t5_summarization_pretrained

This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1515
  • Rouge1: 0.1939
  • Rouge2: 0.101
  • Rougel: 0.1678
  • Rougelsum: 0.1678
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 99 2.1685 0.1945 0.1012 0.1677 0.1678 19.0
No log 2.0 198 2.1605 0.1954 0.102 0.1688 0.1688 19.0
No log 3.0 297 2.1537 0.1945 0.102 0.168 0.168 19.0
No log 4.0 396 2.1515 0.1939 0.101 0.1678 0.1678 19.0

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train bogdancazan/t5_summarization_pretrained

Evaluation results