wav2vec2-base-timit-demo-google-colab

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5452
  • Wer: 0.3296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.5557 1.0 500 1.9362 1.0072
0.867 2.01 1000 0.5197 0.5173
0.4281 3.01 1500 0.4609 0.4552
0.3002 4.02 2000 0.4066 0.4129
0.2252 5.02 2500 0.4122 0.3952
0.1857 6.02 3000 0.4650 0.3990
0.1541 7.03 3500 0.4784 0.3834
0.1372 8.03 4000 0.3875 0.3805
0.1213 9.04 4500 0.5606 0.4002
0.1043 10.04 5000 0.4713 0.3762
0.0972 11.04 5500 0.4770 0.3692
0.0876 12.05 6000 0.4755 0.3671
0.0812 13.05 6500 0.4854 0.3616
0.0705 14.06 7000 0.4380 0.3659
0.0759 15.06 7500 0.5025 0.3516
0.0709 16.06 8000 0.5310 0.3577
0.0572 17.07 8500 0.5097 0.3561
0.0572 18.07 9000 0.5150 0.3510
0.0482 19.08 9500 0.4954 0.3488
0.0703 20.08 10000 0.5279 0.3512
0.0457 21.08 10500 0.5336 0.3459
0.036 22.09 11000 0.5471 0.3440
0.0368 23.09 11500 0.5109 0.3417
0.0342 24.1 12000 0.5506 0.3415
0.0318 25.1 12500 0.5291 0.3357
0.03 26.1 13000 0.5347 0.3363
0.026 27.11 13500 0.5475 0.3318
0.0232 28.11 14000 0.5628 0.3332
0.0246 29.12 14500 0.5452 0.3296

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.12.1+cu113
  • Datasets 1.18.3
  • Tokenizers 0.12.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support