase
from qiskit.test._canonical import canonicalize_control_flow
from qiskit.utils import optionals
def looping_circuit(uphill_swaps=1, additional_local_minimum_gates=0):
"""A circuit that causes SabreSwap to loop infinitely.
This looks like (using cz gates to show the symmetry, though we actually output cx for testing
purposes):
.. parsed-literal::
q_0: ─■────────────────
│
q_1: ─┼──■─────────────
│ │
q_2: ─┼──┼──■──────────
│ │ │
q_3: ─┼──┼──┼──■───────
│ │ │ │
q_4: ─┼──┼──┼──┼─────■─
│ │ │ │ │
q_5: ─┼──┼──┼──┼──■──■─
│ │ │ │ │
q_6: ─┼──┼──┼──┼──┼────
│ │ │ │ │
q_7: ─┼──┼──┼──┼──■──■─
│ │ │ │ │
q_8: ─┼──┼──┼──┼─────■─
│ │ │ │
q_9: ─┼──┼──┼──■───────
│ │ │
q_10: ─┼──┼──■──────────
│ │
q_11: ─┼──■─────────────
│
q_12: ─■────────────────
where `uphill_swaps` is the number of qubits separating the inner-most gate (representing how
many swaps need to be made that all increase the heuristics), and
`additional_local_minimum_gates` is how many extra gates to add on the outside (these increase
the size of the region of stability).
"""
outers = 4 + additional_local_minimum_gates
n_qubits = 2 * outers + 4 + uphill_swaps
# This is (most of) the front layer, which is a bunch of outer qubits in the
# coupling map.
outer_pairs = [(i, n_qubits - i - 1) for i in range(outers)]
inner_heuristic_peak = [
# This gate is completely "inside" all the others in the front layer in
# terms of the coupling map, so it's the only one that we can in theory
# make progress towards without making the others worse.
(outers + 1, outers + 2 + uphill_swaps),
# These are the only two gates in the extended set, and they both get
# further apart if you make a swap to bring the above gate closer
# together, which is the trick that creates the "heuristic hill".
(outers, outers + 1),
(outers + 2 + uphill_swaps, outers + 3 + uphill_swaps),
]
qc = QuantumCircuit(n_qubits)
for pair in outer_pairs + inner_heuristic_peak:
qc.cx(*pair)
return qc
@ddt.ddt
class TestSabreSwap(QiskitTestCase):
"""Tests the SabreSwap pass."""
def test_trivial_case(self):
"""Test that an already mapped circuit is unchanged.
┌───┐┌───┐
q_0: ──■──┤ H ├┤ X ├──■──
┌─┴─┐└───┘└─┬─┘ │
q_1: ┤ X ├──■────■────┼──
└───┘┌─┴─┐ │
q_2: ──■──┤ X ├───────┼──
┌─┴─┐├───┤ │
q_3: ┤ X ├┤ X ├───────┼──
└───┘└─┬─┘ ┌─┴─┐
q_4: ───────■───────┤ X ├
└───┘
"""
coupling = CouplingMap.from_ring(5)
qr = QuantumRegister(5, "q")
qc = QuantumCircuit(qr)
qc.cx(0, 1) # free
qc.cx(2, 3) # free
qc.h(0) # free
qc.cx(1, 2) # F
qc.cx(1, 0)
qc.cx(4, 3) # F
qc.cx(0, 4)
passmanager = PassManager(SabreSwap(coupling, "basic"))
new_qc = passmanager.run(qc)
self.assertEqual(new_qc, qc)
def test_trivial_with_target(self):
"""Test that an already mapped circuit is unchanged with target."""
coupling = CouplingMap.from_ring(5)
target = Target(num_qubits=5)
target.add_instruction(SwapGate(), {edge: None for edge in coupling.get_edges()})
qr = QuantumRegister(5, "q")
qc = QuantumCircuit(qr)
qc.cx(0, 1) # free
qc.cx(2, 3) # free
qc.h(0) # free
qc.cx(1, 2) # F
qc.cx(1, 0)
qc.cx(4, 3) # F
qc.cx(0, 4)
passmanager = PassManager(SabreSwap(target, "basic"))
new_qc = passmanager.run(qc)
self.assertEqual(new_qc, qc)
def test_lookahead_mode(self):
"""Test lookahead mode's lookahead finds single SWAP gate.
┌───┐
q_0: ──■──┤ H ├───────────────
┌─┴─┐└───┘
q_1: ┤ X ├──■────■─────────■──
└───┘┌─┴─┐ │ │
q_2: ──■──┤ X ├──┼────■────┼──
┌─┴─┐└───┘┌─┴─┐┌─┴─┐┌─┴─┐
q_3: ┤ X ├─────┤ X ├┤ X ├┤ X ├
└───┘ └───┘└───┘└───┘
q_4: ─────────────────────────
"""
coupling = CouplingMap.from_line(5)
qr = QuantumRegister(5, "q")
qc = QuantumCircuit(qr)
qc.cx(0, 1) # free
qc.cx(2, 3) # free
qc.h(0) # free
qc.cx(1, 2) # free
qc.cx(1, 3) # F
qc.cx(2, 3) # E
qc.cx(1, 3) # E
pm = PassManager(SabreSwap(coupling, "lookahead"))
new_qc = pm.run(qc)
self.assertEqual(new_qc.num_nonlocal_gates(), 7)
def test_do_not_change_cm(self):
"""Coupling map should not change.
See https://github.com/Qiskit/qiskit-terra/issues/5675"""
cm_edges = [(1, 0), (2, 0), (2, 1), (3, 2), (3, 4), (4, 2)]
coupling = CouplingMap(cm_edges)
passmanager = PassManager(SabreSwap(coupling))
_ = passmanager.run(QuantumCircuit(coupling.size()))
self.assertEqual(set(cm_edges), set(coupling.get_edges()))
def test_do_not_reorder_measurements(self):
"""Test that SabreSwap doesn't reorder measurements to the same classical bit.
With the particular coupling map used in this test and the 3q ccx gate, the routing would
invariably the measurements if the classical successors are not accurately tracked.
Regression test of gh-7950."""
coupling = CouplingMap([(0, 2), (2, 0), (1, 2), (2, 1)])
qc = QuantumCircuit(3, 1)
qc.compose(CCXGate().definition, [0, 1, 2], []) # Unroll CCX to 2q operations.
qc.h(0)
qc.barrier()
qc.measure(0, 0) # This measure is 50/50 between the Z states.
qc.measure(1, 0) # This measure always overwrites with 0.
passmanager = PassManager(SabreSwap(coupling))
transpiled = passmanager.run(qc)
last_h = transpiled.data[-4]
self.assertIsInstance(last_h.operation, HGate)
first_measure = transpiled.data[-2]
second_measure = transpiled.data[-1]
self.assertIsInstance(first_measure.operation, Measure)
self.assertIsInstance(second_measure.operation, Measure)
# Assert that the first measure is on the same qubit that the HGate was applied to, and the
# second measurement is on a different qubit (though we don't care which exactly - that
# depends a little on the randomisation of the pass).
self.assertEqual(last_h.qubits, first_measure.qubits)
self.assertNotEqual(last_h.qubits, second_measure.qubits)
# The 'basic' method can't get stuck in the same way.
@ddt.data("lookahead", "decay")
def test_no_infinite_loop(self, method):
"""Test that the 'release value' mechanisms allow SabreSwap to make progress even on
circuits that get stuck in a stable local minimum of the lookahead parameters."""
qc = looping_circuit(3, 1)
qc.measure_all()
coupling_map = CouplingMap.from_line(qc.num_qubits)
routing_pass = PassManager(SabreSwap(coupling_map, method))
n_swap_gates = 0
def leak_number_of_swaps(cls, *args, **kwargs):
nonlocal n_swap_gates
n_swap_gates += 1
if n_swap_gates > 1_000:
raise Exception("SabreSwap seems to be stuck in a loop")
# pylint: disable=bad-super-call
return super(SwapGate, cls).__new__(cls, *args, **kwargs)
with unittest.mock.patch.object(SwapGate, "__new__", leak_number_of_swaps):
routed = routing_pass.run(qc)
routed_ops = routed.count_ops()
del routed_ops["swap"]
self.assertEqual(routed_ops, qc.count_ops())
couplings = {
tuple(routed.find_bit(bit).index for bit in instruction.qubits)
for instruction in routed.data
if len(instruction.qubits) == 2
}
# Asserting equality to the empty set gives better errors on failure than asserting that
# `couplings <= coupling_map`.
self.assertEqual(couplings - set(coupling_map.get_edges()), set())
# Assert that the same keys are produced by a simulation - this is a test that the inserted
# swaps route the qubits correctly.
if not optionals.HAS_AER:
return
from qiskit import Aer
sim = Aer.get_backend("aer_simulator")
in_results = sim.run(qc, shots=4096).result().get_counts()
out_results = sim.run(routed, shots=4096).result().get_counts()
self.assertEqual(set(in_results), set(out_results))
def test_classical_condition(self):
"""Test that :class:`.SabreSwap` correctly accounts for classical conditions in its
reckoning on whether a node is resolved or not. If it is not handled correctly, the second
gate might not appear in the output.
Regression test of gh-8040."""
with self.subTest("1 bit in register"):
qc = QuantumCircuit(2, 1)
qc.z(0)
qc.z(0).c_if(qc.cregs[0], 0)
cm = CouplingMap([(0, 1), (1, 0)])
expected = PassManager([TrivialLayout(cm)]).run(qc)
actual = PassManager([TrivialLayout(cm), SabreSwap(cm)]).run(qc)
self.assertEqual(expected, actual)
with self.subTest("multiple registers"):
cregs = [ClassicalRegister(3), ClassicalRegister(4)]
qc = QuantumCircuit(QuantumRegister(2, name="q"), *cregs)
qc.z(0)
qc.z(0).c_if(cregs[0], 0)
qc.z(0).c_if(cregs[1], 0)
cm = CouplingMap([(0, 1), (1, 0)])
expected = PassManager([TrivialLayout(cm)]).run(qc)
actual = PassManager([TrivialLayout(cm), SabreSwap(cm)]).run(qc)
self.assertEqual(expected, actual)
def test_classical_condition_cargs(self):
"""Test that classical conditions are preserved even if missing from cargs DAGNode field.
Created from reproduction in https://github.com/Qiskit/qiskit-terra/issues/8675
"""
with self.subTest("missing measurement"):
qc = QuantumCircuit(3, 1)
qc.cx(0, 2).c_if(0, 0)
qc.measure(1, 0)
qc.h(2).c_if(0, 0)
expected = QuantumCircuit(3, 1)
expected.swap(1, 2)
expected.cx(0, 1).c_if(0, 0)
expected.measure(2, 0)
expected.h(1).c_if(0, 0)
result = SabreSwap(CouplingMap.from_line(3), seed=12345)(qc)
self.assertEqual(result, expected)
with self.subTest("reordered measurement"):
qc = QuantumCircuit(3, 1)
qc.cx(0, 1).c_if(0, 0)
qc.measure(1, 0)
qc.h(0).c_if(0, 0)
expected = QuantumCircuit(3, 1)
expected.cx(0, 1).c_if(0, 0)
expected.measure(1, 0)
expected.h(0).c_if(0, 0)
result = SabreSwap(CouplingMap.from_line(3), seed=12345)(qc)
self.assertEqual(result, expected)
def test_conditional_measurement(self):
"""Test that instructions with cargs and conditions are handled correctly."""
qc = QuantumCircuit(3, 2)
qc.cx(0, 2).c_if(0, 0)
qc.measure(2, 0).c_if(1, 0)
qc.h(2).c_if(0, 0)
qc.measure(1, 1)
expected = QuantumCircuit(3, 2)
expected.swap(1, 2)
expected.cx(0, 1).c_if(0, 0)
expected.measure(1, 0).c_if(1, 0)
expected.h(1).c_if(0, 0)
expected.measure(2, 1)
result = SabreSwap(CouplingMap.from_line(3), seed=12345)(qc)
self.assertEqual(result, expected)
@ddt.data("basic", "lookahead", "decay")
def test_deterministic(self, heuristic):
"""Test that the output of the SabreSwap pass is deterministic for a given random seed."""
width = 40
# The actual circuit is unimportant, we just need one with lots of scoring degeneracy.
qc = QuantumCircuit(width)
for i in range(width // 2):
qc.cx(i, i + (width // 2))
for i in range(0, width, 2):
qc.cx(i, i + 1)
dag = circuit_to_dag(qc)
coupling = CouplingMap.from_line(width)
pass_0 = SabreSwap(coupling, heuristic, seed=0, trials=1)
pass_1 = SabreSwap(coupling, heuristic, seed=1, trials=1)
dag_0 = pass_0.run(dag)
dag_1 = pass_1.run(dag)
# This deliberately avoids using a topological order, because that introduces an opportunity
# for the re-ordering to sort the swaps back into a canonical order.
def normalize_nodes(dag):
return [(node.op.name, node.qargs, node.cargs) for node in dag.op_nodes()]
# A sanity check for the test - if unequal seeds don't produce different outputs for this
# degenerate circuit, then the test probably needs fixing (or Sabre is ignoring the seed).
self.assertNotEqual(normalize_nodes(dag_0), normalize_nodes(dag_1))
# Check that a re-run with the same seed produces the same circuit in the exact same order.
self.assertEqual(normalize_nodes(dag_0), normalize_nodes(pass_0.run(dag)))
def test_rejects_too_many_qubits(self):
"""Test that a sensible Python-space error message is emitted if the DAG has an incorrect
number of qubits."""
pass_ = SabreSwap(CouplingMap.from_line(4))
qc = QuantumCircuit(QuantumRegister(5, "q"))
with self.assertRaisesRegex(TranspilerError, "More qubits in the circuit"):
pass_(qc)
def test_rejects_too_few_qubits(self):
"""Test that a sensible Python-space error message is emitted if the DAG has an incorrect
number of qubits."""
pass_ = SabreSwap(CouplingMap.from_line(4))
qc = QuantumCircuit(QuantumRegister(3, "q"))
with self.assertRaisesRegex(TranspilerError, "Fewer qubits in the circuit"):
pass_(qc)
@ddt.ddt
class TestSabreSwapControlFlow(QiskitTestCase):
"""Tests for control flow in sabre swap."""
def test_shared_block(self):
"""Test multiple control flow ops sharing the same block instance."""
inner = QuantumCircuit(2)
inner.cx(0, 1)
qreg = QuantumRegister(4, "q")
outer = QuantumCircuit(qreg, ClassicalRegister(1))
for pair in itertools.permutations(range(outer.num_qubits), 2):
outer.if_test((outer.cregs[0], 1), inner, pair, [])
coupling = CouplingMap.from_line(4)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(circuit_to_dag(outer))
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_blocks_use_registers(self):
"""Test that control flow ops using registers still use registers after routing."""
num_qubits = 2
qreg = QuantumRegister(num_qubits, "q")
cr1 = ClassicalRegister(1)
cr2 = ClassicalRegister(1)
qc = QuantumCircuit(qreg, cr1, cr2)
with qc.if_test((cr1, False)):
qc.cx(0, 1)
qc.measure(0, cr2[0])
with qc.if_test((cr2, 0)):
qc.cx(0, 1)
coupling = CouplingMap.from_line(num_qubits)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(circuit_to_dag(qc))
outer_if_op = cdag.op_nodes(ControlFlowOp)[0].op
self.assertEqual(outer_if_op.condition[0], cr1)
inner_if_op = circuit_to_dag(outer_if_op.blocks[0]).op_nodes(ControlFlowOp)[0].op
self.assertEqual(inner_if_op.condition[0], cr2)
def test_pre_if_else_route(self):
"""test swap with if else controlflow construct"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.measure(2, 2)
true_body = QuantumCircuit(qreg, creg[[2]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[2]])
false_body.x(4)
qc.if_else((creg[2], 0), true_body, false_body, qreg, creg[[2]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(1, 2)
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[2]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[2]])
efalse_body.x(1)
new_order = [0, 2, 1, 3, 4]
expected.if_else((creg[2], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[2]])
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_if_else_route_post_x(self):
"""test swap with if else controlflow construct; pre-cx and post x"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.measure(2, 2)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.if_else((creg[2], 0), true_body, false_body, qreg, creg[[0]])
qc.x(1)
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(1, 2)
new_order = [0, 2, 1, 3, 4]
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
efalse_body.x(1)
expected.if_else((creg[2], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[0]])
expected.x(2)
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_post_if_else_route(self):
"""test swap with if else controlflow construct; post cx"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(3)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.barrier(qreg)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.cx(0, 2)
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[3, 4]], creg[[0]])
efalse_body.x(1)
expected.barrier(qreg)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[3, 4]], creg[[0]])
expected.barrier(qreg)
expected.swap(1, 2)
expected.cx(0, 1)
expected.barrier(qreg)
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_if_else2(self):
"""test swap with if else controlflow construct; cx in if statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(0)
false_body = QuantumCircuit(qreg, creg[[0]])
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[0]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[0]], creg[[0]])
new_order = [0, 2, 1, 3, 4]
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[0]], creg[[0]])
expected.barrier(qreg)
expected.measure(qreg, creg[new_order])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_intra_if_else_route(self):
"""test swap with if else controlflow construct"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.swap(1, 2)
etrue_body.cx(0, 1)
etrue_body.swap(1, 2)
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.swap(0, 1)
efalse_body.swap(3, 4)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
efalse_body.swap(3, 4)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_intra_if_else(self):
"""test swap with if else controlflow construct; cx in if statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap([(i, i + 1) for i in range(num_qubits - 1)])
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
etrue_body = QuantumCircuit(qreg, creg[[0]])
efalse_body = QuantumCircuit(qreg, creg[[0]])
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body.cx(0, 1)
efalse_body.swap(0, 1)
efalse_body.swap(3, 4)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
efalse_body.swap(3, 4)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_pre_intra_post_if_else(self):
"""test swap with if else controlflow construct; cx before, in, and after if
statement"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.cx(0, 4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.h(3)
qc.cx(3, 0)
qc.barrier()
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(0, 1)
expected.cx(1, 2)
expected.measure(1, 0)
etrue_body = QuantumCircuit(qreg[[1, 2, 3, 4]], creg[[0]])
etrue_body.cx(0, 1)
efalse_body = QuantumCircuit(qreg[[1, 2, 3, 4]], creg[[0]])
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
efalse_body.cx(1, 2)
efalse_body.swap(0, 1)
efalse_body.swap(2, 3)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[1, 2, 3, 4]], creg[[0]])
expected.h(3)
expected.swap(1, 2)
expected.cx(3, 2)
expected.barrier()
expected.measure(qreg, creg[[1, 2, 0, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_if_expr(self):
"""Test simple if conditional with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
body = QuantumCircuit(4)
body.cx(0, 1)
body.cx(0, 2)
body.cx(0, 3)
qc = QuantumCircuit(4, 2)
qc.if_test(expr.logic_and(qc.clbits[0], qc.clbits[1]), body, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=58, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_if_else_expr(self):
"""Test simple if/else conditional with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
true = QuantumCircuit(4)
true.cx(0, 1)
true.cx(0, 2)
true.cx(0, 3)
false = QuantumCircuit(4)
false.cx(3, 0)
false.cx(3, 1)
false.cx(3, 2)
qc = QuantumCircuit(4, 2)
qc.if_else(expr.logic_and(qc.clbits[0], qc.clbits[1]), true, false, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=58, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_no_layout_change(self):
"""test controlflow with no layout change needed"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.cx(0, 2)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(2)
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.x(4)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.barrier(qreg)
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.swap(1, 2)
expected.cx(0, 1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg[[1, 4]], creg[[0]])
etrue_body.x(0)
efalse_body = QuantumCircuit(qreg[[1, 4]], creg[[0]])
efalse_body.x(1)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg[[1, 4]], creg[[0]])
expected.barrier(qreg)
expected.measure(qreg, creg[[0, 2, 1, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
@ddt.data(1, 2, 3)
def test_for_loop(self, nloops):
"""test stochastic swap with for_loop"""
num_qubits = 3
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
for_body = QuantumCircuit(qreg)
for_body.cx(0, 2)
loop_parameter = None
qc.for_loop(range(nloops), loop_parameter, for_body, qreg, [])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
efor_body = QuantumCircuit(qreg)
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
loop_parameter = None
expected.for_loop(range(nloops), loop_parameter, efor_body, qreg, [])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_while_loop(self):
"""test while loop"""
num_qubits = 4
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(len(qreg))
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
while_body = QuantumCircuit(qreg, creg)
while_body.reset(qreg[2:])
while_body.h(qreg[2:])
while_body.cx(0, 3)
while_body.measure(qreg[3], creg[3])
qc.while_loop((creg, 0), while_body, qc.qubits, qc.clbits)
qc.barrier()
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
ewhile_body = QuantumCircuit(qreg, creg)
ewhile_body.reset(qreg[2:])
ewhile_body.h(qreg[2:])
ewhile_body.swap(0, 1)
ewhile_body.swap(2, 3)
ewhile_body.cx(1, 2)
ewhile_body.measure(qreg[2], creg[3])
ewhile_body.swap(1, 0)
ewhile_body.swap(3, 2)
expected.while_loop((creg, 0), ewhile_body, expected.qubits, expected.clbits)
expected.barrier()
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_while_loop_expr(self):
"""Test simple while loop with an `Expr` condition."""
coupling = CouplingMap.from_line(4)
body = QuantumCircuit(4)
body.cx(0, 1)
body.cx(0, 2)
body.cx(0, 3)
qc = QuantumCircuit(4, 2)
qc.while_loop(expr.logic_and(qc.clbits[0], qc.clbits[1]), body, [0, 1, 2, 3], [])
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
def test_switch_implicit_carg_use(self):
"""Test that a switch statement that uses cargs only implicitly via its ``target`` attribute
and not explicitly in bodies of the cases is routed correctly, with the dependencies
fulfilled correctly."""
coupling = CouplingMap.from_line(4)
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
body = QuantumCircuit([Qubit()])
body.x(0)
# If the classical wire condition isn't respected, then the switch would appear in the front
# layer and be immediately eligible for routing, which would produce invalid output.
qc = QuantumCircuit(4, 1)
qc.cx(0, 1)
qc.cx(1, 2)
qc.cx(0, 2)
qc.measure(2, 0)
qc.switch(expr.lift(qc.clbits[0]), [(False, body.copy()), (True, body.copy())], [3], [])
expected = QuantumCircuit(4, 1)
expected.cx(0, 1)
expected.cx(1, 2)
expected.swap(2, 1)
expected.cx(0, 1)
expected.measure(1, 0)
expected.switch(
expr.lift(expected.clbits[0]), [(False, body.copy()), (True, body.copy())], [3], []
)
self.assertEqual(pass_(qc), expected)
def test_switch_single_case(self):
"""Test routing of 'switch' with just a single case."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
qc.switch(creg, [(0, case0)], qreg[[0, 1, 2]], creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
expected.switch(creg, [(0, case0)], qreg[[0, 1, 2]], creg[:])
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_nonexhaustive(self):
"""Test routing of 'switch' with several but nonexhaustive cases."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.cx(3, 1)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.cx(4, 2)
qc.switch(creg, [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.swap(1, 2)
case1.cx(3, 2)
case1.swap(1, 2)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.swap(2, 3)
case2.cx(4, 3)
case2.swap(2, 3)
expected.switch(creg, [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_expr_single_case(self):
"""Test routing of 'switch' with an `Expr` target and just a single case."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
qc.switch(expr.bit_or(creg, 5), [(0, case0)], qreg[[0, 1, 2]], creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg[[0, 1, 2]], creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
expected.switch(expr.bit_or(creg, 5), [(0, case0)], qreg[[0, 1, 2]], creg[:])
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_switch_expr_nonexhaustive(self):
"""Test routing of 'switch' with an `Expr` target and several but nonexhaustive cases."""
qreg = QuantumRegister(5, "q")
creg = ClassicalRegister(3, "c")
qc = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.cx(2, 0)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.cx(3, 1)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.cx(4, 2)
qc.switch(expr.bit_or(creg, 5), [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
coupling = CouplingMap.from_line(len(qreg))
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
test = pass_(qc)
check = CheckMap(coupling)
check(test)
self.assertTrue(check.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
case0 = QuantumCircuit(qreg, creg[:])
case0.cx(0, 1)
case0.cx(1, 2)
case0.swap(0, 1)
case0.cx(2, 1)
case0.swap(0, 1)
case1 = QuantumCircuit(qreg, creg[:])
case1.cx(1, 2)
case1.cx(2, 3)
case1.swap(1, 2)
case1.cx(3, 2)
case1.swap(1, 2)
case2 = QuantumCircuit(qreg, creg[:])
case2.cx(2, 3)
case2.cx(3, 4)
case2.swap(2, 3)
case2.cx(4, 3)
case2.swap(2, 3)
expected.switch(expr.bit_or(creg, 5), [(0, case0), ((1, 2), case1), (3, case2)], qreg, creg)
self.assertEqual(canonicalize_control_flow(test), canonicalize_control_flow(expected))
def test_nested_inner_cnot(self):
"""test swap in nested if else controlflow construct; swap in inner"""
num_qubits = 3
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.x(0)
for_body = QuantumCircuit(qreg)
for_body.delay(10, 0)
for_body.barrier(qreg)
for_body.cx(0, 2)
loop_parameter = None
true_body.for_loop(range(3), loop_parameter, for_body, qreg, [])
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.y(0)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.x(0)
efor_body = QuantumCircuit(qreg)
efor_body.delay(10, 0)
efor_body.barrier(qreg)
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
etrue_body.for_loop(range(3), loop_parameter, efor_body, qreg, [])
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.y(0)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg)
self.assertEqual(dag_to_circuit(cdag), expected)
def test_nested_outer_cnot(self):
"""test swap with nested if else controlflow construct; swap in outer"""
num_qubits = 5
qreg = QuantumRegister(num_qubits, "q")
creg = ClassicalRegister(num_qubits)
coupling = CouplingMap.from_line(num_qubits)
qc = QuantumCircuit(qreg, creg)
qc.h(0)
qc.x(1)
qc.measure(0, 0)
true_body = QuantumCircuit(qreg, creg[[0]])
true_body.cx(0, 2)
true_body.x(0)
for_body = QuantumCircuit(qreg)
for_body.delay(10, 0)
for_body.barrier(qreg)
for_body.cx(1, 3)
loop_parameter = None
true_body.for_loop(range(3), loop_parameter, for_body, qreg, [])
false_body = QuantumCircuit(qreg, creg[[0]])
false_body.y(0)
qc.if_else((creg[0], 0), true_body, false_body, qreg, creg[[0]])
qc.measure(qreg, creg)
dag = circuit_to_dag(qc)
cdag = SabreSwap(coupling, "lookahead", seed=82, trials=1).run(dag)
check_map_pass = CheckMap(coupling)
check_map_pass.run(cdag)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qreg, creg)
expected.h(0)
expected.x(1)
expected.measure(0, 0)
etrue_body = QuantumCircuit(qreg, creg[[0]])
etrue_body.swap(1, 2)
etrue_body.cx(0, 1)
etrue_body.x(0)
efor_body = QuantumCircuit(qreg)
efor_body.delay(10, 0)
efor_body.barrier(qreg)
efor_body.cx(2, 3)
etrue_body.for_loop(range(3), loop_parameter, efor_body, qreg[[0, 1, 2, 3, 4]], [])
etrue_body.swap(1, 2)
efalse_body = QuantumCircuit(qreg, creg[[0]])
efalse_body.y(0)
expected.if_else((creg[0], 0), etrue_body, efalse_body, qreg, creg[[0]])
expected.measure(qreg, creg[[0, 1, 2, 3, 4]])
self.assertEqual(dag_to_circuit(cdag), expected)
def test_disjoint_looping(self):
"""Test looping controlflow on different qubit register"""
num_qubits = 4
cm = CouplingMap.from_line(num_qubits)
qr = QuantumRegister(num_qubits, "q")
qc = QuantumCircuit(qr)
loop_body = QuantumCircuit(2)
loop_body.cx(0, 1)
qc.for_loop((0,), None, loop_body, [0, 2], [])
cqc = SabreSwap(cm, "lookahead", seed=82, trials=1)(qc)
expected = QuantumCircuit(qr)
efor_body = QuantumCircuit(qr[[0, 1, 2]])
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(1, 2)
expected.for_loop((0,), None, efor_body, [0, 1, 2], [])
self.assertEqual(cqc, expected)
def test_disjoint_multiblock(self):
"""Test looping controlflow on different qubit register"""
num_qubits = 4
cm = CouplingMap.from_line(num_qubits)
qr = QuantumRegister(num_qubits, "q")
cr = ClassicalRegister(1)
qc = QuantumCircuit(qr, cr)
true_body = QuantumCircuit(qr[0:3] + cr[:])
true_body.cx(0, 1)
false_body = QuantumCircuit(qr[0:3] + cr[:])
false_body.cx(0, 2)
qc.if_else((cr[0], 1), true_body, false_body, [0, 1, 2], [0])
cqc = SabreSwap(cm, "lookahead", seed=82, trials=1)(qc)
expected = QuantumCircuit(qr, cr)
etrue_body = QuantumCircuit(qr[[0, 1, 2]], cr[[0]])
etrue_body.cx(0, 1)
efalse_body = QuantumCircuit(qr[[0, 1, 2]], cr[[0]])
efalse_body.swap(1, 2)
efalse_body.cx(0, 1)
efalse_body.swap(1, 2)
expected.if_else((cr[0], 1), etrue_body, efalse_body, [0, 1, 2], cr[[0]])
self.assertEqual(cqc, expected)
def test_multiple_ops_per_layer(self):
"""Test circuits with multiple operations per layer"""
num_qubits = 6
coupling = CouplingMap.from_line(num_qubits)
check_map_pass = CheckMap(coupling)
qr = QuantumRegister(num_qubits, "q")
qc = QuantumCircuit(qr)
# This cx and the for_loop are in the same layer.
qc.cx(0, 2)
with qc.for_loop((0,)):
qc.cx(3, 5)
cqc = SabreSwap(coupling, "lookahead", seed=82, trials=1)(qc)
check_map_pass(cqc)
self.assertTrue(check_map_pass.property_set["is_swap_mapped"])
expected = QuantumCircuit(qr)
expected.swap(1, 2)
expected.cx(0, 1)
efor_body = QuantumCircuit(qr[[3, 4, 5]])
efor_body.swap(1, 2)
efor_body.cx(0, 1)
efor_body.swap(2, 1)
expected.for_loop((0,), None, efor_body, [3, 4, 5], [])
self.assertEqual(cqc, expected)
def test_if_no_else_restores_layout(self):
"""Test that an if block with no else branch restores the initial layout."""
qc = QuantumCircuit(8, 1)
with qc.if_test((qc.clbits[0], False)):
# Just some arbitrary gates with no perfect layout.
qc.cx(3, 5)
qc.cx(4, 6)
qc.cx(1, 4)
qc.cx(7, 4)
qc.cx(0, 5)
qc.cx(7, 3)
qc.cx(1, 3)
qc.cx(5, 2)
qc.cx(6, 7)
qc.cx(3, 2)
qc.cx(6, 2)
qc.cx(2, 0)
qc.cx(7, 6)
coupling = CouplingMap.from_line(8)
pass_ = SabreSwap(coupling, "lookahead", seed=82, trials=1)
transpiled = pass_(qc)
# Check the pass claims to have done things right.
initial_layout = Layout.generate_trivial_layout(*qc.qubits)
self.assertEqual(initial_layout, pass_.property_set["final_layout"])
# Check that pass really did do it right.
inner_block = transpiled.data[0].operation.blocks[0]
running_layout = initial_layout.copy()
for instruction in inner_block:
if instruction.operation.name == "swap":
running_layout.swap(*instruction.qubits)
self.assertEqual(initial_layout, running_layout)
@ddt.ddt
class TestSabreSwapRandomCircuitValidOutput(QiskitTestCase):
"""Assert the output of a transpilation with stochastic swap is a physical circuit."""
@classmethod
def setUpClass(cls):
super().setUpClass()
cls.backend = FakeMumbai()
cls.coupling_edge_set = {tuple(x) for x in cls.backend.configuration().coupling_map}
cls.basis_gates = set(cls.backend.configuration().basis_gates)
cls.basis_gates.update(["for_loop", "while_loop", "if_else"])
def assert_valid_circuit(self, transpiled):
"""Assert circuit complies with constraints of backend."""
self.assertIsInstance(transpiled, QuantumCircuit)
self.assertIsNotNone(getattr(transpiled, "_layout", None))
def _visit_block(circuit, qubit_mapping=None):
for instruction in circuit:
if instruction.operation.name in {"barrier", "measure"}:
continue
self.assertIn(instruction.operation.name, self.basis_gates)
qargs = tuple(qubit_mapping[x] for x in instruction.qubits)
if not isinstance(instruction.operation, ControlFlowOp):
if len(qargs) > 2 or len(qargs) < 0:
raise Exception("Invalid number of qargs for instruction")
if len(qargs) == 2:
self.assertIn(qargs, self.coupling_edge_set)
else:
self.assertLessEqual(qargs[0], 26)
else:
for block in instruction.operation.blocks:
self.assertEqual(block.num_qubits, len(instruction.qubits))
self.assertEqual(block.num_clbits, len(instruction.clbits))
new_mapping = {
inner: qubit_mapping[outer]
for outer, inner in zip(instruction.qubits, block.qubits)
}
_visit_block(block, new_mapping)
# Assert routing ran.
_visit_block(
transpiled,
qubit_mapping={qubit: index for index, qubit in enumerate(transpiled.qubits)},
)
@ddt.data(*range(1, 27))
def test_random_circuit_no_control_flow(self, size):
"""Test that transpiled random circuits without control flow are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
tqc = transpile(
circuit,
self.backend,
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
@ddt.data(*range(1, 27))
def test_random_circuit_no_control_flow_target(self, size):
"""Test that transpiled random circuits without control flow are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
tqc = transpile(
circuit,
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
target=FakeMumbaiV2().target,
)
self.assert_valid_circuit(tqc)
@ddt.data(*range(4, 27))
def test_random_circuit_for_loop(self, size):
"""Test that transpiled random circuits with nested for loops are physical circuits."""
circuit = random_circuit(size, 3, measure=False, seed=12342)
for_block = random_circuit(3, 2, measure=False, seed=12342)
inner_for_block = random_circuit(2, 1, measure=False, seed=12342)
with circuit.for_loop((1,)):
with circuit.for_loop((1,)):
circuit.append(inner_for_block, [0, 3])
circuit.append(for_block, [1, 0, 2])
circuit.measure_all()
tqc = transpile(
circuit,
self.backend,
basis_gates=list(self.basis_gates),
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
@ddt.data(*range(6, 27))
def test_random_circuit_if_else(self, size):
"""Test that transpiled random circuits with if else blocks are physical circuits."""
circuit = random_circuit(size, 3, measure=True, seed=12342)
if_block = random_circuit(3, 2, measure=True, seed=12342)
else_block = random_circuit(2, 1, measure=True, seed=12342)
rng = numpy.random.default_rng(seed=12342)
inner_clbit_count = max((if_block.num_clbits, else_block.num_clbits))
if inner_clbit_count > circuit.num_clbits:
circuit.add_bits([Clbit() for _ in [None] * (inner_clbit_count - circuit.num_clbits)])
clbit_indices = list(range(circuit.num_clbits))
rng.shuffle(clbit_indices)
with circuit.if_test((circuit.clbits[0], True)) as else_:
circuit.append(if_block, [0, 2, 1], clbit_indices[: if_block.num_clbits])
with else_:
circuit.append(else_block, [2, 5], clbit_indices[: else_block.num_clbits])
tqc = transpile(
circuit,
self.backend,
basis_gates=list(self.basis_gates),
routing_method="sabre",
layout_method="sabre",
seed_transpiler=12342,
)
self.assert_valid_circuit(tqc)
if __name__ == "__main__":
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit.quantumcircuitdata import CircuitInstruction
from qiskit.circuit import Measure
from qiskit.circuit.library import HGate, CXGate
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
instructions = [
CircuitInstruction(HGate(), [qr[0]], []),
CircuitInstruction(CXGate(), [qr[0], qr[1]], []),
CircuitInstruction(Measure(), [qr[0]], [cr[0]]),
CircuitInstruction(Measure(), [qr[1]], [cr[1]]),
]
circuit = QuantumCircuit.from_instructions(instructions)
circuit.draw("mpl")
|
https://github.com/swe-train/qiskit__qiskit
|
swe-train
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2023, 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Statevector Sampler class
"""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Iterable
import numpy as np
from numpy.typing import NDArray
from qiskit import ClassicalRegister, QiskitError, QuantumCircuit
from qiskit.circuit import ControlFlowOp
from qiskit.quantum_info import Statevector
from .base import BaseSamplerV2
from .base.validation import _has_measure
from .containers import (
BitArray,
DataBin,
PrimitiveResult,
SamplerPubResult,
SamplerPubLike,
)
from .containers.sampler_pub import SamplerPub
from .containers.bit_array import _min_num_bytes
from .primitive_job import PrimitiveJob
from .utils import bound_circuit_to_instruction
@dataclass
class _MeasureInfo:
creg_name: str
num_bits: int
num_bytes: int
qreg_indices: list[int]
class StatevectorSampler(BaseSamplerV2):
"""
Simple implementation of :class:`BaseSamplerV2` using full state vector simulation.
This class is implemented via :class:`~.Statevector` which turns provided circuits into
pure state vectors, and is therefore incompatible with mid-circuit measurements (although
other implementations may be).
As seen in the example below, this sampler supports providing arrays of parameter value sets to
bind against a single circuit.
Each tuple of ``(circuit, <optional> parameter values, <optional> shots)``, called a sampler
primitive unified bloc (PUB), produces its own array-valued result. The :meth:`~run` method can
be given many pubs at once.
.. code-block:: python
from qiskit.circuit import (
Parameter, QuantumCircuit, ClassicalRegister, QuantumRegister
)
from qiskit.primitives import StatevectorSampler
import matplotlib.pyplot as plt
import numpy as np
# Define our circuit registers, including classical registers
# called 'alpha' and 'beta'.
qreg = QuantumRegister(3)
alpha = ClassicalRegister(2, "alpha")
beta = ClassicalRegister(1, "beta")
# Define a quantum circuit with two parameters.
circuit = QuantumCircuit(qreg, alpha, beta)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 2)
circuit.ry(Parameter("a"), 0)
circuit.rz(Parameter("b"), 0)
circuit.cx(1, 2)
circuit.cx(0, 1)
circuit.h(0)
circuit.measure([0, 1], alpha)
circuit.measure([2], beta)
# Define a sweep over parameter values, where the second axis is over.
# the two parameters in the circuit.
params = np.vstack([
np.linspace(-np.pi, np.pi, 100),
np.linspace(-4 * np.pi, 4 * np.pi, 100)
]).T
# Instantiate a new statevector simulation based sampler object.
sampler = StatevectorSampler()
# Start a job that will return shots for all 100 parameter value sets.
pub = (circuit, params)
job = sampler.run([pub], shots=256)
# Extract the result for the 0th pub (this example only has one pub).
result = job.result()[0]
# There is one BitArray object for each ClassicalRegister in the
# circuit. Here, we can see that the BitArray for alpha contains data
# for all 100 sweep points, and that it is indeed storing data for 2
# bits over 256 shots.
assert result.data.alpha.shape == (100,)
assert result.data.alpha.num_bits == 2
assert result.data.alpha.num_shots == 256
# We can work directly with a binary array in performant applications.
raw = result.data.alpha.array
# For small registers where it is anticipated to have many counts
# associated with the same bitstrings, we can turn the data from,
# for example, the 22nd sweep index into a dictionary of counts.
counts = result.data.alpha.get_counts(22)
# Or, convert into a list of bitstrings that preserve shot order.
bitstrings = result.data.alpha.get_bitstrings(22)
print(bitstrings)
"""
def __init__(self, *, default_shots: int = 1024, seed: np.random.Generator | int | None = None):
"""
Args:
default_shots: The default shots for the sampler if not specified during run.
seed: The seed or Generator object for random number generation.
If None, a random seeded default RNG will be used.
"""
self._default_shots = default_shots
self._seed = seed
@property
def default_shots(self) -> int:
"""Return the default shots"""
return self._default_shots
@property
def seed(self) -> np.random.Generator | int | None:
"""Return the seed or Generator object for random number generation."""
return self._seed
def run(
self, pubs: Iterable[SamplerPubLike], *, shots: int | None = None
) -> PrimitiveJob[PrimitiveResult[SamplerPubResult]]:
if shots is None:
shots = self._default_shots
coerced_pubs = [SamplerPub.coerce(pub, shots) for pub in pubs]
if any(len(pub.circuit.cregs) == 0 for pub in coerced_pubs):
warnings.warn(
"One of your circuits has no output classical registers and so the result "
"will be empty. Did you mean to add measurement instructions?",
UserWarning,
)
job = PrimitiveJob(self._run, coerced_pubs)
job._submit()
return job
def _run(self, pubs: Iterable[SamplerPub]) -> PrimitiveResult[SamplerPubResult]:
results = [self._run_pub(pub) for pub in pubs]
return PrimitiveResult(results)
def _run_pub(self, pub: SamplerPub) -> SamplerPubResult:
circuit, qargs, meas_info = _preprocess_circuit(pub.circuit)
bound_circuits = pub.parameter_values.bind_all(circuit)
arrays = {
item.creg_name: np.zeros(
bound_circuits.shape + (pub.shots, item.num_bytes), dtype=np.uint8
)
for item in meas_info
}
for index, bound_circuit in np.ndenumerate(bound_circuits):
final_state = Statevector(bound_circuit_to_instruction(bound_circuit))
final_state.seed(self._seed)
if qargs:
samples = final_state.sample_memory(shots=pub.shots, qargs=qargs)
else:
samples = [""] * pub.shots
samples_array = np.array([np.fromiter(sample, dtype=np.uint8) for sample in samples])
for item in meas_info:
ary = _samples_to_packed_array(samples_array, item.num_bits, item.qreg_indices)
arrays[item.creg_name][index] = ary
meas = {
item.creg_name: BitArray(arrays[item.creg_name], item.num_bits) for item in meas_info
}
return SamplerPubResult(DataBin(**meas, shape=pub.shape), metadata={"shots": pub.shots})
def _preprocess_circuit(circuit: QuantumCircuit):
num_bits_dict = {creg.name: creg.size for creg in circuit.cregs}
mapping = _final_measurement_mapping(circuit)
qargs = sorted(set(mapping.values()))
qargs_index = {v: k for k, v in enumerate(qargs)}
circuit = circuit.remove_final_measurements(inplace=False)
if _has_control_flow(circuit):
raise QiskitError("StatevectorSampler cannot handle ControlFlowOp")
if _has_measure(circuit):
raise QiskitError("StatevectorSampler cannot handle mid-circuit measurements")
# num_qubits is used as sentinel to fill 0 in _samples_to_packed_array
sentinel = len(qargs)
indices = {key: [sentinel] * val for key, val in num_bits_dict.items()}
for key, qreg in mapping.items():
creg, ind = key
indices[creg.name][ind] = qargs_index[qreg]
meas_info = [
_MeasureInfo(
creg_name=name,
num_bits=num_bits,
num_bytes=_min_num_bytes(num_bits),
qreg_indices=indices[name],
)
for name, num_bits in num_bits_dict.items()
]
return circuit, qargs, meas_info
def _samples_to_packed_array(
samples: NDArray[np.uint8], num_bits: int, indices: list[int]
) -> NDArray[np.uint8]:
# samples of `Statevector.sample_memory` will be in the order of
# qubit_last, ..., qubit_1, qubit_0.
# reverse the sample order into qubit_0, qubit_1, ..., qubit_last and
# pad 0 in the rightmost to be used for the sentinel introduced by _preprocess_circuit.
ary = np.pad(samples[:, ::-1], ((0, 0), (0, 1)), constant_values=0)
# place samples in the order of clbit_last, ..., clbit_1, clbit_0
ary = ary[:, indices[::-1]]
# pad 0 in the left to align the number to be mod 8
# since np.packbits(bitorder='big') pads 0 to the right.
pad_size = -num_bits % 8
ary = np.pad(ary, ((0, 0), (pad_size, 0)), constant_values=0)
# pack bits in big endian order
ary = np.packbits(ary, axis=-1)
return ary
def _final_measurement_mapping(circuit: QuantumCircuit) -> dict[tuple[ClassicalRegister, int], int]:
"""Return the final measurement mapping for the circuit.
Parameters:
circuit: Input quantum circuit.
Returns:
Mapping of classical bits to qubits for final measurements.
"""
active_qubits = set(range(circuit.num_qubits))
active_cbits = set(range(circuit.num_clbits))
# Find final measurements starting in back
mapping = {}
for item in circuit[::-1]:
if item.operation.name == "measure":
loc = circuit.find_bit(item.clbits[0])
cbit = loc.index
qbit = circuit.find_bit(item.qubits[0]).index
if cbit in active_cbits and qbit in active_qubits:
for creg in loc.registers:
mapping[creg] = qbit
active_cbits.remove(cbit)
elif item.operation.name not in ["barrier", "delay"]:
for qq in item.qubits:
_temp_qubit = circuit.find_bit(qq).index
if _temp_qubit in active_qubits:
active_qubits.remove(_temp_qubit)
if not active_cbits or not active_qubits:
break
return mapping
def _has_control_flow(circuit: QuantumCircuit) -> bool:
return any(isinstance(instruction.operation, ControlFlowOp) for instruction in circuit)
|
https://github.com/quantum-tokyo/qiskit-handson
|
quantum-tokyo
|
# Qiskitライブラリーを導入
from qiskit import *
# 描画のためのライブラリーを導入
import matplotlib.pyplot as plt
%matplotlib inline
qiskit.__qiskit_version__
grover11=QuantumCircuit(2,2)
grover11.draw(output='mpl')
# 問題-1 上の回路図を作ってください。
# 正解
grover11.h([0,1]) # ← これが(一番記述が短い正解)
grover11.draw(output='mpl')
# 問題-2 上の回路図(問題-1に赤枠部分を追加したもの)を作ってください。
grover11.h(1) # 正解
grover11.cx(0,1) # 正解
grover11.h(1) # 正解
grover11.draw(output='mpl')
#問題-3 上の回路図(問題-2に赤枠部分を追加したもの)を作ってください。
grover11.i(0) # 回路の見栄えを整えるために、恒等ゲートを差し込む。無くても動くが、表示の見栄えが崩れるのを防止するために、残しておく。
grover11.h([0,1]) # ← 正解
grover11.x([0,1]) # ← 正解
grover11.h(1) # ← 正解
grover11.cx(0,1) # ← 正解
grover11.h(1) # ← 正解
grover11.i(0) # ← 正解
grover11.x([0,1]) # ← 正解
grover11.h([0,1]) # ← 正解
grover11.draw(output='mpl')
grover11.measure(0,0)
grover11.measure(1,1)
grover11.draw(output='mpl')
backend = Aer.get_backend('statevector_simulator') # 実行環境の定義
job = execute(grover11, backend) # 処理の実行
result = job.result() # 実行結果
counts = result.get_counts(grover11) # 実行結果の詳細を取り出し
print(counts)
from qiskit.visualization import *
plot_histogram(counts) # ヒストグラムで表示
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import math
from qiskit import pulse
from qiskit.providers.fake_provider import FakeOpenPulse3Q
# TODO: This example should use a real mock backend.
backend = FakeOpenPulse3Q()
d2 = pulse.DriveChannel(2)
with pulse.build(backend) as bell_prep:
pulse.u2(0, math.pi, 0)
pulse.cx(0, 1)
with pulse.build(backend) as decoupled_bell_prep_and_measure:
# We call our bell state preparation schedule constructed above.
with pulse.align_right():
pulse.call(bell_prep)
pulse.play(pulse.Constant(bell_prep.duration, 0.02), d2)
pulse.barrier(0, 1, 2)
registers = pulse.measure_all()
decoupled_bell_prep_and_measure.draw()
|
https://github.com/samabwhite/Deutsch-Jozsa-Implementation
|
samabwhite
|
import qiskit
from qiskit.visualization import plot_bloch_multivector
import numpy as np
import pylatexenc
from qiskit import QuantumCircuit, Aer, transpile, assemble
from qiskit.visualization import plot_histogram
from qiskit.providers.aer import AerSimulator
# Function to automatically instantiate the oracle circuit
def balancedOracle(circuit):
circuit.barrier()
circuit.x([0,2])
circuit.cx([0,2] , 3)
circuit.x([0,2])
circuit.barrier()
return circuit
# number of qubits
n = 3
# initialize circuit
classicalCircuit = QuantumCircuit(n+1,1)
# add not gate to output bit
classicalCircuit.x(n)
# add the oracle to the circuit
classicalCircuit = balancedOracle(classicalCircuit)
# measure the output bit after the oracle
classicalCircuit.measure(n, 0)
display(classicalCircuit.draw('mpl'))
# initialize circuit
dj_Circuit = QuantumCircuit(n+1, n)
# add not gate to the output qubit
dj_Circuit.x(n)
# add hadamard gates to all qubits
dj_Circuit.h(range(n+1))
# add the oracle to the circuit
dj_Circuit = balancedOracle(dj_Circuit)
# finish the "hadamard sandwich" by applying hadamards to the input qubits
dj_Circuit.h(range(n))
# measure the values of the input qubits
dj_Circuit.measure(range(n), range(n))
display(dj_Circuit.draw('mpl'))
# initialize circuit
phaseKickback = QuantumCircuit(2,2)
# create superposition states
phaseKickback.x(1)
phaseKickback.h(range(2))
# entangle states
phaseKickback.cx(0,1)
phaseKickback.h(range(2))
# measure
phaseKickback.measure(range(2), range(2))
display(phaseKickback.draw('mpl'))
# simulate outputs
sim = AerSimulator()
compiled = transpile(phaseKickback, sim)
job = assemble(compiled)
result = sim.run(compiled).result()
counts = result.get_counts()
print(counts)
plot_histogram(counts)
display(dj_Circuit.draw('mpl'))
# simulate algorithm circuit
compiled = transpile(dj_Circuit, sim)
job = assemble(compiled)
result = sim.run(compiled).result()
counts = result.get_counts()
print(counts)
plot_histogram(counts)
|
https://github.com/abbarreto/qiskit4
|
abbarreto
|
from qiskit import *
import numpy as np
import math
from matplotlib import pyplot as plt
import qiskit
nshots = 8192
IBMQ.load_account()
provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main')
device = provider.get_backend('ibmq_belem')
simulator = Aer.get_backend('qasm_simulator')
from qiskit.tools.monitor import job_monitor
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
#from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.visualization import plot_histogram
def qc_dqc1(ph):
qr = QuantumRegister(3)
qc = QuantumCircuit(qr, name='DQC1')
qc.h(0)
qc.h(1) # cria o estado de Bell dos qubits 1 e 2, que equivale ao estado de 1 sendo maximamente misto
qc.cx(1,2)
#qc.barrier()
qc.cp(ph, 0, 1)
return qc
ph = math.pi/2
qc_dqc1_ = qc_dqc1(ph)
qc_dqc1_.draw('mpl')
qc_dqc1_.decompose().draw('mpl')
def pTraceL_num(dl, dr, rhoLR): # Retorna traco parcial sobre L de rhoLR
rhoR = np.zeros((dr, dr), dtype=complex)
for j in range(0, dr):
for k in range(j, dr):
for l in range(0, dl):
rhoR[j,k] += rhoLR[l*dr+j,l*dr+k]
if j != k:
rhoR[k,j] = np.conj(rhoR[j,k])
return rhoR
def pTraceR_num(dl, dr, rhoLR): # Retorna traco parcial sobre R de rhoLR
rhoL = np.zeros((dl, dl), dtype=complex)
for j in range(0, dl):
for k in range(j, dl):
for l in range(0, dr):
rhoL[j,k] += rhoLR[j*dr+l,k*dr+l]
if j != k:
rhoL[k,j] = np.conj(rhoL[j,k])
return rhoL
# simulation
phmax = 2*math.pi
dph = phmax/20
ph = np.arange(0,phmax+dph,dph)
d = len(ph);
xm = np.zeros(d)
ym = np.zeros(d)
for j in range(0,d):
qr = QuantumRegister(3)
qc = QuantumCircuit(qr)
qc_dqc1_ = qc_dqc1(ph[j])
qc.append(qc_dqc1_, [0,1,2])
qstc = state_tomography_circuits(qc, [1,0])
job = execute(qstc, backend=simulator, shots=nshots)
qstf = StateTomographyFitter(job.result(), qstc)
rho_01 = qstf.fit(method='lstsq')
rho_0 = pTraceR_num(2, 2, rho_01)
xm[j] = 2*rho_0[1,0].real
ym[j] = 2*rho_0[1,0].imag
qc.draw('mpl')
# experiment
phmax = 2*math.pi
dph = phmax/10
ph_exp = np.arange(0,phmax+dph,dph)
d = len(ph_exp);
xm_exp = np.zeros(d)
ym_exp = np.zeros(d)
for j in range(0,d):
qr = QuantumRegister(3)
qc = QuantumCircuit(qr)
qc_dqc1_ = qc_dqc1(ph_exp[j])
qc.append(qc_dqc1_, [0,1,2])
qstc = state_tomography_circuits(qc, [1,0])
job = execute(qstc, backend=device, shots=nshots)
print(job.job_id())
job_monitor(job)
qstf = StateTomographyFitter(job.result(), qstc)
rho_01 = qstf.fit(method='lstsq')
rho_0 = pTraceR_num(2, 2, rho_01)
xm_exp[j] = 2*rho_0[1,0].real
ym_exp[j] = 2*rho_0[1,0].imag
plt.plot(ph, xm, label = r'$\langle X\rangle_{sim}$')#, marker='*')
plt.plot(ph, ym, label = r'$\langle Y\rangle_{sim}$')#, marker='o')
plt.scatter(ph_exp, xm_exp, label = r'$\langle X\rangle_{exp}$', marker='*', color='r')
plt.scatter(ph_exp, ym_exp, label = r'$\langle Y\rangle_{exp}$', marker='o', color='g')
plt.legend(bbox_to_anchor=(1, 1))#,loc='center right')
#plt.xlim(0,2*math.pi)
#plt.ylim(-1,1)
plt.xlabel(r'$\phi$')
plt.show()
|
https://github.com/chriszapri/qiskitDemo
|
chriszapri
|
from qiskit import QuantumCircuit, assemble, Aer # Qiskit features imported
from qiskit.visualization import plot_bloch_multivector, plot_histogram # For visualization
from qiskit.quantum_info import Statevector # Intermediary statevector saving
import numpy as np # Numpy math library
sim = Aer.get_backend('aer_simulator') # Simulation that this notebook relies on
### For real quantum computer backend, replace Aer.get_backend with backend object of choice
# Widgets for value sliders
import ipywidgets as widgets
from IPython.display import display
# Value sliders
theta = widgets.FloatSlider(
value=0,
min=0,
max=180,
step=0.5,
description='θ',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
)
phi = widgets.FloatSlider(
value=0,
min=0,
max=360,
step=0.5,
description='φ',
disabled=False,
continuous_update=False,
orientation='horizontal',
readout=True,
readout_format='.1f',
)
display(theta) # Zenith angle in degrees
display(phi) # Azimuthal angle in degrees
## Careful! These act as zenith and azimuthal only when applied to |0> statevector in rx(theta), rz(phi) order
qc = QuantumCircuit(1) # 1 qubit quantum circuit, every qubits starts at |0>
qc.rx(theta.value/180.0*np.pi,0) # Rotation about Bloch vector x-axis
qc.rz(phi.value/180.0*np.pi,0) # Rotation about Bloch vector y-axis
qc.save_statevector() # Get final statevector after measurement
qc.measure_all() # Measurement: collapses the statevector to either |0> or |1>
qobj = assemble(qc) # Quantum circuit saved to an object
interStateV = sim.run(qobj).result().get_statevector()
finalStates = sim.run(qobj).result().get_counts()
qc.draw()
plot_bloch_multivector(interStateV) # Plot intermediary statevector after two gates on Bloch sphere
plot_histogram(finalStates) # Probability of |0> or |1> from measuring above statevector
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Randomized tests of quantum synthesis."""
import unittest
from test.python.quantum_info.test_synthesis import CheckDecompositions
from hypothesis import given, strategies, settings
import numpy as np
from qiskit import execute
from qiskit.circuit import QuantumCircuit, QuantumRegister
from qiskit.extensions import UnitaryGate
from qiskit.providers.basicaer import UnitarySimulatorPy
from qiskit.quantum_info.random import random_unitary
from qiskit.quantum_info.synthesis.two_qubit_decompose import (
two_qubit_cnot_decompose,
TwoQubitBasisDecomposer,
Ud,
)
class TestSynthesis(CheckDecompositions):
"""Test synthesis"""
seed = strategies.integers(min_value=0, max_value=2**32 - 1)
rotation = strategies.floats(min_value=-np.pi * 10, max_value=np.pi * 10)
@given(seed)
def test_1q_random(self, seed):
"""Checks one qubit decompositions"""
unitary = random_unitary(2, seed=seed)
self.check_one_qubit_euler_angles(unitary)
self.check_one_qubit_euler_angles(unitary, "U3")
self.check_one_qubit_euler_angles(unitary, "U1X")
self.check_one_qubit_euler_angles(unitary, "PSX")
self.check_one_qubit_euler_angles(unitary, "ZSX")
self.check_one_qubit_euler_angles(unitary, "ZYZ")
self.check_one_qubit_euler_angles(unitary, "ZXZ")
self.check_one_qubit_euler_angles(unitary, "XYX")
self.check_one_qubit_euler_angles(unitary, "RR")
@settings(deadline=None)
@given(seed)
def test_2q_random(self, seed):
"""Checks two qubit decompositions"""
unitary = random_unitary(4, seed=seed)
self.check_exact_decomposition(unitary.data, two_qubit_cnot_decompose)
@given(strategies.tuples(*[seed] * 5))
def test_exact_supercontrolled_decompose_random(self, seeds):
"""Exact decomposition for random supercontrolled basis and random target"""
k1 = np.kron(random_unitary(2, seed=seeds[0]).data, random_unitary(2, seed=seeds[1]).data)
k2 = np.kron(random_unitary(2, seed=seeds[2]).data, random_unitary(2, seed=seeds[3]).data)
basis_unitary = k1 @ Ud(np.pi / 4, 0, 0) @ k2
decomposer = TwoQubitBasisDecomposer(UnitaryGate(basis_unitary))
self.check_exact_decomposition(random_unitary(4, seed=seeds[4]).data, decomposer)
@given(strategies.tuples(*[rotation] * 6), seed)
def test_cx_equivalence_0cx_random(self, rnd, seed):
"""Check random circuits with 0 cx gates locally equivalent to identity."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 0)
@given(strategies.tuples(*[rotation] * 12), seed)
def test_cx_equivalence_1cx_random(self, rnd, seed):
"""Check random circuits with 1 cx gates locally equivalent to a cx."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 1)
@given(strategies.tuples(*[rotation] * 18), seed)
def test_cx_equivalence_2cx_random(self, rnd, seed):
"""Check random circuits with 2 cx gates locally equivalent to some circuit with 2 cx."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 2)
@given(strategies.tuples(*[rotation] * 24), seed)
def test_cx_equivalence_3cx_random(self, rnd, seed):
"""Check random circuits with 3 cx gates are outside the 0, 1, and 2 qubit regions."""
qr = QuantumRegister(2, name="q")
qc = QuantumCircuit(qr)
qc.u(rnd[0], rnd[1], rnd[2], qr[0])
qc.u(rnd[3], rnd[4], rnd[5], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[6], rnd[7], rnd[8], qr[0])
qc.u(rnd[9], rnd[10], rnd[11], qr[1])
qc.cx(qr[0], qr[1])
qc.u(rnd[12], rnd[13], rnd[14], qr[0])
qc.u(rnd[15], rnd[16], rnd[17], qr[1])
qc.cx(qr[1], qr[0])
qc.u(rnd[18], rnd[19], rnd[20], qr[0])
qc.u(rnd[21], rnd[22], rnd[23], qr[1])
sim = UnitarySimulatorPy()
unitary = execute(qc, sim, seed_simulator=seed).result().get_unitary()
self.assertEqual(two_qubit_cnot_decompose.num_basis_gates(unitary), 3)
if __name__ == "__main__":
unittest.main()
|
https://github.com/Qottmann/Quantum-anomaly-detection
|
Qottmann
|
"""A quantum auto-encoder (QAE)."""
from typing import Union, Optional, List, Tuple, Callable, Any
import numpy as np
from qiskit import *
from qiskit.circuit.quantumcircuit import QuantumCircuit
from qiskit.circuit.library import TwoLocal
from qiskit.circuit.library.standard_gates import RYGate, CZGate
from qiskit.circuit.gate import Gate
from qiskit.algorithms.optimizers import Optimizer, SPSA
from qiskit.utils import algorithm_globals
from qiskit.providers import BaseBackend, Backend
class QAEAnsatz(TwoLocal):
def __init__(
self,
num_qubits: int,
num_trash_qubits: int,
trash_qubits_idxs: Union[np.ndarray, List] = [1, 2], # TODO
measure_trash: bool = False,
rotation_blocks: Gate = RYGate,
entanglement_blocks: Gate = CZGate,
parameter_prefix: str = 'θ',
insert_barriers: bool = False,
initial_state: Optional[Any] = None,
) -> None:
"""Create a new QAE circuit.
Args:
num_qubits: The number of qubits of the QAE circuit.
num_trash_qubits: The number of trash qubits that should be measured in the end.
trash_qubits_idxs: The explicit indices of the trash qubits, i.e., where the trash
qubits should be placed.
measure_trash: If True, the trash qubits will be measured at the end. If False, no
measurement takes place.
rotation_blocks: The blocks used in the rotation layers. If multiple are passed,
these will be applied one after another (like new sub-layers).
entanglement_blocks: The blocks used in the entanglement layers. If multiple are passed,
these will be applied one after another.
parameter_prefix: The prefix used if default parameters are generated.
insert_barriers: If True, barriers are inserted in between each layer. If False,
no barriers are inserted.
initial_state: A `QuantumCircuit` object which can be used to describe an initial state
prepended to the NLocal circuit.
"""
assert num_trash_qubits < num_qubits
self.num_trash_qubits = num_trash_qubits
self.trash_qubits_idxs = trash_qubits_idxs
self.measure_trash = measure_trash
entanglement = [QAEAnsatz._generate_entangler_map(
num_qubits, num_trash_qubits, i, trash_qubits_idxs) for i in range(num_trash_qubits)]
super().__init__(num_qubits=num_qubits,
rotation_blocks=rotation_blocks,
entanglement_blocks=entanglement_blocks,
entanglement=entanglement,
reps=num_trash_qubits,
skip_final_rotation_layer=True,
parameter_prefix=parameter_prefix,
insert_barriers=insert_barriers,
initial_state=initial_state)
self.add_register(ClassicalRegister(self.num_trash_qubits))
@staticmethod
def _generate_entangler_map(num_qubits: int, num_trash_qubits: int, i_permut: int = 1, trash_qubits_idxs: Union[np.ndarray, List] = [1, 2]) -> List[Tuple[int, int]]:
"""Generates entanglement map for QAE circuit
Entangling gates are only added between trash and non-trash-qubits.
Args:
num_qubits: The number of qubits of the QAE circuit.
num_trash_qubits: The number of trash qubits that should be measured in the end.
i_permut: Permutation index; increases for every layer of the circuit
trash_qubits_idxs: The explicit indices of the trash qubits, i.e., where the trash
qubits should be placed.
Returns:
entanglement map: List of pairs of qubit indices that should be entangled
"""
result = []
nums_compressed = list(range(num_qubits))
for trashqubit in trash_qubits_idxs:
nums_compressed.remove(trashqubit)
if trash_qubits_idxs == None:
nums_compressed = list(range(num_qubits))[:num_qubits-num_trash_qubits]
trash_qubits_idxs = list(range(num_qubits))[-num_trash_qubits:]
# combine all trash qubits with themselves
for i,trash_q in enumerate(trash_qubits_idxs[:-1]):
result.append((trash_qubits_idxs[i+1], trash_qubits_idxs[i]))
# combine each of the trash qubits with every n-th
# repeat the list of trash indices cyclicly
repeated = list(trash_qubits_idxs) * (num_qubits-num_trash_qubits)
for i in range(num_qubits-num_trash_qubits):
result.append((repeated[i_permut + i], nums_compressed[i]))
return result
def _build(self) -> None:
"""Build the circuit."""
if self._data:
return
_ = self._check_configuration()
self._data = []
if self.num_qubits == 0:
return
# use the initial state circuit if it is not None
if self._initial_state:
circuit = self._initial_state.construct_circuit('circuit', register=self.qregs[0])
self.compose(circuit, inplace=True)
param_iter = iter(self.ordered_parameters)
# build the prepended layers
self._build_additional_layers('prepended')
# main loop to build the entanglement and rotation layers
for i in range(self.reps):
# insert barrier if specified and there is a preceding layer
if self._insert_barriers and (i > 0 or len(self._prepended_blocks) > 0):
self.barrier()
# build the rotation layer
self._build_rotation_layer(param_iter, i)
# barrier in between rotation and entanglement layer
if self._insert_barriers and len(self._rotation_blocks) > 0:
self.barrier()
# build the entanglement layer
self._build_entanglement_layer(param_iter, i)
# add the final rotation layer
if self.insert_barriers and self.reps > 0:
self.barrier()
for j, block in enumerate(self.rotation_blocks):
# create a new layer
layer = QuantumCircuit(*self.qregs)
block_indices = [[i] for i in self.trash_qubits_idxs]
# apply the operations in the layer
for indices in block_indices:
parameterized_block = self._parameterize_block(block, param_iter, i, j, indices)
layer.compose(parameterized_block, indices, inplace=True)
# add the layer to the circuit
self.compose(layer, inplace=True)
# add the appended layers
self._build_additional_layers('appended')
# measure trash qubits if set
if self.measure_trash:
for i, j in enumerate(self.trash_qubits_idxs):
self.measure(self.qregs[0][j], self.cregs[0][i])
@property
def num_parameters_settable(self) -> int:
"""The number of total parameters that can be set to distinct values.
Returns:
The number of parameters originally available in the circuit.
"""
return super().num_parameters_settable + self.num_trash_qubits
def hamming_distance(out) -> int:
"""Computes the Hamming distance of a measurement outcome to the
all zero state. For example: A single measurement outcome 101 would
have a Hamming distance of 2.
Args:
out: The measurement outcomes; a dictionary containing all possible measurement strings
as keys and their occurences as values.
Returns:
Hamming distance
"""
return sum(key.count('1') * value for key, value in out.items())
class QAE:
def __init__(
self,
num_qubits: int,
num_trash_qubits: int,
ansatz: Optional[QuantumCircuit] = None,
initial_params: Optional[Union[np.ndarray, List]] = None,
optimizer: Optional[Optimizer] = None,
shots: int = 1000,
num_epochs: int = 100,
save_training_curve: Optional[bool] = False,
seed: int = 123,
backend: Union[BaseBackend, Backend] = Aer.get_backend('qasm_simulator')
) -> None:
"""Quantum auto-encoder.
Args:
num_qubits: The number of qubits of the QAE circuit.
num_trash_qubits: The number of trash qubits that should be measured in the end.
ansatz: A parameterized quantum circuit ansatz to be optimized.
initial_params: The initial list of parameters for the circuit ansatz
optimizer: The optimizer used for training (default is SPSA)
shots: The number of measurement shots when training and evaluating the QAE.
num_epochs: The number of training iterations/epochs.
save_training_curve: If True, the cost after each optimizer step is computed and stored.
seed: Random number seed.
backend: The backend on which the QAE is performed.
"""
algorithm_globals.random_seed = seed
np.random.seed(seed)
self.costs = []
if save_training_curve:
callback = self._store_intermediate_result
else:
callback = None
if optimizer:
self.optimizer = optimizer
else:
self.optimizer = SPSA(num_epochs, callback=callback)
self.backend = backend
if ansatz:
self.ansatz = ansatz
else:
self.ansatz = QAEAnsatz(num_qubits, num_trash_qubits, measure_trash=True)
if initial_params:
self.initial_params = initial_params
else:
self.initial_params = np.random.uniform(0, 2*np.pi, self.ansatz.num_parameters_settable)
self.shots = shots
self.save_training_curve = save_training_curve
def run(self, input_state: Optional[Any] = None, params: Optional[Union[np.ndarray, List]] = None):
"""Execute ansatz circuit and measure trash qubits
Args:
input_state: If provided, circuit is initialized accordingly
params: If provided, list of optimization parameters for circuit
Returns:
measurement outcomes
"""
if params is None:
params = self.initial_params
if input_state is not None:
if type(input_state) == QuantumCircuit:
circ = input_state
elif type(input_state) == list or type(input_state) == np.ndarray:
circ = QuantumCircuit(self.ansatz.num_qubits, self.ansatz.num_trash_qubits)
circ.initialize(input_state)
else:
raise TypeError("input_state has to be an array or a QuantumCircuit.")
circ = circ.compose(self.ansatz)
else:
circ = self.ansatz
circ = circ.assign_parameters(params)
job_sim = execute(circ, self.backend, shots=self.shots)
return job_sim.result().get_counts(circ)
def cost(self, input_state: Optional[Any] = None, params: Optional[Union[np.ndarray, List]] = None) -> float:
""" Cost function
Average Hamming distance of measurement outcomes to zero state.
Args:
input_state: If provided, circuit is initialized accordingly
params: If provided, list of optimization parameters for circuit
Returns:
Cost
"""
out = self.run(input_state, params)
cost = hamming_distance(out)
return cost/self.shots
def _store_intermediate_result(self, eval_count, parameters, mean, std, ac):
"""Callback function to save intermediate costs during training."""
self.costs.append(mean)
def train(self, input_state: Optional[Any] = None):
""" Trains the QAE using optimizer (default SPSA)
Args:
input_state: If provided, circuit is initialized accordingly
Returns:
Result of optimization: optimized parameters, cost, iterations
Training curve: Cost function evaluated after each iteration
"""
result = self.optimizer.optimize(
num_vars=len(self.initial_params),
objective_function=lambda params: self.cost(input_state, params),
initial_point=self.initial_params
)
self.initial_params = result[0]
return result, self.costs
def reset(self):
"""Resets parameters to random values"""
self.costs = []
self.initial_params = np.random.uniform(0, 2*np.pi, self.ansatz.num_parameters_settable)
if __name__ == '__main__':
num_qubits = 5
num_trash_qubits = 2
qae = QAE(num_qubits, num_trash_qubits, save_training_curve=True)
# for demonstration purposes QAE is trained on a random state
input_state = np.random.uniform(size=2**num_qubits)
input_state /= np.linalg.norm(input_state)
result, cost = qae.train(input_state)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# TODO: Remove after 0.7 and the deprecated methods are removed
# pylint: disable=unused-argument
"""
Two quantum circuit drawers based on:
0. Ascii art
1. LaTeX
2. Matplotlib
"""
import errno
import logging
import os
import subprocess
import tempfile
from PIL import Image
from qiskit import user_config
from qiskit.visualization import exceptions
from qiskit.visualization import latex as _latex
from qiskit.visualization import text as _text
from qiskit.visualization import utils
from qiskit.visualization import matplotlib as _matplotlib
logger = logging.getLogger(__name__)
def circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
output=None,
interactive=False,
line_length=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit to different formats (set by output parameter):
0. text: ASCII art TextDrawing that can be printed in the console.
1. latex: high-quality images, but heavy external software dependencies
2. matplotlib: purely in Python with no external dependencies
Args:
circuit (QuantumCircuit): the quantum circuit to draw
scale (float): scale of image to draw (shrink if < 1)
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file.
This option is only used by the `mpl`, `latex`, and `latex_source`
output types. If a str is passed in that is the path to a json
file which contains that will be open, parsed, and then used just
as the input dict.
output (str): Select the output method to use for drawing the circuit.
Valid choices are `text`, `latex`, `latex_source`, `mpl`. By
default the 'text' drawer is used unless a user config file has
an alternative backend set as the default. If the output is passed
in that backend will always be used.
interactive (bool): when set true show the circuit in a new window
(for `mpl` this depends on the matplotlib backend being used
supporting this). Note when used with either the `text` or the
`latex_source` output type this has no effect and will be silently
ignored.
line_length (int): Sets the length of the lines generated by `text`
output type. This useful when the drawing does not fit in the
console. If None (default), it will try to guess the console width
using shutil.get_terminal_size(). However, if you're running in
jupyter the default line length is set to 80 characters. If you
don't want pagination at all, set `line_length=-1`.
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (string): Options are `left`, `right` or `none`, if anything
else is supplied it defaults to left justified. It refers to where
gates should be placed in the output circuit if there is an option.
`none` results in each gate being placed in its own column. Currently
only supported by text drawer.
Returns:
PIL.Image: (output `latex`) an in-memory representation of the image
of the circuit diagram.
matplotlib.figure: (output `mpl`) a matplotlib figure object for the
circuit diagram.
String: (output `latex_source`). The LaTeX source code.
TextDrawing: (output `text`). A drawing that can be printed as ascii art
Raises:
VisualizationError: when an invalid output method is selected
ImportError: when the output methods requieres non-installed libraries.
.. _style-dict-doc:
The style dict kwarg contains numerous options that define the style of the
output circuit visualization. While the style dict is used by the `mpl`,
`latex`, and `latex_source` outputs some options in that are only used
by the `mpl` output. These options are defined below, if it is only used by
the `mpl` output it is marked as such:
textcolor (str): The color code to use for text. Defaults to
`'#000000'` (`mpl` only)
subtextcolor (str): The color code to use for subtext. Defaults to
`'#000000'` (`mpl` only)
linecolor (str): The color code to use for lines. Defaults to
`'#000000'` (`mpl` only)
creglinecolor (str): The color code to use for classical register lines
`'#778899'`(`mpl` only)
gatetextcolor (str): The color code to use for gate text `'#000000'`
(`mpl` only)
gatefacecolor (str): The color code to use for gates. Defaults to
`'#ffffff'` (`mpl` only)
barrierfacecolor (str): The color code to use for barriers. Defaults to
`'#bdbdbd'` (`mpl` only)
backgroundcolor (str): The color code to use for the background.
Defaults to `'#ffffff'` (`mpl` only)
fontsize (int): The font size to use for text. Defaults to 13 (`mpl`
only)
subfontsize (int): The font size to use for subtext. Defaults to 8
(`mpl` only)
displaytext (dict): A dictionary of the text to use for each element
type in the output visualization. The default values are:
{
'id': 'id',
'u0': 'U_0',
'u1': 'U_1',
'u2': 'U_2',
'u3': 'U_3',
'x': 'X',
'y': 'Y',
'z': 'Z',
'h': 'H',
's': 'S',
'sdg': 'S^\\dagger',
't': 'T',
'tdg': 'T^\\dagger',
'rx': 'R_x',
'ry': 'R_y',
'rz': 'R_z',
'reset': '\\left|0\\right\\rangle'
}
You must specify all the necessary values if using this. There is
no provision for passing an incomplete dict in. (`mpl` only)
displaycolor (dict): The color codes to use for each circuit element.
By default all values default to the value of `gatefacecolor` and
the keys are the same as `displaytext`. Also, just like
`displaytext` there is no provision for an incomplete dict passed
in. (`mpl` only)
latexdrawerstyle (bool): When set to True enable latex mode which will
draw gates like the `latex` output modes. (`mpl` only)
usepiformat (bool): When set to True use radians for output (`mpl`
only)
fold (int): The number of circuit elements to fold the circuit at.
Defaults to 20 (`mpl` only)
cregbundle (bool): If set True bundle classical registers (`mpl` only)
showindex (bool): If set True draw an index. (`mpl` only)
compress (bool): If set True draw a compressed circuit (`mpl` only)
figwidth (int): The maximum width (in inches) for the output figure.
(`mpl` only)
dpi (int): The DPI to use for the output image. Defaults to 150 (`mpl`
only)
margin (list): `mpl` only
creglinestyle (str): The style of line to use for classical registers.
Choices are `'solid'`, `'doublet'`, or any valid matplotlib
`linestyle` kwarg value. Defaults to `doublet`(`mpl` only)
"""
image = None
config = user_config.get_config()
# Get default from config file else use text
default_output = 'text'
if config:
default_output = config.get('circuit_drawer', 'text')
if output is None:
output = default_output
if output == 'text':
return _text_circuit_drawer(circuit, filename=filename,
line_length=line_length,
reverse_bits=reverse_bits,
plotbarriers=plot_barriers,
justify=justify)
elif output == 'latex':
image = _latex_circuit_drawer(circuit, scale=scale,
filename=filename, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
elif output == 'latex_source':
return _generate_latex_source(circuit,
filename=filename, scale=scale,
style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
elif output == 'mpl':
image = _matplotlib_circuit_drawer(circuit, scale=scale,
filename=filename, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits,
justify=justify)
else:
raise exceptions.VisualizationError(
'Invalid output type %s selected. The only valid choices '
'are latex, latex_source, text, and mpl' % output)
if image and interactive:
image.show()
return image
# -----------------------------------------------------------------------------
# Plot style sheet option
# -----------------------------------------------------------------------------
def qx_color_scheme():
"""Return default style for matplotlib_circuit_drawer (IBM QX style)."""
return {
"comment": "Style file for matplotlib_circuit_drawer (IBM QX Composer style)",
"textcolor": "#000000",
"gatetextcolor": "#000000",
"subtextcolor": "#000000",
"linecolor": "#000000",
"creglinecolor": "#b9b9b9",
"gatefacecolor": "#ffffff",
"barrierfacecolor": "#bdbdbd",
"backgroundcolor": "#ffffff",
"fold": 20,
"fontsize": 13,
"subfontsize": 8,
"figwidth": -1,
"dpi": 150,
"displaytext": {
"id": "id",
"u0": "U_0",
"u1": "U_1",
"u2": "U_2",
"u3": "U_3",
"x": "X",
"y": "Y",
"z": "Z",
"h": "H",
"s": "S",
"sdg": "S^\\dagger",
"t": "T",
"tdg": "T^\\dagger",
"rx": "R_x",
"ry": "R_y",
"rz": "R_z",
"reset": "\\left|0\\right\\rangle"
},
"displaycolor": {
"id": "#ffca64",
"u0": "#f69458",
"u1": "#f69458",
"u2": "#f69458",
"u3": "#f69458",
"x": "#a6ce38",
"y": "#a6ce38",
"z": "#a6ce38",
"h": "#00bff2",
"s": "#00bff2",
"sdg": "#00bff2",
"t": "#ff6666",
"tdg": "#ff6666",
"rx": "#ffca64",
"ry": "#ffca64",
"rz": "#ffca64",
"reset": "#d7ddda",
"target": "#00bff2",
"meas": "#f070aa"
},
"latexdrawerstyle": True,
"usepiformat": False,
"cregbundle": False,
"plotbarrier": False,
"showindex": False,
"compress": True,
"margin": [2.0, 0.0, 0.0, 0.3],
"creglinestyle": "solid",
"reversebits": False
}
# -----------------------------------------------------------------------------
# _text_circuit_drawer
# -----------------------------------------------------------------------------
def _text_circuit_drawer(circuit, filename=None, line_length=None, reverse_bits=False,
plotbarriers=True, justify=None, vertically_compressed=True):
"""
Draws a circuit using ascii art.
Args:
circuit (QuantumCircuit): Input circuit
filename (str): optional filename to write the result
line_length (int): Optional. Breaks the circuit drawing to this length. This
useful when the drawing does not fit in the console. If
None (default), it will try to guess the console width using
shutil.get_terminal_size(). If you don't want pagination
at all, set line_length=-1.
reverse_bits (bool): Rearrange the bits in reverse order.
plotbarriers (bool): Draws the barriers when they are there.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
vertically_compressed (bool): Default is `True`. It merges the lines so the
drawing will take less vertical room.
Returns:
TextDrawing: An instances that, when printed, draws the circuit in ascii art.
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
text_drawing = _text.TextDrawing(qregs, cregs, ops)
text_drawing.plotbarriers = plotbarriers
text_drawing.line_length = line_length
text_drawing.vertically_compressed = vertically_compressed
if filename:
text_drawing.dump(filename)
return text_drawing
# -----------------------------------------------------------------------------
# latex_circuit_drawer
# -----------------------------------------------------------------------------
def _latex_circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit based on latex (Qcircuit package)
Requires version >=2.6.0 of the qcircuit LaTeX package.
Args:
circuit (QuantumCircuit): a quantum circuit
scale (float): scaling factor
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
PIL.Image: an in-memory representation of the circuit diagram
Raises:
OSError: usually indicates that ```pdflatex``` or ```pdftocairo``` is
missing.
CalledProcessError: usually points errors during diagram creation.
"""
tmpfilename = 'circuit'
with tempfile.TemporaryDirectory() as tmpdirname:
tmppath = os.path.join(tmpdirname, tmpfilename + '.tex')
_generate_latex_source(circuit, filename=tmppath,
scale=scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits, justify=justify)
image = None
try:
subprocess.run(["pdflatex", "-halt-on-error",
"-output-directory={}".format(tmpdirname),
"{}".format(tmpfilename + '.tex')],
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL,
check=True)
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to compile latex. '
'Is `pdflatex` installed? '
'Skipping latex circuit drawing...')
raise
except subprocess.CalledProcessError as ex:
with open('latex_error.log', 'wb') as error_file:
error_file.write(ex.stdout)
logger.warning('WARNING Unable to compile latex. '
'The output from the pdflatex command can '
'be found in latex_error.log')
raise
else:
try:
base = os.path.join(tmpdirname, tmpfilename)
subprocess.run(["pdftocairo", "-singlefile", "-png", "-q",
base + '.pdf', base])
image = Image.open(base + '.png')
image = utils._trim(image)
os.remove(base + '.png')
if filename:
image.save(filename, 'PNG')
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to convert pdf to image. '
'Is `poppler` installed? '
'Skipping circuit drawing...')
raise
return image
def _generate_latex_source(circuit, filename=None,
scale=0.7, style=None, reverse_bits=False,
plot_barriers=True, justify=None):
"""Convert QuantumCircuit to LaTeX string.
Args:
circuit (QuantumCircuit): input circuit
scale (float): image scaling
filename (str): optional filename to write latex
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
str: Latex string appropriate for writing to file.
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
qcimg = _latex.QCircuitImage(qregs, cregs, ops, scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits)
latex = qcimg.latex()
if filename:
with open(filename, 'w') as latex_file:
latex_file.write(latex)
return latex
# -----------------------------------------------------------------------------
# matplotlib_circuit_drawer
# -----------------------------------------------------------------------------
def _matplotlib_circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit based on matplotlib.
If `%matplotlib inline` is invoked in a Jupyter notebook, it visualizes a circuit inline.
We recommend `%config InlineBackend.figure_format = 'svg'` for the inline visualization.
Args:
circuit (QuantumCircuit): a quantum circuit
scale (float): scaling factor
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
matplotlib.figure: a matplotlib figure object for the circuit diagram
"""
qregs, cregs, ops = utils._get_layered_instructions(circuit,
reverse_bits=reverse_bits,
justify=justify)
qcd = _matplotlib.MatplotlibDrawer(qregs, cregs, ops, scale=scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits)
return qcd.draw(filename)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, IBMQ, execute, transpile, Aer
from qiskit.providers.aer import QasmSimulator
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.compiler import transpile
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.quantum_info import state_fidelity
# Suppress warnings
import warnings
warnings.filterwarnings('ignore')
def trotter_gate(dt):
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rz(- 2 * dt, 1)
qc.rz(dt, 0)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rx(dt, [1])
qc.rz(-dt, [0,1])
qc.rx(-dt, [0,1])
return qc.to_instruction()
qc = QuantumCircuit(2)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rz(- 2 * np.pi / 6, 1)
qc.rz(np.pi / 6, 0)
qc.h(1)
qc.cx(1,0)
qc.h(1)
qc.rx(np.pi / 6, [1])
qc.barrier()
qc.rz(-np.pi / 6, [0,1])
qc.rx(-np.pi / 6, [0,1])
qc.draw('mpl')
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 2
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
Trot_gate = trotter_gate(dt)
# YOUR TROTTERIZATION GOES HERE -- FINISH (end of example)
# The final time of the state evolution
target_time = np.pi
# Number of trotter steps
trotter_steps = 4 ### CAN BE >= 4
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
# init state |10> (= |110>)
qc.x(1) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
# Simulate time evolution under H_heis3 Hamiltonian
for _ in range(trotter_steps):
qc.append(Trot_gate, [qr[0], qr[1]])
# qc.cx(qr[3], qr[1])
# qc.cx(qr[5], qr[3])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / trotter_steps})
qc.measure(qr, cr)
t0_qc = transpile(qc, optimization_level=0, basis_gates=["sx","rz","cx"])
# t0_qc.draw("mpl")
t0_qc = t0_qc.reverse_bits()
# t0_qc.draw("mpl")
shots = 8192
reps = 1
# WE USE A NOISELESS SIMULATION HERE
backend = Aer.get_backend('qasm_simulator')
jobs = []
for _ in range(reps):
# execute
job = execute(t0_qc, backend=backend, shots=shots, optimization_level=0)
print('Job ID', job.job_id())
jobs.append(job)
counts_01 = []
counts_10 = []
for trotter_steps in range(1, 15, 1):
print("number of trotter steps: ", trotter_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(2)
cr = ClassicalRegister(2)
qc = QuantumCircuit(qr, cr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
# init state |10> (= |110>)
qc.x(1) # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
# Simulate time evolution under H_heis3 Hamiltonian
for _ in range(trotter_steps):
qc.append(Trot_gate, [qr[0], qr[1]])
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / trotter_steps})
qc.measure(qr, cr)
t0_qc = transpile(qc, optimization_level=0, basis_gates=["sx","rz","cx"])
t0_qc = t0_qc.reverse_bits()
print("circuit depth: ", t0_qc.depth())
job = execute(t0_qc, backend=backend, shots=shots, optimization_level=0)
print("pribability distribution: ", job.result().get_counts())
counts_01.append(job.result().get_counts().get("01", 0))
counts_10.append(job.result().get_counts().get("10", 0))
print()
plt.plot(range(1,15), counts_10)
plt.xlabel("trotter steps")
plt.ylabel("shot counts of 10")
plt.title("counts of |10>")
plt.plot(range(1,15), counts_01)
plt.xlabel("trotter steps")
plt.ylabel("shot counts of 01")
plt.title("counts of |01>")
|
https://github.com/Z-928/Bugs4Q
|
Z-928
|
from qiskit import Aer, QuantumCircuit, transpile
from qiskit.circuit.library import PhaseEstimation
qc= QuantumCircuit(3,3)
# dummy unitary circuit
unitary_circuit = QuantumCircuit(1)
unitary_circuit.h(0)
# QPE
qc.append(PhaseEstimation(2, unitary_circuit), list(range(3)))
qc.measure(list(range(3)), list(range(3)))
backend = Aer.get_backend('qasm_simulator')
qc_transpiled = transpile(qc, backend)
result = backend.run(qc, shots = 8192).result()
|
https://github.com/quantumjim/qreative
|
quantumjim
|
import sys
sys.path.append('../')
import CreativeQiskit
rng = CreativeQiskit.qrng()
for _ in range(5):
print( rng.rand_int() )
for _ in range(5):
print( rng.rand() )
rng = CreativeQiskit.qrng(noise_only=True)
for _ in range(5):
print( rng.rand() )
rng = CreativeQiskit.qrng(noise_only=True,noisy=True)
for _ in range(5):
print( rng.rand() )
rng = CreativeQiskit.qrng(noise_only=True,noisy=0.2)
for _ in range(5):
print( rng.rand() )
|
https://github.com/mentesniker/Quantum-error-mitigation
|
mentesniker
|
from qiskit import QuantumCircuit, QuantumRegister, Aer, execute, ClassicalRegister
from qiskit.ignis.verification.topological_codes import RepetitionCode
from qiskit.ignis.verification.topological_codes import lookuptable_decoding
from qiskit.ignis.verification.topological_codes import GraphDecoder
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error
from qiskit.ignis.mitigation.measurement import (complete_meas_cal,CompleteMeasFitter)
from qiskit.visualization import plot_histogram
backend = Aer.get_backend('qasm_simulator')
#These two functions were taken from https://stackoverflow.com/questions/10237926/convert-string-to-list-of-bits-and-viceversa
def tobits(s):
result = []
for c in s:
bits = bin(ord(c))[2:]
bits = '00000000'[len(bits):] + bits
result.extend([int(b) for b in bits])
return ''.join([str(x) for x in result])
def frombits(bits):
chars = []
for b in range(int(len(bits) / 8)):
byte = bits[b*8:(b+1)*8]
chars.append(chr(int(''.join([str(bit) for bit in byte]), 2)))
return ''.join(chars)
def get_noise(p):
error_meas = pauli_error([('X',p), ('I', 1 - p)])
noise_model = NoiseModel()
noise_model.add_all_qubit_quantum_error(error_meas, "measure")
return noise_model
def codificate(bitString):
qubits = list()
for i in range(len(bitString)):
mycircuit = QuantumCircuit(1,1)
if(bitString[i] == "1"):
mycircuit.x(0)
qubits.append(mycircuit)
return qubits
def count(array):
numZero = 0
numOne = 0
for i in array:
if i == "0":
numZero += 1
elif i == "1":
numOne += 1
return dict({"0":numZero, "1":numOne})
m0 = tobits("I like dogs")
qubits = codificate(m0)
measurements = list()
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
result = execute(qubit, backend, shots=1, memory=True).result()
measurements.append(int(result.get_memory()[0]))
print(frombits(measurements))
m0 = tobits("I like dogs")
qubits = codificate(m0)
measurements = list()
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
result = execute(qubit, backend, shots=1, memory=True, noise_model=get_noise(0.2)).result()
measurements.append(int(result.get_memory()[0]))
print(frombits(measurements))
for state in ['0','1']:
qc = QuantumCircuit(1,1)
if state[0]=='1':
qc.x(0)
qc.measure(qc.qregs[0],qc.cregs[0])
print(state+' becomes',
execute(qc, Aer.get_backend('qasm_simulator'),noise_model=get_noise(0.2),shots=1000).result().get_counts())
qubit = qubits[0]
result = execute(qubit, backend, shots=1000, memory=True, noise_model=get_noise(0.2)).result()
print(result.get_counts())
import numpy as np
import scipy.linalg as la
M = [[0.389,0.611],
[0.593,0.407]]
Cnoisy = [[397],[603]]
Minv = la.inv(M)
Cmitigated = np.dot(Minv, Cnoisy)
print('C_mitigated =\n',Cmitigated)
Cmitigated = np.floor(Cmitigated)
if(Cmitigated[1][0] < 0):
Cmitigated[1][0] = 0
print('C_mitigated =\n',Cmitigated)
qr = QuantumRegister(1)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
backend = Aer.get_backend('qasm_simulator')
job = execute(meas_calibs, backend=backend, shots=1000,noise_model=get_noise(0.2))
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
print(meas_fitter.cal_matrix)
qubit = qubits[2]
qubit.measure(0,0)
results = execute(qubit, backend=backend, shots=10000, noise_model=get_noise(0.2),memory=True).result()
noisy_counts = count(results.get_memory())
print(noisy_counts)
Minv = la.inv(meas_fitter.cal_matrix)
Cmitigated = np.dot(Minv, np.array(list(noisy_counts.values())))
print('C_mitigated =\n',Cmitigated)
outputs = list()
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
results = execute(qubit, backend=backend, shots=10000, memory=True, noise_model=get_noise(0.2)).result()
noisy_counts = count(results.get_memory())
Minv = la.inv(meas_fitter.cal_matrix)
Cmitigated = np.dot(Minv, np.array(list(noisy_counts.values())))
if(Cmitigated[0] > Cmitigated[1]):
outputs.append('0')
else:
outputs.append('1')
print(frombits(''.join(outputs)))
outputs = list()
meas_filter = meas_fitter.filter
for i in range(len(qubits)):
qubit = qubits[i]
qubit.measure(0,0)
results = execute(qubit, backend=backend, shots=10000, memory=True, noise_model=get_noise(0.2)).result()
noisy_counts = count(results.get_memory())
# Results with mitigation
mitigated_counts = meas_filter.apply(noisy_counts)
if('1' not in mitigated_counts):
outputs.append('0')
elif('0' not in mitigated_counts):
outputs.append('1')
elif(mitigated_counts['0'] > mitigated_counts['1']):
outputs.append('0')
else:
outputs.append('1')
print(frombits(''.join(outputs)))
|
https://github.com/mathelatics/QGSS-2023-From-Theory-to-Implementations
|
mathelatics
|
import numpy as np
from qiskit import BasicAer
from qiskit.transpiler import PassManager
from qiskit.aqua import QuantumInstance
from qiskit.aqua.operators import MatrixOperator, op_converter
from qiskit.aqua.algorithms import EOH
from qiskit.aqua.components.initial_states import Custom
num_qubits = 2
temp = np.random.random((2 ** num_qubits, 2 ** num_qubits))
qubit_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T))
temp = np.random.random((2 ** num_qubits, 2 ** num_qubits))
evo_op = op_converter.to_weighted_pauli_operator(MatrixOperator(matrix=temp + temp.T))
evo_time = 1
num_time_slices = 1
state_in = Custom(qubit_op.num_qubits, state='uniform')
eoh = EOH(qubit_op, state_in, evo_op, evo_time=evo_time, num_time_slices=num_time_slices)
backend = BasicAer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend)
ret = eoh.run(quantum_instance)
print('The result is\n{}'.format(ret))
|
https://github.com/GiacomoFrn/QuantumTeleportation
|
GiacomoFrn
|
import cirq
import numpy as np
from qiskit import QuantumCircuit, execute, Aer
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (15,10)
q0, q1, q2 = [cirq.LineQubit(i) for i in range(3)]
circuit = cirq.Circuit()
#entagling the 2 quibits in different laboratories
#and preparing the qubit to send
circuit.append(cirq.H(q0))
circuit.append(cirq.H(q1))
circuit.append(cirq.CNOT(q1, q2))
#entangling the qubit we want to send to the one in the first laboratory
circuit.append(cirq.CNOT(q0, q1))
circuit.append(cirq.H(q0))
#measurements
circuit.append(cirq.measure(q0, q1))
#last transformations to obtain the qubit information
circuit.append(cirq.CNOT(q1, q2))
circuit.append(cirq.CZ(q0, q2))
#measure of the qubit in the receiving laboratory along z axis
circuit.append(cirq.measure(q2, key = 'Z'))
circuit
#starting simulation
sim = cirq.Simulator()
results = sim.run(circuit, repetitions=100)
sns.histplot(results.measurements['Z'], discrete = True)
100 - np.count_nonzero(results.measurements['Z']), np.count_nonzero(results.measurements['Z'])
#in qiskit the qubits are integrated in the circuit
qc = QuantumCircuit(3, 1)
#entangling
qc.h(0)
qc.h(1)
qc.cx(1, 2)
qc.cx(0, 1)
#setting for measurment
qc.h(0)
qc.measure([0,1], [0,0])
#transformation to obtain qubit sent
qc.cx(1, 2)
qc.cz(0, 2)
qc.measure(2, 0)
print(qc)
#simulation
simulator = Aer.get_backend('qasm_simulator')
job = execute(qc, simulator, shots=100)
res = job.result().get_counts(qc)
plt.bar(res.keys(), res.values())
res
|
https://github.com/qiskit-community/prototype-quantum-kernel-training
|
qiskit-community
|
# pylint: disable=protected-access
from qiskit.circuit.library import ZZFeatureMap
from qiskit.circuit import ParameterVector
# Define a (non-parameterized) feature map from the Qiskit circuit library
fm = ZZFeatureMap(2)
input_params = fm.parameters
fm.draw()
# split params into two disjoint sets
input_params = fm.parameters[::2]
training_params = fm.parameters[1::2]
print("input_params:", input_params)
print("training_params:", training_params)
# define new parameter vectors for the input and user parameters
new_input_params = ParameterVector("x", len(input_params))
new_training_params = ParameterVector("θ", len(training_params))
# resassign the origin feature map parameters
param_reassignments = {}
for i, p in enumerate(input_params):
param_reassignments[p] = new_input_params[i]
for i, p in enumerate(training_params):
param_reassignments[p] = new_training_params[i]
fm.assign_parameters(param_reassignments, inplace=True)
input_params = new_input_params
training_params = new_training_params
print("input_params:", input_params)
print("training_params:", training_params)
fm.draw()
# Define two circuits
circ1 = ZZFeatureMap(2)
circ2 = ZZFeatureMap(2)
input_params = circ1.parameters
training_params = ParameterVector("θ", 2)
# Reassign new parameters to circ2 so there are no name collisions
circ2.assign_parameters(training_params, inplace=True)
# Compose to build a parameterized feature map
fm = circ2.compose(circ1)
print("input_params:", list(input_params))
print("training_params:", training_params)
fm.draw()
#import qiskit.tools.jupyter
#
#%qiskit_version_table
#%qiskit_copyright
|
https://github.com/Spintronic6889/Introduction-of-Quantum-walk-its-application-on-search-and-decision-making
|
Spintronic6889
|
!python --version
!pip install qiskit
!pip install pylatexenc
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute, Aer
from qiskit.visualization import plot_histogram
import matplotlib.pyplot as plt
from qiskit.visualization import plot_state_city
%matplotlib inline
import matplotlib as mpl
from random import randrange
import numpy as np
import networkx as nx
import random
import math
from qiskit.tools.monitor import job_monitor
from random import randrange
pose=[]
for i in range(400):
pose.append([])
#print(pose)
#pose[-1]=1
#print(pose[-1])
pose[0]=200
for k in range(200):
rand = randrange(0,2)
if rand==0:
#print(rand)
pose[k+1]=pose[k]+1
if rand==1:
pose[k+1]=pose[k]-1
#print(pose)
yc=[]
for e in range(400):
yc.append([])
for q in range(400):
yc[q]=0
for h in range(400):
if pose[h]==q:
yc[q]=yc[q]+1
#print((yc))
#print(len(yc))
xc = np.arange(0, 400, 1)
plt.plot(yc)
plt.xlim(150, 250)
class quantom_walk:
def __init__(self):
self.__n=2
self.__steps=1
self.__theta=0
self.__phi=0
self.__qtype=1
self.__shot=5000
def main_qw(self,n,steps,qtype,theta,phi):
self.__qpos = QuantumRegister(n,'qpos')
self.__qcoin = QuantumRegister(1,'qcoin')
self.__cpos = ClassicalRegister(n,'cr')
self.__QC = QuantumCircuit(self.__qpos, self.__qcoin)
if qtype==2: self.__QC.x(self.__qcoin[0])
if qtype==3: self.__QC.u(theta, phi, 0, self.__qcoin[0])
for i in range(steps):
self.__QC.h(self.__qcoin[0])
self.__QC.barrier()
for i in range(n):
self.__QC.mct([self.__qcoin[0]]+self.__qpos[i+1:], self.__qpos[i], None, mode='noancilla')
self.__QC.barrier()
self.__QC.x(self.__qcoin[0])
for i in range(n):
if i+1 < n: self.__QC.x(self.__qpos[i+1:])
self.__QC.mct([self.__qcoin[0]]+self.__qpos[i+1:], self.__qpos[i], None, mode='noancilla')
if i+1 < n: self.__QC.x(self.__qpos[i+1:])
self.__QC.barrier()
a=n/2
p=math.floor(a)
for k in range(n):
if(k<p):
self.__QC.swap(self.__qpos[n-1-k],self.__qpos[k])
def displayh(self):
display(self.__QC.draw(output="mpl"))
def histagramh(self,shot):
self.__QC.measure_all()
job = execute(self.__QC,Aer.get_backend('aer_simulator'),shots=5000)
counts = job.result().get_counts(self.__QC)
return counts
def spacevectorh(self):
backend = Aer.get_backend('statevector_simulator')
job = execute(self.__QC, backend)
result = job.result()
outputstate = result.get_statevector(self.__QC, decimals=3)
print(outputstate)
def plotcityh(self):
backend = Aer.get_backend('statevector_simulator')
job = execute(self.__QC, backend)
result = job.result()
outputstate = result.get_statevector(self.__QC, decimals=3)
from qiskit.visualization import plot_state_city
plot_state_city(outputstate)
return outputstate
def unitaryh(self):
backend = Aer.get_backend('unitary_simulator')
job = execute(self.__QC, backend)
result = job.result()
yy=result.get_unitary(self.__QC, decimals=3)
print(yy)
def IBMQh(self):
from qiskit import IBMQ
IBMQ.save_account('d1441affe8622903745ae099f50bce72c21036f85b14600d18195c977b9efcdee621dd4a981b92d8028c03c4dc1860c82d70f501d345023471402f4f8dad0181',overwrite=True)
provider = IBMQ.load_account()
device = provider.get_backend('ibmq_quito') #we use ibmq_16_melbourne quantum device
job = execute(self.__QC, backend = device) #we pass our circuit and backend as usual
from qiskit.tools.monitor import job_monitor
job_monitor(job) #to see our status in queue
result = job.result()
counts= result.get_counts(self.__QC)
return counts
def instructionset(self):
print(self.__QC.qasm())
qw = quantom_walk()
qw.main_qw(4,4,1,1.5,4)
#qw.instructionset()
#qw.displayh()
#plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
#qw.histagramh(3000)
#qw.spacevectorh()
#qw.unitaryh()
#qw.plotcityh()
#plot_state_city(qw.plotcityh(), figsize=(20, 10))
#plot_histogram(qw.IBMQh(), figsize=(5, 2), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None, filename=None)
#qw.IBMQh()
qw = quantom_walk()
qw.main_qw(2,2,1,1.5,4)
qw.displayh()
qw.main_qw(6,25,1,1.5,4)
plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
qw.main_qw(3,4,1,1.5,4)
qw.spacevectorh()
qw.main_qw(3,15,1,1.5,4)
plot_state_city(qw.plotcityh(), figsize=(20, 10))
qw.main_qw(2,3,1,1.5,4)
qw.unitaryh()
qw.main_qw(3,2,1,1.5,4)
qw.instructionset()
qw.main_qw(2,1,1,1.5,4)
plot_histogram(qw.IBMQh(), figsize=(5, 2), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None, filename=None)
#hadamrad...qtype=1
qw = quantom_walk()
qw.main_qw(3,32,1,0,0)
plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
#optimized ugate applied...qtype=3
qw = quantom_walk()
qw.main_qw(3,32,3,1.57,1.57)
plot_histogram(qw.histagramh(3000), figsize=(20, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None, ax=None)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import numpy as np
import copy
# Problem modelling imports
from docplex.mp.model import Model
# Qiskit imports
from qiskit.algorithms.minimum_eigensolvers import QAOA, NumPyMinimumEigensolver
from qiskit.algorithms.optimizers import COBYLA
from qiskit.primitives import Sampler
from qiskit.utils.algorithm_globals import algorithm_globals
from qiskit_optimization.algorithms import MinimumEigenOptimizer, CplexOptimizer
from qiskit_optimization import QuadraticProgram
from qiskit_optimization.problems.variable import VarType
from qiskit_optimization.converters.quadratic_program_to_qubo import QuadraticProgramToQubo
from qiskit_optimization.translators import from_docplex_mp
def create_problem(mu: np.array, sigma: np.array, total: int = 3) -> QuadraticProgram:
"""Solve the quadratic program using docplex."""
mdl = Model()
x = [mdl.binary_var("x%s" % i) for i in range(len(sigma))]
objective = mdl.sum([mu[i] * x[i] for i in range(len(mu))])
objective -= 2 * mdl.sum(
[sigma[i, j] * x[i] * x[j] for i in range(len(mu)) for j in range(len(mu))]
)
mdl.maximize(objective)
cost = mdl.sum(x)
mdl.add_constraint(cost == total)
qp = from_docplex_mp(mdl)
return qp
def relax_problem(problem) -> QuadraticProgram:
"""Change all variables to continuous."""
relaxed_problem = copy.deepcopy(problem)
for variable in relaxed_problem.variables:
variable.vartype = VarType.CONTINUOUS
return relaxed_problem
mu = np.array([3.418, 2.0913, 6.2415, 4.4436, 10.892, 3.4051])
sigma = np.array(
[
[1.07978412, 0.00768914, 0.11227606, -0.06842969, -0.01016793, -0.00839765],
[0.00768914, 0.10922887, -0.03043424, -0.0020045, 0.00670929, 0.0147937],
[0.11227606, -0.03043424, 0.985353, 0.02307313, -0.05249785, 0.00904119],
[-0.06842969, -0.0020045, 0.02307313, 0.6043817, 0.03740115, -0.00945322],
[-0.01016793, 0.00670929, -0.05249785, 0.03740115, 0.79839634, 0.07616951],
[-0.00839765, 0.0147937, 0.00904119, -0.00945322, 0.07616951, 1.08464544],
]
)
qubo = create_problem(mu, sigma)
print(qubo.prettyprint())
result = CplexOptimizer().solve(qubo)
print(result.prettyprint())
qp = relax_problem(QuadraticProgramToQubo().convert(qubo))
print(qp.prettyprint())
sol = CplexOptimizer().solve(qp)
print(sol.prettyprint())
c_stars = sol.samples[0].x
print(c_stars)
algorithm_globals.random_seed = 12345
qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0])
exact_mes = NumPyMinimumEigensolver()
qaoa = MinimumEigenOptimizer(qaoa_mes)
qaoa_result = qaoa.solve(qubo)
print(qaoa_result.prettyprint())
from qiskit import QuantumCircuit
thetas = [2 * np.arcsin(np.sqrt(c_star)) for c_star in c_stars]
init_qc = QuantumCircuit(len(sigma))
for idx, theta in enumerate(thetas):
init_qc.ry(theta, idx)
init_qc.draw(output="mpl")
from qiskit.circuit import Parameter
beta = Parameter("β")
ws_mixer = QuantumCircuit(len(sigma))
for idx, theta in enumerate(thetas):
ws_mixer.ry(-theta, idx)
ws_mixer.rz(-2 * beta, idx)
ws_mixer.ry(theta, idx)
ws_mixer.draw(output="mpl")
ws_qaoa_mes = QAOA(
sampler=Sampler(),
optimizer=COBYLA(),
initial_state=init_qc,
mixer=ws_mixer,
initial_point=[0.0, 1.0],
)
ws_qaoa = MinimumEigenOptimizer(ws_qaoa_mes)
ws_qaoa_result = ws_qaoa.solve(qubo)
print(ws_qaoa_result.prettyprint())
def format_qaoa_samples(samples, max_len: int = 10):
qaoa_res = []
for s in samples:
if sum(s.x) == 3:
qaoa_res.append(("".join([str(int(_)) for _ in s.x]), s.fval, s.probability))
res = sorted(qaoa_res, key=lambda x: -x[1])[0:max_len]
return [(_[0] + f": value: {_[1]:.3f}, probability: {1e2*_[2]:.1f}%") for _ in res]
format_qaoa_samples(qaoa_result.samples)
format_qaoa_samples(ws_qaoa_result.samples)
from qiskit_optimization.algorithms import WarmStartQAOAOptimizer
qaoa_mes = QAOA(sampler=Sampler(), optimizer=COBYLA(), initial_point=[0.0, 1.0])
ws_qaoa = WarmStartQAOAOptimizer(
pre_solver=CplexOptimizer(), relax_for_pre_solver=True, qaoa=qaoa_mes, epsilon=0.0
)
ws_result = ws_qaoa.solve(qubo)
print(ws_result.prettyprint())
format_qaoa_samples(ws_result.samples)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/IvanIsCoding/Quantum
|
IvanIsCoding
|
# Do the necessary imports
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import IBMQ, Aer, transpile, assemble
from qiskit.visualization import plot_histogram, plot_bloch_multivector, array_to_latex
from qiskit.extensions import Initialize
from qiskit.ignis.verification import marginal_counts
from qiskit.quantum_info import random_statevector
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
## SETUP
# Protocol uses 3 qubits and 2 classical bits in 2 different registers
qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits
crz = ClassicalRegister(1, name="crz") # and 2 classical bits
crx = ClassicalRegister(1, name="crx") # in 2 different registers
teleportation_circuit = QuantumCircuit(qr, crz, crx)
def create_bell_pair(qc, a, b):
qc.h(a)
qc.cx(a,b)
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
create_bell_pair(teleportation_circuit, 1, 2)
teleportation_circuit.draw()
def alice_gates(qc, psi, a):
qc.cx(psi, a)
qc.h(psi)
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
## STEP 1
create_bell_pair(teleportation_circuit, 1, 2)
## STEP 2
teleportation_circuit.barrier() # Use barrier to separate steps
alice_gates(teleportation_circuit, 0, 1)
teleportation_circuit.draw()
def measure_and_send(qc, a, b):
"""Measures qubits a & b and 'sends' the results to Bob"""
qc.barrier()
qc.measure(a,0)
qc.measure(b,1)
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
create_bell_pair(teleportation_circuit, 1, 2)
teleportation_circuit.barrier() # Use barrier to separate steps
alice_gates(teleportation_circuit, 0, 1)
measure_and_send(teleportation_circuit, 0 ,1)
teleportation_circuit.draw()
def bob_gates(qc, qubit, crz, crx):
qc.x(qubit).c_if(crx, 1) # Apply gates if the registers
qc.z(qubit).c_if(crz, 1) # are in the state '1'
qr = QuantumRegister(3, name="q")
crz, crx = ClassicalRegister(1, name="crz"), ClassicalRegister(1, name="crx")
teleportation_circuit = QuantumCircuit(qr, crz, crx)
## STEP 1
create_bell_pair(teleportation_circuit, 1, 2)
## STEP 2
teleportation_circuit.barrier() # Use barrier to separate steps
alice_gates(teleportation_circuit, 0, 1)
## STEP 3
measure_and_send(teleportation_circuit, 0, 1)
## STEP 4
teleportation_circuit.barrier() # Use barrier to separate steps
bob_gates(teleportation_circuit, 2, crz, crx)
teleportation_circuit.draw()
# Create random 1-qubit state
psi = random_statevector(2)
# Display it nicely
display(array_to_latex(psi, prefix="|\\psi\\rangle ="))
# Show it on a Bloch sphere
plot_bloch_multivector(psi)
init_gate = Initialize(psi)
init_gate.label = "init"
## SETUP
qr = QuantumRegister(3, name="q") # Protocol uses 3 qubits
crz = ClassicalRegister(1, name="crz") # and 2 classical registers
crx = ClassicalRegister(1, name="crx")
qc = QuantumCircuit(qr, crz, crx)
## STEP 0
# First, let's initialize Alice's q0
qc.append(init_gate, [0])
qc.barrier()
## STEP 1
# Now begins the teleportation protocol
create_bell_pair(qc, 1, 2)
qc.barrier()
## STEP 2
# Send q1 to Alice and q2 to Bob
alice_gates(qc, 0, 1)
## STEP 3
# Alice then sends her classical bits to Bob
measure_and_send(qc, 0, 1)
## STEP 4
# Bob decodes qubits
bob_gates(qc, 2, crz, crx)
# Display the circuit
qc.draw()
sim = Aer.get_backend('aer_simulator')
qc.save_statevector()
out_vector = sim.run(qc).result().get_statevector()
plot_bloch_multivector(out_vector)
|
https://github.com/anirban-m/qiskit-superstaq
|
anirban-m
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import time
from typing import Any, Dict, List
import qiskit
import requests
import qiskit_superstaq as qss
class SuperstaQJob(qiskit.providers.JobV1):
def __init__(
self,
backend: qss.superstaq_backend.SuperstaQBackend,
job_id: str,
) -> None:
# Can we stop setting qobj and access_token to None
"""Initialize a job instance.
Parameters:
backend (BaseBackend): Backend that job was executed on.
job_id (str): The unique job ID from SuperstaQ.
access_token (str): The access token.
"""
super().__init__(backend, job_id)
def __eq__(self, other: Any) -> bool:
if not (isinstance(other, SuperstaQJob)):
return False
return self._job_id == other._job_id
def _wait_for_results(self, timeout: float = None, wait: float = 5) -> List[Dict]:
result_list: List[Dict] = []
job_ids = self._job_id.split(",") # separate aggregated job_ids
header = {
"Authorization": self._backend._provider.access_token,
"SDK": "qiskit",
}
for jid in job_ids:
start_time = time.time()
result = None
while True:
elapsed = time.time() - start_time
if timeout and elapsed >= timeout:
raise qiskit.providers.JobTimeoutError(
"Timed out waiting for result"
) # pragma: no cover b/c don't want slow test or mocking time
getstr = f"{self._backend.url}/" + qss.API_VERSION + f"/job/{jid}"
result = requests.get(
getstr, headers=header, verify=(self._backend.url == qss.API_URL)
).json()
if result["status"] == "Done":
break
if result["status"] == "Error":
raise qiskit.providers.JobError("API returned error:\n" + str(result))
time.sleep(wait) # pragma: no cover b/c don't want slow test or mocking time
result_list.append(result)
return result_list
def result(self, timeout: float = None, wait: float = 5) -> qiskit.result.Result:
# Get the result data of a circuit.
results = self._wait_for_results(timeout, wait)
# create list of result dictionaries
results_list = []
for result in results:
results_list.append(
{"success": True, "shots": result["shots"], "data": {"counts": result["samples"]}}
)
return qiskit.result.Result.from_dict(
{
"results": results_list,
"qobj_id": -1,
"backend_name": self._backend._configuration.backend_name,
"backend_version": self._backend._configuration.backend_version,
"success": True,
"job_id": self._job_id,
}
)
def status(self) -> str:
"""Query for the job status."""
header = {
"Authorization": self._backend._provider.access_token,
"SDK": "qiskit",
}
job_id_list = self._job_id.split(",") # separate aggregated job ids
status = "Done"
# when we have multiple jobs, we will take the "worst status" among the jobs
# For example, if any of the jobs are still queued, we report Queued as the status
# for the entire batch.
for job_id in job_id_list:
get_url = self._backend.url + "/" + qss.API_VERSION + f"/job/{job_id}"
result = requests.get(
get_url, headers=header, verify=(self._backend.url == qss.API_URL)
)
temp_status = result.json()["status"]
if temp_status == "Queued":
status = "Queued"
break
elif temp_status == "Running":
status = "Running"
assert status in ["Queued", "Running", "Done"]
if status == "Queued":
status = qiskit.providers.jobstatus.JobStatus.QUEUED
elif status == "Running":
status = qiskit.providers.jobstatus.JobStatus.RUNNING
else:
status = qiskit.providers.jobstatus.JobStatus.DONE
return status
def submit(self) -> None:
raise NotImplementedError("Submit through SuperstaQBackend, not through SuperstaqJob")
|
https://github.com/qiskit-community/qiskit-qcgpu-provider
|
qiskit-community
|
# -*- coding: utf-8 -*-
# Copyright 2017, IBM.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
# pylint: disable=missing-docstring,redefined-builtin
import unittest
import os
from qiskit import QuantumCircuit
from .common import QiskitTestCase
from qiskit_jku_provider import QasmSimulator
from qiskit import execute
class TestQasmSimulatorJKUBasic(QiskitTestCase):
"""Runs the Basic qasm_simulator tests from Terra on JKU."""
def setUp(self):
self.seed = 88
self.backend = QasmSimulator(silent=True)
qasm_filename = os.path.join(os.path.dirname(__file__), 'qasms', 'example.qasm')
compiled_circuit = QuantumCircuit.from_qasm_file(qasm_filename)
compiled_circuit.name = 'test'
self.circuit = compiled_circuit
def test_qasm_simulator_single_shot(self):
"""Test single shot run."""
result = execute(self.circuit, self.backend, seed_transpiler=34342, shots=1).result()
self.assertEqual(result.success, True)
def test_qasm_simulator(self):
"""Test data counts output for single circuit run against reference."""
shots = 1024
result = execute(self.circuit, self.backend, seed_transpiler=34342, shots=shots).result()
threshold = 0.04 * shots
counts = result.get_counts('test')
target = {'100 100': shots / 8, '011 011': shots / 8,
'101 101': shots / 8, '111 111': shots / 8,
'000 000': shots / 8, '010 010': shots / 8,
'110 110': shots / 8, '001 001': shots / 8}
self.assertDictAlmostEqual(counts, target, threshold)
if __name__ == '__main__':
unittest.main()
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import DensityMatrix
from qiskit.visualization import plot_state_city
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
# plot using a DensityMatrix
state = DensityMatrix(qc)
plot_state_city(state)
|
https://github.com/quantumyatra/quantum_computing
|
quantumyatra
|
# importing Qiskit
from qiskit import IBMQ, BasicAer
#from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, execute
# import basic plot tools
from qiskit.visualization import plot_histogram
s='11'
n = 2*len(str(s))
ckt = QuantumCircuit(n)
barriers = True
ckt.h(range(len(str(s))))
# Apply barrier
ckt.barrier()
# Apply the query function
## 2-qubit oracle for s = 11
ckt.cx(0, len(str(s)) + 0)
ckt.cx(0, len(str(s)) + 1)
ckt.cx(1, len(str(s)) + 0)
ckt.cx(1, len(str(s)) + 1)
# Apply barrier
ckt.barrier()
# Apply Hadamard gates to the input register
ckt.h(range(len(str(s))))
# Measure ancilla qubits
ckt.measure_all()
ckt.draw(output='mpl')
|
https://github.com/microsoft/qiskit-qir
|
microsoft
|
##
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
##
from qiskit_qir.translate import to_qir_module
from qiskit import ClassicalRegister, QuantumCircuit
from qiskit.circuit import Clbit
from qiskit.circuit.exceptions import CircuitError
import pytest
import pyqir
import os
from pathlib import Path
# result_stream, condition value, expected gates
falsy_single_bit_variations = [False, 0]
truthy_single_bit_variations = [True, 1]
invalid_single_bit_varitions = [-1]
def compare_reference_ir(generated_bitcode: bytes, name: str) -> None:
module = pyqir.Module.from_bitcode(pyqir.Context(), generated_bitcode, f"{name}")
ir = str(module)
file = os.path.join(os.path.dirname(__file__), f"resources/{name}.ll")
expected = Path(file).read_text()
assert ir == expected
@pytest.mark.parametrize("value", falsy_single_bit_variations)
def test_single_clbit_variations_falsy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_clbit_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
bit: Clbit = cr[0]
circuit.measure(1, 1).c_if(bit, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_clbit_variations_falsy")
@pytest.mark.parametrize("value", truthy_single_bit_variations)
def test_single_clbit_variations_truthy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_clbit_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
bit: Clbit = cr[0]
circuit.measure(1, 1).c_if(bit, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_clbit_variations_truthy")
@pytest.mark.parametrize("value", truthy_single_bit_variations)
def test_single_register_index_variations_truthy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_index_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(0, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(
generated_bitcode, "test_single_register_index_variations_truthy"
)
@pytest.mark.parametrize("value", falsy_single_bit_variations)
def test_single_register_index_variations_falsy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_index_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(0, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(
generated_bitcode, "test_single_register_index_variations_falsy"
)
@pytest.mark.parametrize("value", truthy_single_bit_variations)
def test_single_register_variations_truthy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(cr, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_register_variations_truthy")
@pytest.mark.parametrize("value", falsy_single_bit_variations)
def test_single_register_variations_falsy(value: bool) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
circuit.measure(1, 1).c_if(cr, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, "test_single_register_variations_falsy")
@pytest.mark.parametrize("value", invalid_single_bit_varitions)
def test_single_clbit_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_clbit_invalid_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
bit: Clbit = cr[0]
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(1, 1).c_if(bit, value)
assert exc_info is not None
@pytest.mark.parametrize("value", invalid_single_bit_varitions)
def test_single_register_index_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(
2,
0,
name=f"test_single_register_index_invalid_variations",
)
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(1, 1).c_if(0, value)
assert exc_info is not None
@pytest.mark.parametrize("value", invalid_single_bit_varitions)
def test_single_register_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(2, 0, name=f"test_single_register_invalid_variations")
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
circuit.measure(0, 0)
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(1, 1).c_if(cr, value)
assert exc_info is not None
two_bit_variations = [
[False, "falsy"],
[0, "falsy"],
[True, "truthy"],
[1, "truthy"],
[2, "two"],
[3, "three"],
]
# # -1: 11
# # -2: 10
# # -3: 01
# # -4: 00
invalid_two_bit_variations = [-4, -3, -2, -1]
@pytest.mark.parametrize("matrix", two_bit_variations)
def test_two_bit_register_variations(matrix) -> None:
value, name = matrix
circuit = QuantumCircuit(
3,
0,
name=f"test_two_bit_register_variations",
)
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
cond = ClassicalRegister(1, "cond")
circuit.add_register(cond)
circuit.measure(0, 0)
circuit.measure(1, 1)
circuit.measure(2, 2).c_if(cr, value)
generated_bitcode = to_qir_module(circuit, record_output=False)[0].bitcode
compare_reference_ir(generated_bitcode, f"test_two_bit_register_variations_{name}")
@pytest.mark.parametrize("value", invalid_two_bit_variations)
def test_two_bit_register_invalid_variations(value: int) -> None:
circuit = QuantumCircuit(
3,
0,
name=f"test_two_bit_register_invalid_variations",
)
cr = ClassicalRegister(2, "creg")
circuit.add_register(cr)
cond = ClassicalRegister(1, "cond")
circuit.add_register(cond)
circuit.measure(0, 0)
circuit.measure(1, 1)
with pytest.raises(CircuitError) as exc_info:
_ = circuit.measure(2, 2).c_if(cr, value)
assert exc_info is not None
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_bloch_multivector
qc = QuantumCircuit(2)
qc.h(0)
qc.x(1)
state = Statevector(qc)
plot_bloch_multivector(state)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.quantum_info import Statevector
from qiskit.visualization import plot_state_qsphere
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
state = Statevector(qc)
plot_state_qsphere(state)
|
https://github.com/googlercolin/Qiskit-Course
|
googlercolin
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, Aer, IBMQ
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
from qiskit.providers.aer import QasmSimulator
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
import math
desired_state = [
0,
0,
0,
0,
0,
1 / math.sqrt(2),
0,
1 / math.sqrt(2)]
qc = QuantumCircuit(3)
qc.initialize(desired_state, [0,1,2])
qc.decompose().decompose().decompose().decompose().decompose().draw()
desired_state = [
1 / math.sqrt(15.25) * 1.5,
0,
1 / math.sqrt(15.25) * -2,
1 / math.sqrt(15.25) * 3]
qc = QuantumCircuit(2)
qc.initialize(desired_state, [0,1])
qc.decompose().decompose().decompose().decompose().decompose().draw()
qc = QuantumCircuit(3)
qc.ry(0, 0)
qc.ry(math.pi/4, 1)
qc.ry(math.pi/2, 2)
qc.draw()
from qiskit.circuit.library import ZZFeatureMap
circuit = ZZFeatureMap(3, reps=1, insert_barriers=True)
circuit.decompose().draw()
x = [0.1, 0.2, 0.3]
encode = circuit.bind_parameters(x)
encode.decompose().draw()
from qiskit.circuit.library import EfficientSU2
circuit = EfficientSU2(num_qubits=3, reps=1, insert_barriers=True)
circuit.decompose().draw()
x = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
encode = circuit.bind_parameters(x)
encode.decompose().draw()
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 2