Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,446 Bytes
b7dc674 0b126bb b7dc674 5256463 b7dc674 955ec01 b7dc674 955ec01 b7dc674 5256463 3e13a41 5256463 b7dc674 0b126bb b7dc674 0b126bb b7dc674 0b126bb b7dc674 0b126bb b7dc674 0b126bb b7dc674 3e13a41 b7dc674 c4a6e67 b7dc674 e26ff6e fb1b610 b7dc674 0b126bb b7dc674 5256463 b7dc674 0b126bb b7dc674 3e13a41 b7dc674 0b126bb b7dc674 db43e55 b7dc674 1e7a5fd fb1b610 9f73e8a b7dc674 5256463 b7dc674 0b126bb b7dc674 0b126bb b7dc674 0b126bb b7dc674 927ba6e b7dc674 2ad0069 b7dc674 8ce2a3b 8767ebd f08d187 0b126bb b7dc674 2ad0069 0b126bb 2ad0069 0b126bb 2ad0069 0b126bb 2ad0069 b7dc674 2ad0069 b7dc674 4d04059 2ad0069 0b126bb 2ad0069 0b126bb 1e7a5fd 2ad0069 b7dc674 0b126bb b7dc674 0b126bb b7dc674 1e7a5fd b7dc674 0b126bb 1e7a5fd 0b126bb 1e7a5fd b7dc674 9f73e8a 4d04059 562007f 4d04059 1e7a5fd 4d04059 2ad0069 b7dc674 0b126bb b7dc674 2ad0069 b7dc674 2ad0069 b7dc674 2ad0069 b7dc674 2ad0069 b7dc674 9f73e8a b7dc674 9f73e8a b7dc674 2ad0069 b7dc674 2ad0069 b7dc674 2ad0069 b7dc674 2ad0069 b7dc674 4286c86 b7dc674 927ba6e b7dc674 5256463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
import io
import os
import ffmpeg
import copy
import uuid
import requests
from PIL import Image
from io import BytesIO
import spaces
import gradio as gr
import torch
import numpy as np
import random
import soundfile as sf
import librosa
import whisper
import opencc
import torchaudio
from torchaudio.transforms import Resample
import modelscope_studio.components.base as ms
import modelscope_studio.components.antd as antd
import gradio.processing_utils as processing_utils
from gradio_client import utils as client_utils
from argparse import ArgumentParser
from mgm.conversation import conv_templates
from mgm.model import *
from mgm.model.builder import load_pretrained_model
from mgm.mm_utils import tokenizer_image_speech_token, tokenizer_speech_token
from mgm.constants import DEFAULT_IMAGE_TOKEN, DEFAULT_SPEECH_TOKEN, AUDIO_START, AUDIO_END, AUDIO_SEP
from mgm.model.multimodal_generator.mgm_omni_streamer import MGMOmniStreamer
from mgm.serve.utils import preprocess_image_qwen2vl, process_visual_input, process_audio_input
from transformers import TextStreamer, TextIteratorStreamer, AutoModelForSpeechSeq2Seq, pipeline
from threading import Thread
def _load_model_processor(args):
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer, tokenizer_speech, model, image_processor, audio_processor = \
load_pretrained_model(
args.model, args.load_8bit, args.load_4bit,
speechlm_path=args.speechlm, use_flash_attn=True, device=device
)
asr_pipe = pipeline(
model="openai/whisper-large-v3",
chunk_length_s=30,
stride_length_s=[4, 2],
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device=device,
)
return tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe
@spaces.GPU()
def whispers_asr(asr_pipe, ref_speech_file):
audio_text = asr_pipe(ref_speech_file)['text']
has_chinese = any('\u4e00' <= char <= '\u9fff' for char in audio_text)
if audio_text[0] == ' ': audio_text = audio_text[1:]
if has_chinese:
if audio_text[-1] not in ['。', '!', '?']:
audio_text += '。'
audio_text = opencc.OpenCC('t2s').convert(audio_text)
else:
if audio_text[-1] not in ['.', '!', '?']:
audio_text += '.'
if audio_text[0].islower():
audio_text = audio_text[0].upper() + audio_text[1:]
return audio_text
def _launch_demo(args, tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe):
# Voice settings
default_system_prompt = 'You are MGM Omni, a virtual human developed by the Von Neumann Institute, capable of perceiving auditory and visual inputs, as well as generating text and speech.'
pre_prompt_cn = '使用参考音频中听到的语气回答。'
pre_prompt_en = 'Respond with the tone of the reference audio clip.'
ref_chinese = [
('assets/ref_audio/Man_ZH.wav', '他疯狂寻找到能够让自己升级的办法终于有所收获,那就是炼体。'),
('assets/ref_audio/Woman_ZH.wav', '语音合成技术其实早已悄悄地走进了我们的生活。从智能语音助手到有声读物再到个性化语音复刻,这项技术正在改变我们获取信息,与世界互动的方式,而且他的进步速度远超我们的想象。')
]
ref_english = [
('assets/ref_audio/Man_EN.wav', '\"Incredible!\" Dr. Chen exclaimed, unable to contain her enthusiasm. \"The quantum fluctuations we have observed in these superconducting materials exhibit completely unexpected characteristics.\"'),
('assets/ref_audio/Woman_EN.wav', 'The device would work during the day as well, if you took steps to either block direct sunlight or point it away from the sun.')
]
previous_turn_is_tts = False
language = args.ui_language
def get_text(text: str, cn_text: str):
if language == 'en':
return text
if language == 'zh':
return cn_text
return text
def format_history(history: list, system_prompt: str):
messages = []
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
for item in history:
if isinstance(item["content"], str):
messages.append({"role": item['role'], "content": item['content']})
elif item["role"] == "user" and (isinstance(item["content"], list) or
isinstance(item["content"], tuple)):
file_path = item["content"][0]
mime_type = client_utils.get_mimetype(file_path)
if mime_type.startswith("image"):
messages.append({
"role":
item['role'],
"content": [{
"type": "image",
"image": file_path
}]
})
elif mime_type.startswith("video"):
messages.append({
"role":
item['role'],
"content": [{
"type": "video",
"video": file_path
}]
})
elif mime_type.startswith("audio"):
if len(item["content"]) == 1:
messages.append({
"role":
item['role'],
"content": [{
"type": "audio",
"audio": file_path,
}]
})
elif len(item["content"]) == 2:
messages.append({
"role":
item['role'],
"content": [{
"type": "refer_speech",
"refer_speech": file_path,
"ref_speech_text": item["content"][1],
}]
})
else:
raise ValueError(f"Invalid content length: {len(item['content'])}")
return messages
def process_messages(messages, conv):
inp = ''
image_files = []
audio_files = []
ref_speech_file = None
ref_speech_text = None
user_inp = ''
last_text_inp = ''
for message in messages:
if message['role'] == 'system':
conv.system = '<|im_start|>system\n' + message['content'][0]['text']
elif message['role'] == 'user':
if isinstance(message['content'], str):
user_inp += message['content']
last_text_inp = message['content']
conv.append_message(conv.roles[0], user_inp)
user_inp = ''
else:
for item in message['content']:
if item['type'] == 'image':
image_files.append((item['image'], None))
user_inp += '<|vision_start|>' + DEFAULT_IMAGE_TOKEN + '<|vision_end|>' + "\n"
if item['type'] == 'video':
image_files.append((None, item['video']))
user_inp += '<|vision_start|>' + DEFAULT_IMAGE_TOKEN + '<|vision_end|>' + "\n"
elif item['type'] == 'audio':
audio_files.append(item['audio'])
user_inp += DEFAULT_SPEECH_TOKEN
elif item['type'] == 'refer_speech':
ref_speech_file = item['refer_speech']
ref_speech_text = item['ref_speech_text']
elif message['role'] == 'assistant':
if user_inp != '':
conv.append_message(conv.roles[0], user_inp)
user_inp = ''
conv.append_message(conv.roles[1], message['content'])
if user_inp != '':
conv.append_message(conv.roles[0], user_inp)
user_inp = ''
conv.append_message(conv.roles[1], None)
if ref_speech_file is None:
has_chinese = any('\u4e00' <= char <= '\u9fff' for char in last_text_inp)
if has_chinese:
ref_item = random.choice(ref_chinese)
else:
ref_item = random.choice(ref_english)
ref_speech_file, ref_speech_text = ref_item
return conv, image_files, audio_files, ref_speech_file, ref_speech_text
@spaces.GPU()
def predict(messages):
conv = conv_templates['qwen2vl'].copy()
conv_speech = conv_templates['qwen2vl'].copy()
conv, image_files, audio_files, ref_speech_file, ref_speech_text = process_messages(messages, conv)
# prepare image & speech file
image_aspect_ratio = getattr(model.config, 'image_aspect_ratio', 'qwen2vl')
image_tensor = [process_visual_input(image_file[0], image_file[1], image_processor, image_aspect_ratio) for image_file in image_files]
speech_tensor = [process_audio_input(audio_file, audio_processor) for audio_file in audio_files]
if len(image_tensor) > 0:
if isinstance(image_tensor[0], dict):
for image in image_tensor:
for key in image.keys():
image[key] = image[key].to(dtype=model.dtype, device=model.device, non_blocking=True)
else:
image_tensor = [image.to(dtype=model.dtype, device=model.device, non_blocking=True) for image in image_tensor]
else:
image_tensor = None
if len(speech_tensor) > 0:
speech_tensor = [speech.to(dtype=model.dtype, device=model.device, non_blocking=True) for speech in speech_tensor]
else:
speech_tensor = None
# process refer speech
audio_refer, _ = librosa.load(ref_speech_file, sr=16000)
audio_refer = torch.tensor(audio_refer).unsqueeze(0).to(model.device)
text_refer = ref_speech_text
input_ids_refer = tokenizer_speech(text_refer)['input_ids']
input_ids_refer = torch.tensor(input_ids_refer).unsqueeze(0).to(model.device)
prompt = conv.get_prompt()
if image_tensor is not None:
input_ids = tokenizer_image_speech_token(prompt, tokenizer, return_tensors='pt').unsqueeze(0).to(model.device)
else:
input_ids = tokenizer_speech_token(prompt, tokenizer, return_tensors='pt').unsqueeze(0).to(model.device)
print("************MLM prompt: ", prompt)
# prompt for base model
has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text_refer)
pre_prompt_speech = (pre_prompt_cn if has_chinese else pre_prompt_en)
inp_speech = pre_prompt_speech + AUDIO_START + DEFAULT_SPEECH_TOKEN + AUDIO_END + "\n" # + inp_speech
conv_speech.append_message(conv_speech.roles[0], inp_speech)
conv_speech.append_message(conv_speech.roles[1], AUDIO_START)
prompt_speech = conv_speech.get_prompt().replace('<|im_end|>\n', '')
input_ids_speech = tokenizer_speech_token(prompt_speech, tokenizer_speech, return_tensors='pt').unsqueeze(0).to(model.device)
print("************SLM prompt: ", prompt_speech)
# prompt for speech generator
streamer = MGMOmniStreamer(
tokenizer,
cosyvoice=model.speechlm.cosyvoice.model,
max_audio_token=model.config.speechlm.tokenizer_speech_size,
skip_prompt=True, skip_special_tokens=True, timeout=15
)
thread = Thread(
target=model.generate,
kwargs=dict(
inputs=input_ids,
inputs_speech=input_ids_speech,
images=image_tensor,
speeches=speech_tensor,
input_ids_refer=input_ids_refer,
audio_refer=audio_refer,
streamer=streamer,
do_sample=True,
temperature=0.4,
max_new_tokens=4096,
bos_token_id=tokenizer.pad_token_id,
eos_token_id=[tokenizer.eos_token_id],
pad_token_id=tokenizer.pad_token_id,
tokenizer=tokenizer,
assistant_tokenizer=tokenizer_speech,
use_cache=True
),
)
thread.start()
response = ''
audio = []
stop_str = '<|im_end|>'
for item in streamer:
item_type, content = item
if item_type == 'text':
response += content
if response.endswith(stop_str):
response = response[: -len(stop_str)]
yield {"type": "text", "data": response}
else:
yield {"type": "audio", "data": content}
thread.join()
@spaces.GPU()
def chat_predict(text, refer_speech, audio, talk_inp, image, video, history, system_prompt, autoplay):
# Clean TTS history
global previous_turn_is_tts
try:
if previous_turn_is_tts:
history = []
previous_turn_is_tts = False
except:
previous_turn_is_tts = False
# Process text input
if text:
history.append({"role": "user", "content": text})
else:
text = ''
# Process refer_speech input
if refer_speech:
refer_speech_text = whispers_asr(asr_pipe, refer_speech)
history.append({"role": "user", "content": (refer_speech, refer_speech_text)})
# Process talk input
if talk_inp:
history.append({"role": "user", "content": (talk_inp, )})
# assign refer_speech
has_refer_speech = False
for item in history:
if isinstance(item['content'], tuple):
has_refer_speech |= (len(item['content']) == 2)
if has_refer_speech == False:
has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text)
if has_chinese:
ref_item = random.choice(ref_chinese)
else:
ref_item = random.choice(ref_english)
refer_speech, refer_speech_text = ref_item
history.append({"role": "user", "content": (refer_speech, refer_speech_text)})
formatted_history = format_history(history=history,
system_prompt=system_prompt)
yield None, None, None, None, None, None, None, history
history.append({"role": "assistant", "content": ""})
sample_rate = 24000
audio = []
for chunk in predict(formatted_history):
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(
), None, history
elif chunk["type"] == "audio":
audio.append(chunk["data"])
audio_output = (sample_rate, chunk["data"]) if autoplay else None
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), audio_output, history
audio = np.concatenate(audio)
history.append({"role": "assistant", "content": gr.Audio((sample_rate, audio))})
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history
@spaces.GPU()
def tts_run(messages):
sample_rate = 24000
target_text = messages[1]['content']
if len(messages) < 3:
has_chinese = any('\u4e00' <= char <= '\u9fff' for char in target_text)
if has_chinese:
ref_item = random.choice(ref_chinese)
else:
ref_item = random.choice(ref_english)
ref_speech_file, ref_speech_text = ref_item
else:
ref_speech_file = messages[2]['content'][0]['refer_speech']
ref_speech_text = messages[2]['content'][0]['ref_speech_text']
# process refer audio
audio_refer, _ = librosa.load(ref_speech_file, sr=16000)
audio_refer = torch.tensor(audio_refer).unsqueeze(0).to(model.device)
text_refer = ref_speech_text
input_ids_refer = tokenizer_speech(text_refer)['input_ids']
input_ids_refer = torch.tensor(input_ids_refer).unsqueeze(0).to(model.device)
conv = conv_templates['qwen2vl'].copy()
has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text_refer)
pre_prompt = (pre_prompt_cn if has_chinese else pre_prompt_en)
inp = pre_prompt + AUDIO_START + DEFAULT_SPEECH_TOKEN + AUDIO_END + "\n"
oup = AUDIO_START + target_text
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], oup)
prompt = conv.get_prompt()
input_ids = tokenizer_speech_token(prompt, tokenizer_speech, return_tensors='pt').unsqueeze(0).to(model.device)
print("************SLM prompt: ", prompt)
# prompt for SpeechLM
streamer = MGMOmniStreamer(
tokenizer_speech,
cosyvoice=model.speechlm.cosyvoice.model,
max_audio_token=model.config.speechlm.tokenizer_speech_size,
skip_prompt=True, skip_special_tokens=True, timeout=15
)
thread = Thread(
target=model.speechlm.generate,
kwargs=dict(
inputs=input_ids,
input_ids_refer=input_ids_refer,
audio_refer=audio_refer,
streamer=streamer,
do_sample=True,
temperature=0.5,
max_new_tokens=4096,
bos_token_id=tokenizer_speech.pad_token_id,
eos_token_id=[tokenizer_speech.eos_token_id],
pad_token_id=tokenizer_speech.pad_token_id,
tokenizer=tokenizer_speech,
use_cache=True
),
)
thread.start()
response = ''
audio = []
stop_str = '<|im_end|>'
for item in streamer:
item_type, content = item
if item_type == 'text':
response += content
if response.endswith(stop_str):
response = response[: -len(stop_str)]
yield {"type": "text", "data": response}
else:
yield {"type": "audio", "data": content}
thread.join()
@spaces.GPU()
def tts_predict(text, refer_speech, audio_input, talk_input, image_input, video_input, history, system_prompt, autoplay):
# Process refer_speech input
if refer_speech:
refer_speech_text = whispers_asr(asr_pipe, refer_speech)
else:
refer_speech = None
refer_speech_text = None
for item in history:
if item["role"] == "user" and len(item["content"]) == 2:
refer_speech = item["content"][0]
refer_speech_text = item["content"][1]
history = []
global previous_turn_is_tts
previous_turn_is_tts = True
# Process text input
if text:
history.append({"role": "user", "content": text})
else:
history.append({"role": "assistant", "content": "Don't forget to input text for text to speech synthesis."})
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history
return
if refer_speech is not None:
history.append({"role": "user", "content": (refer_speech, refer_speech_text)})
formatted_history = format_history(history=history,
system_prompt=system_prompt)
yield None, None, None, None, None, None, None, history
history.append({"role": "assistant", "content": ""})
sample_rate = 24000
audio = []
for chunk in tts_run(formatted_history):
if chunk["type"] == "text":
history[-1]["content"] = chunk["data"]
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(
), None, history
elif chunk["type"] == "audio":
audio.append(chunk["data"])
audio_output = (sample_rate, chunk["data"]) if autoplay else None
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), audio_output, history
audio = np.concatenate(audio)
history.append({"role": "assistant", "content": gr.Audio((sample_rate, audio))})
yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history
with gr.Blocks(title="MGM-Omni", theme=gr.themes.Soft()) as demo: # Using a clean theme similar to ChatGPT
with gr.Sidebar(open=False):
system_prompt_textbox = gr.Textbox(label="System Prompt",
value=default_system_prompt)
gr.HTML(
"""
<style>
.grid-wrap.fixed-height {
min-height: 0 !important;
max-height: 55vh;
}
.container-display {
display: none;
}
.gallery_reference_example .caption-label {
font-size: 12px !important;
}
.gallery_reference_example {
max-height: 60vh !important;
}
.small-radio {font-size: 14px !important;}
.right-align { display: flex; justify-content: flex-end; }
</style>
"""
)
gr.Markdown("# MGM-Omni: An Open-source Omni Model")
gr.Markdown("### [Github](https://github.com/dvlab-research/MGM-Omni) [Blog](https://mgm-omni.notion.site/MGM-Omni-An-Open-source-Omni-Chatbot-2395728e0b0180149ac9f24683fc9907) [Models](https://huggingface.co/collections/wcy1122/mgm-omni-6896075e97317a88825032e1) [Local Demo](http://103.170.5.190:7860/)")
gr.Markdown("If you like our demo, a like ❤️ and a star 🌟 would be appreciated!")
# Hidden components for handling uploads and outputs
audio_input = gr.Audio(visible=True, type="filepath", elem_classes="container-display" )
image_input = gr.Image(visible=True, type="filepath", elem_classes="container-display" )
video_input = gr.Video(visible=True, elem_classes="container-display" )
audio_output = gr.Audio(
label="Generated Audio",
autoplay=True,
streaming=True,
visible=True,
elem_classes="container-display"
)
placeholder = placeholder = """
**Welcome to MGM-Omni!** 🎉
Start chatting or generate voice responses with these options:
- 🎙️ **Reference Voice**: Choose, upload or record an audio clip for voice clone.
- 📤 **Upload**: Upload video, image, or audio files.
- ✍️ **Input Mode**:
- **Text**: Type your message to chat.
- **Talk**: Record or upload audio to chat.
- 🚀 **Generate Mode**:
- **Chat**: Engage in a conversation with MGM-Omni.
- **TTS**: Text to speech generation with reference voice.
**Get started by typing or uploading below!** 😊
"""
with gr.Row(equal_height=True):
with gr.Column(scale=7, min_width="70%"):
# Chatbot as the main component
chatbot = gr.Chatbot(
type="messages",
height=600,
placeholder=placeholder,
show_label=False
)
with gr.Column(scale=3):
refer_speech = gr.Audio(sources=["microphone", "upload"],
type="filepath",
label="Upload Reference Voice",
elem_classes="media-upload",
value=None,
scale=0
)
# Restore reference speech gallery in sidebar for better layout
gr.Markdown("### Voice Clone Examples")
refer_items = [
("assets/ref_img/Man_ZH.jpg", "assets/ref_audio/Man_ZH.wav", "Man-ZH"),
("assets/ref_img/Man_EN.jpg", "assets/ref_audio/Man_EN.wav", "Man-EN"),
("assets/ref_img/Woman_ZH.jpg", "assets/ref_audio/Woman_ZH.wav", "Woman-ZH"),
("assets/ref_img/Woman_EN.jpg", "assets/ref_audio/Woman_EN.wav", "Woman-EN"),
("assets/ref_img/Old_Woman_ZH.jpg", "assets/ref_audio/Old_Woman_ZH.wav", "Old-Woman-ZH"),
("assets/ref_img/Musk.jpg", "assets/ref_audio/Musk.wav", "Elon Musk"),
("assets/ref_img/Trump.jpg", "assets/ref_audio/Trump.wav", "Donald Trump"),
("assets/ref_img/Jensen.jpg", "assets/ref_audio/Jensen.wav", "Jensen Huang"),
("assets/ref_img/Lebron.jpg", "assets/ref_audio/Lebron.wav", "LeBron James"),
("assets/ref_img/jay.jpg", "assets/ref_audio/Jay.wav", "Jay Chou(周杰伦)"),
("assets/ref_img/GEM.jpg", "assets/ref_audio/GEM.wav", "G.E.M.(邓紫棋)"),
("assets/ref_img/Zhiling.jpg", "assets/ref_audio/Zhiling.wav", "Lin Chi-Ling(林志玲)"),
("assets/ref_img/mabaoguo.jpg", "assets/ref_audio/mabaoguo.wav", "Ma Baoguo(马保国)"),
("assets/ref_img/Taiyi.jpg", "assets/ref_audio/Taiyi.wav", "Taiyi(太乙真人)"),
("assets/ref_img/StarRail_Firefly.jpg", "assets/ref_audio/StarRail_Firefly.wav", "崩铁-流萤"),
("assets/ref_img/genshin_Kokomi.jpg", "assets/ref_audio/genshin_Kokomi.wav", "原神-珊瑚宫心海"),
("assets/ref_img/genshin_Raiden.jpg", "assets/ref_audio/genshin_Raiden.wav", "原神-雷电将军"),
("assets/ref_img/genshin_ZhongLi.jpg", "assets/ref_audio/genshin_ZhongLi.wav", "原神-钟离"),
("assets/ref_img/genshin_Hutao.jpg", "assets/ref_audio/genshin_Hutao.wav", "原神-胡桃"),
("assets/ref_img/Wave_Jinhsi.jpg", "assets/ref_audio/Wave_Jinhsi.wav", "鸣潮-今汐"),
("assets/ref_img/Wave_Carlotta.jpg", "assets/ref_audio/Wave_Carlotta.wav", "鸣潮-珂莱塔"),
]
gallery_items = [(img, label) for img, _, label in refer_items]
gallery = gr.Gallery(
value=gallery_items,
label=None,
show_label=False,
allow_preview=False,
columns=3, # Adjusted for sidebar width
height="auto",
object_fit="cover",
elem_classes="gallery_reference_example"
)
def on_image_click(evt: gr.SelectData):
index = evt.index
if index is not None and 0 <= index < len(refer_items):
audio_path = refer_items[index][1]
return gr.update(value=audio_path)
return gr.update()
gallery.select(
fn=on_image_click,
inputs=None,
outputs=refer_speech
)
clear_btn = gr.Button("Clear")
autoplay_checkbox = gr.Checkbox(
label="Autoplay",
value=True
)
text_input = gr.Textbox(
show_label=False,
placeholder="Type your message here...",
container=False
)
talk_input = gr.Audio(sources=["microphone", ], visible=False, type="filepath", label="Audio Message" )
with gr.Row(equal_height=True):
upload_btn = gr.UploadButton(
label="Upload",
file_types=["image", "video", "audio"],
file_count="single",
size="md",
scale=1,
visible=True
)
chat_mode_selector = gr.Radio(
choices=["Text", "Talk"],
value="Text",
show_label=False,
interactive=True,
elem_classes="small-radio",
scale=2,
)
submit_mode_selector = gr.Radio(
choices=["Chat", "TTS"],
value="Chat",
show_label=False,
interactive=True,
elem_classes="small-radio",
scale=2,
)
gr.Column(scale=3, min_width=0)
submit_btn = gr.Button(
"Send",
variant="primary",
min_width=0,
size="md",
scale=1,
visible=True
)
tts_submit_btn = gr.Button(
"TTS Submit",
variant="primary",
min_width=0,
size="md",
scale=1,
visible=False
)
# State to hold history
state = gr.State([])
def handle_upload(file, history):
if file:
mime = client_utils.get_mimetype(file.name)
if mime.startswith("image"):
history.append({"role": "user", "content": (file, )})
return file, None, None, history
elif mime.startswith("video"):
history.append({"role": "user", "content": (file, )})
return None, file, None, history
elif mime.startswith("audio"):
history.append({"role": "user", "content": (file, )})
return None, None, file, history
return None, None, None, history
upload_btn.upload(
handle_upload,
inputs=[upload_btn, chatbot],
outputs=[image_input, video_input, audio_input, chatbot]
)
def clear_chat_history():
return [], gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value="Text"), gr.update(value="Chat")
def handle_submit(mode, *inputs):
if mode == "Chat":
yield from chat_predict(*inputs)
else: # mode == "TTS"
yield from tts_predict(*inputs)
# submit_event = gr.on(
# triggers=[submit_btn.click, text_input.submit],
# fn=chat_predict,
# inputs=[
# text_input, refer_speech, audio_input, talk_input, image_input, video_input, chatbot,
# system_prompt_textbox, autoplay_checkbox
# ],
# outputs=[
# text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot
# ])
# tts_submit_event = gr.on(
# triggers=[tts_submit_btn.click],
# fn=tts_predict,
# inputs=[
# text_input, refer_speech, system_prompt_textbox, chatbot, autoplay_checkbox
# ],
# outputs=[
# text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot
# ])
submit_event = gr.on(
triggers=[submit_btn.click, text_input.submit, tts_submit_btn.click],
fn=handle_submit,
inputs=[
submit_mode_selector,
text_input, refer_speech, audio_input, talk_input, image_input, video_input, chatbot,
system_prompt_textbox, autoplay_checkbox
],
outputs=[
text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot
]
)
def chat_switch_mode(mode):
if mode == "Text":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
def submit_switch_mode(mode):
if mode == "Chat":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
chat_mode_selector.change(
fn=chat_switch_mode,
inputs=[chat_mode_selector],
outputs=[text_input, talk_input]
)
submit_mode_selector.change(
fn=submit_switch_mode,
inputs=[submit_mode_selector],
outputs=[upload_btn, submit_btn, tts_submit_btn]
)
clear_btn.click(fn=clear_chat_history,
inputs=None,
outputs=[
chatbot, text_input, refer_speech, audio_input, talk_input, image_input,
video_input, audio_output, chat_mode_selector, submit_mode_selector
])
# Custom CSS for ChatGPT-like styling
demo.css = """
.gradio-container {
max-width: 90vw !important;
margin: auto;
padding: 20px;
}
.chatbot .message {
border-radius: 10px;
padding: 10px;
}
.chatbot .user {
background-color: #f0f0f0;
}
.chatbot .assistant {
background-color: #e6e6e6;
}
footer {display:none !important}
"""
demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
share=True,
show_error=True,
ssl_certfile=None,
ssl_keyfile=None,
ssl_verify=False,
inbrowser=args.inbrowser)
def _get_args():
parser = ArgumentParser()
parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
parser.add_argument('--flash-attn2',
action='store_true',
default=False,
help='Enable flash_attention_2 when loading the model.')
parser.add_argument('--share',
action='store_true',
default=False,
help='Create a publicly shareable link for the interface.')
parser.add_argument('--inbrowser',
action='store_true',
default=False,
help='Automatically launch the interface in a new tab on the default browser.')
parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.')
parser.add_argument("--model", type=str, default="wcy1122/MGM-Omni-7B")
parser.add_argument("--speechlm", type=str, default="wcy1122/MGM-Omni-TTS-2B")
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = _get_args()
tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe = _load_model_processor(args)
_launch_demo(args, tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe)
|