File size: 36,446 Bytes
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
0b126bb
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5256463
 
b7dc674
 
 
 
955ec01
b7dc674
 
 
955ec01
b7dc674
5256463
 
 
 
 
 
 
 
 
 
3e13a41
5256463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7dc674
 
 
 
 
0b126bb
 
 
 
 
 
 
 
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b126bb
 
b7dc674
 
0b126bb
b7dc674
 
 
 
 
 
0b126bb
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b126bb
 
 
 
 
 
 
 
b7dc674
 
3e13a41
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a6e67
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e26ff6e
fb1b610
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
0b126bb
 
b7dc674
 
 
5256463
b7dc674
 
 
 
 
 
0b126bb
 
 
 
 
 
 
 
 
 
 
 
 
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e13a41
b7dc674
 
 
0b126bb
 
 
 
 
 
 
 
 
 
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db43e55
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e7a5fd
fb1b610
9f73e8a
b7dc674
 
5256463
b7dc674
0b126bb
 
b7dc674
 
 
 
 
 
 
 
 
 
 
 
0b126bb
b7dc674
 
0b126bb
 
 
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927ba6e
 
 
b7dc674
 
2ad0069
b7dc674
 
 
8ce2a3b
8767ebd
f08d187
0b126bb
b7dc674
 
 
 
 
 
 
 
 
 
 
2ad0069
 
 
 
 
0b126bb
 
2ad0069
0b126bb
 
2ad0069
0b126bb
 
2ad0069
 
 
b7dc674
 
 
 
 
 
2ad0069
b7dc674
 
 
4d04059
2ad0069
0b126bb
2ad0069
0b126bb
1e7a5fd
2ad0069
b7dc674
0b126bb
b7dc674
 
 
0b126bb
 
 
b7dc674
 
 
 
1e7a5fd
b7dc674
0b126bb
 
 
 
 
 
 
1e7a5fd
0b126bb
1e7a5fd
b7dc674
 
9f73e8a
 
4d04059
 
 
 
 
562007f
4d04059
 
1e7a5fd
4d04059
2ad0069
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b126bb
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad0069
b7dc674
2ad0069
b7dc674
 
 
 
 
 
 
2ad0069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ad0069
b7dc674
9f73e8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7dc674
9f73e8a
 
 
 
 
 
 
 
 
 
 
b7dc674
2ad0069
b7dc674
 
 
 
 
2ad0069
 
 
 
 
 
 
 
 
b7dc674
 
2ad0069
 
 
 
 
 
b7dc674
 
 
 
 
2ad0069
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4286c86
b7dc674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927ba6e
b7dc674
 
 
 
 
 
 
 
5256463
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
import io
import os
import ffmpeg
import copy
import uuid
import requests
from PIL import Image
from io import BytesIO
import spaces
import gradio as gr

import torch
import numpy as np
import random

import soundfile as sf 
import librosa
import whisper
import opencc
import torchaudio
from torchaudio.transforms import Resample

import modelscope_studio.components.base as ms
import modelscope_studio.components.antd as antd
import gradio.processing_utils as processing_utils

from gradio_client import utils as client_utils
from argparse import ArgumentParser

from mgm.conversation import conv_templates
from mgm.model import *
from mgm.model.builder import load_pretrained_model
from mgm.mm_utils import tokenizer_image_speech_token, tokenizer_speech_token
from mgm.constants import DEFAULT_IMAGE_TOKEN, DEFAULT_SPEECH_TOKEN, AUDIO_START, AUDIO_END, AUDIO_SEP
from mgm.model.multimodal_generator.mgm_omni_streamer import MGMOmniStreamer
from mgm.serve.utils import preprocess_image_qwen2vl, process_visual_input, process_audio_input
from transformers import TextStreamer, TextIteratorStreamer, AutoModelForSpeechSeq2Seq, pipeline
from threading import Thread


def _load_model_processor(args):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    tokenizer, tokenizer_speech, model, image_processor, audio_processor = \
        load_pretrained_model(
            args.model, args.load_8bit, args.load_4bit,
            speechlm_path=args.speechlm, use_flash_attn=True, device=device
        )
    asr_pipe = pipeline(
        model="openai/whisper-large-v3",
        chunk_length_s=30,
        stride_length_s=[4, 2],
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        device=device,
    )
    return tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe


@spaces.GPU()
def whispers_asr(asr_pipe, ref_speech_file):
    audio_text = asr_pipe(ref_speech_file)['text']
    has_chinese = any('\u4e00' <= char <= '\u9fff' for char in audio_text)
    if audio_text[0] == ' ': audio_text = audio_text[1:]
    if has_chinese:
        if audio_text[-1] not in ['。', '!', '?']:
            audio_text += '。'
        audio_text = opencc.OpenCC('t2s').convert(audio_text)
    else:
        if audio_text[-1] not in ['.', '!', '?']:
            audio_text += '.'
        if audio_text[0].islower():
            audio_text = audio_text[0].upper() + audio_text[1:]
    return audio_text


def _launch_demo(args, tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe):
    # Voice settings

    default_system_prompt = 'You are MGM Omni, a virtual human developed by the Von Neumann Institute, capable of perceiving auditory and visual inputs, as well as generating text and speech.'
    pre_prompt_cn = '使用参考音频中听到的语气回答。'
    pre_prompt_en = 'Respond with the tone of the reference audio clip.'
    ref_chinese = [
        ('assets/ref_audio/Man_ZH.wav', '他疯狂寻找到能够让自己升级的办法终于有所收获,那就是炼体。'),
        ('assets/ref_audio/Woman_ZH.wav', '语音合成技术其实早已悄悄地走进了我们的生活。从智能语音助手到有声读物再到个性化语音复刻,这项技术正在改变我们获取信息,与世界互动的方式,而且他的进步速度远超我们的想象。')
    ]
    ref_english = [
        ('assets/ref_audio/Man_EN.wav', '\"Incredible!\" Dr. Chen exclaimed, unable to contain her enthusiasm. \"The quantum fluctuations we have observed in these superconducting materials exhibit completely unexpected characteristics.\"'),
        ('assets/ref_audio/Woman_EN.wav', 'The device would work during the day as well, if you took steps to either block direct sunlight or point it away from the sun.')
    ]
    previous_turn_is_tts = False
    language = args.ui_language

    def get_text(text: str, cn_text: str):
        if language == 'en':
            return text
        if language == 'zh':
            return cn_text
        return text

    def format_history(history: list, system_prompt: str):
        messages = []
        messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
        for item in history:
            if isinstance(item["content"], str):
                messages.append({"role": item['role'], "content": item['content']})
            elif item["role"] == "user" and (isinstance(item["content"], list) or
                                            isinstance(item["content"], tuple)):
                file_path = item["content"][0]

                mime_type = client_utils.get_mimetype(file_path)
                if mime_type.startswith("image"):
                    messages.append({
                        "role":
                        item['role'],
                        "content": [{
                            "type": "image",
                            "image": file_path
                        }]
                    })
                elif mime_type.startswith("video"):
                    messages.append({
                        "role":
                        item['role'],
                        "content": [{
                            "type": "video",
                            "video": file_path
                        }]
                    })
                elif mime_type.startswith("audio"):
                    if len(item["content"]) == 1:
                        messages.append({
                            "role":
                            item['role'],
                            "content": [{
                                "type": "audio",
                                "audio": file_path,
                            }]
                        })
                    elif len(item["content"]) == 2:
                        messages.append({
                            "role":
                            item['role'],
                            "content": [{
                                "type": "refer_speech",
                                "refer_speech": file_path,
                                "ref_speech_text": item["content"][1],
                            }]
                        })
                    else:
                        raise ValueError(f"Invalid content length: {len(item['content'])}")
        return messages
    
    def process_messages(messages, conv):
        inp = ''
        image_files = []
        audio_files = []
        ref_speech_file = None
        ref_speech_text = None

        user_inp = ''
        last_text_inp = ''
        for message in messages:
            if message['role'] == 'system':
                conv.system = '<|im_start|>system\n' + message['content'][0]['text']
            elif message['role'] == 'user':
                if isinstance(message['content'], str):
                    user_inp += message['content']
                    last_text_inp = message['content']
                    conv.append_message(conv.roles[0], user_inp)
                    user_inp = ''
                else:
                    for item in message['content']:
                        if item['type'] == 'image':
                            image_files.append((item['image'], None))
                            user_inp += '<|vision_start|>' + DEFAULT_IMAGE_TOKEN + '<|vision_end|>' + "\n"
                        if item['type'] == 'video':
                            image_files.append((None, item['video']))
                            user_inp += '<|vision_start|>' + DEFAULT_IMAGE_TOKEN + '<|vision_end|>' + "\n"
                        elif item['type'] == 'audio':
                            audio_files.append(item['audio'])
                            user_inp += DEFAULT_SPEECH_TOKEN
                        elif item['type'] == 'refer_speech':
                            ref_speech_file = item['refer_speech']
                            ref_speech_text = item['ref_speech_text']
            elif message['role'] == 'assistant':
                if user_inp != '':
                    conv.append_message(conv.roles[0], user_inp)
                    user_inp = ''
                conv.append_message(conv.roles[1], message['content'])
        if user_inp != '':
            conv.append_message(conv.roles[0], user_inp)
            user_inp = ''
        conv.append_message(conv.roles[1], None)

        if ref_speech_file is None:
            has_chinese = any('\u4e00' <= char <= '\u9fff' for char in last_text_inp)
            if has_chinese:
                ref_item = random.choice(ref_chinese)
            else:
                ref_item = random.choice(ref_english)
            ref_speech_file, ref_speech_text = ref_item

        return conv, image_files, audio_files, ref_speech_file, ref_speech_text

    @spaces.GPU()
    def predict(messages):
        conv = conv_templates['qwen2vl'].copy()
        conv_speech = conv_templates['qwen2vl'].copy()
        conv, image_files, audio_files, ref_speech_file, ref_speech_text = process_messages(messages, conv)

        # prepare image & speech file
        image_aspect_ratio = getattr(model.config, 'image_aspect_ratio', 'qwen2vl')
        image_tensor = [process_visual_input(image_file[0], image_file[1], image_processor, image_aspect_ratio) for image_file in image_files]
        speech_tensor = [process_audio_input(audio_file, audio_processor) for audio_file in audio_files]

        if len(image_tensor) > 0:
            if isinstance(image_tensor[0], dict):
                for image in image_tensor:
                    for key in image.keys():
                        image[key] = image[key].to(dtype=model.dtype, device=model.device, non_blocking=True)
            else:
                image_tensor = [image.to(dtype=model.dtype, device=model.device, non_blocking=True) for image in image_tensor]
        else:
            image_tensor = None

        if len(speech_tensor) > 0:
            speech_tensor = [speech.to(dtype=model.dtype, device=model.device, non_blocking=True) for speech in speech_tensor]
        else:
            speech_tensor = None

        # process refer speech
        audio_refer, _ = librosa.load(ref_speech_file, sr=16000)
        audio_refer = torch.tensor(audio_refer).unsqueeze(0).to(model.device)
        text_refer = ref_speech_text
        input_ids_refer = tokenizer_speech(text_refer)['input_ids']
        input_ids_refer = torch.tensor(input_ids_refer).unsqueeze(0).to(model.device)

        prompt = conv.get_prompt()
        if image_tensor is not None:
            input_ids = tokenizer_image_speech_token(prompt, tokenizer, return_tensors='pt').unsqueeze(0).to(model.device)
        else:
            input_ids = tokenizer_speech_token(prompt, tokenizer, return_tensors='pt').unsqueeze(0).to(model.device)
        print("************MLM prompt: ", prompt)
        # prompt for base model

        has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text_refer)
        pre_prompt_speech = (pre_prompt_cn if has_chinese else pre_prompt_en)
        inp_speech = pre_prompt_speech + AUDIO_START + DEFAULT_SPEECH_TOKEN + AUDIO_END + "\n" # + inp_speech
        conv_speech.append_message(conv_speech.roles[0], inp_speech)
        conv_speech.append_message(conv_speech.roles[1], AUDIO_START)
        prompt_speech = conv_speech.get_prompt().replace('<|im_end|>\n', '')
        input_ids_speech = tokenizer_speech_token(prompt_speech, tokenizer_speech, return_tensors='pt').unsqueeze(0).to(model.device)
        print("************SLM prompt: ", prompt_speech)
        # prompt for speech generator

        streamer = MGMOmniStreamer(
            tokenizer,
            cosyvoice=model.speechlm.cosyvoice.model,
            max_audio_token=model.config.speechlm.tokenizer_speech_size,
            skip_prompt=True, skip_special_tokens=True, timeout=15
        )
        thread = Thread(
            target=model.generate,
            kwargs=dict(
                inputs=input_ids,
                inputs_speech=input_ids_speech,
                images=image_tensor,
                speeches=speech_tensor,
                input_ids_refer=input_ids_refer,
                audio_refer=audio_refer,
                streamer=streamer,
                do_sample=True,
                temperature=0.4,
                max_new_tokens=4096,
                bos_token_id=tokenizer.pad_token_id,
                eos_token_id=[tokenizer.eos_token_id],
                pad_token_id=tokenizer.pad_token_id,
                tokenizer=tokenizer,
                assistant_tokenizer=tokenizer_speech,
                use_cache=True
            ),
        )
        thread.start()

        response = ''
        audio = []
        stop_str = '<|im_end|>'
        for item in streamer:
            item_type, content = item
            if item_type == 'text':
                response += content
                if response.endswith(stop_str):
                    response = response[: -len(stop_str)]
                yield {"type": "text", "data": response}
            else:
                yield {"type": "audio", "data": content}

        thread.join()
    
    @spaces.GPU()
    def chat_predict(text, refer_speech, audio, talk_inp, image, video, history, system_prompt, autoplay):
        # Clean TTS history
        global previous_turn_is_tts
        try:
            if previous_turn_is_tts:
                history = []
                previous_turn_is_tts = False
        except:
            previous_turn_is_tts = False

        # Process text input
        if text:
            history.append({"role": "user", "content": text})
        else:
            text = ''
        
        # Process refer_speech input
        if refer_speech:
            refer_speech_text = whispers_asr(asr_pipe, refer_speech)
            history.append({"role": "user", "content": (refer_speech, refer_speech_text)})

        # Process talk input
        if talk_inp:
            history.append({"role": "user", "content": (talk_inp, )})

        # assign refer_speech
        has_refer_speech = False
        for item in history:
            if isinstance(item['content'], tuple):
                has_refer_speech |= (len(item['content']) == 2)
        if has_refer_speech == False:
            has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text)
            if has_chinese:
                ref_item = random.choice(ref_chinese)
            else:
                ref_item = random.choice(ref_english)
            refer_speech, refer_speech_text = ref_item
            history.append({"role": "user", "content": (refer_speech, refer_speech_text)})

        formatted_history = format_history(history=history,
                                           system_prompt=system_prompt)

        yield None, None, None, None, None, None, None, history

        history.append({"role": "assistant", "content": ""})
        sample_rate = 24000
        audio = []
        for chunk in predict(formatted_history):
            if chunk["type"] == "text":
                history[-1]["content"] = chunk["data"]
                yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(
                ), None, history
            elif chunk["type"] == "audio":
                audio.append(chunk["data"])
                audio_output = (sample_rate, chunk["data"]) if autoplay else None
                yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), audio_output, history
        audio = np.concatenate(audio)
        history.append({"role": "assistant", "content": gr.Audio((sample_rate, audio))})
        yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history

    @spaces.GPU()
    def tts_run(messages):
        sample_rate = 24000
        target_text = messages[1]['content']
        if len(messages) < 3:
            has_chinese = any('\u4e00' <= char <= '\u9fff' for char in target_text)
            if has_chinese:
                ref_item = random.choice(ref_chinese)
            else:
                ref_item = random.choice(ref_english)
            ref_speech_file, ref_speech_text = ref_item
        else:
            ref_speech_file = messages[2]['content'][0]['refer_speech']
            ref_speech_text = messages[2]['content'][0]['ref_speech_text']

        # process refer audio
        audio_refer, _ = librosa.load(ref_speech_file, sr=16000)
        audio_refer = torch.tensor(audio_refer).unsqueeze(0).to(model.device)
        text_refer = ref_speech_text
        input_ids_refer = tokenizer_speech(text_refer)['input_ids']
        input_ids_refer = torch.tensor(input_ids_refer).unsqueeze(0).to(model.device)

        conv = conv_templates['qwen2vl'].copy()
        has_chinese = any('\u4e00' <= char <= '\u9fff' for char in text_refer)
        pre_prompt = (pre_prompt_cn if has_chinese else pre_prompt_en)
        inp = pre_prompt + AUDIO_START + DEFAULT_SPEECH_TOKEN + AUDIO_END + "\n"
        oup = AUDIO_START + target_text
        conv.append_message(conv.roles[0], inp)
        conv.append_message(conv.roles[1], oup)
        prompt = conv.get_prompt()
        input_ids = tokenizer_speech_token(prompt, tokenizer_speech, return_tensors='pt').unsqueeze(0).to(model.device)
        print("************SLM prompt: ", prompt)
        # prompt for SpeechLM

        streamer = MGMOmniStreamer(
            tokenizer_speech,
            cosyvoice=model.speechlm.cosyvoice.model,
            max_audio_token=model.config.speechlm.tokenizer_speech_size,
            skip_prompt=True, skip_special_tokens=True, timeout=15
        )
        thread = Thread(
            target=model.speechlm.generate,
            kwargs=dict(
                inputs=input_ids,
                input_ids_refer=input_ids_refer,
                audio_refer=audio_refer,
                streamer=streamer,
                do_sample=True,
                temperature=0.5,
                max_new_tokens=4096,
                bos_token_id=tokenizer_speech.pad_token_id,
                eos_token_id=[tokenizer_speech.eos_token_id],
                pad_token_id=tokenizer_speech.pad_token_id,
                tokenizer=tokenizer_speech,
                use_cache=True
            ),
        )
        thread.start()

        response = ''
        audio = []
        stop_str = '<|im_end|>'
        for item in streamer:
            item_type, content = item
            if item_type == 'text':
                response += content
                if response.endswith(stop_str):
                    response = response[: -len(stop_str)]
                yield {"type": "text", "data": response}
            else:
                yield {"type": "audio", "data": content}

        thread.join()

    @spaces.GPU()
    def tts_predict(text, refer_speech, audio_input, talk_input, image_input, video_input, history, system_prompt, autoplay):
        # Process refer_speech input
        if refer_speech:
            refer_speech_text = whispers_asr(asr_pipe, refer_speech)
        else:
            refer_speech = None
            refer_speech_text = None
            for item in history:
                if item["role"] == "user" and len(item["content"]) == 2:
                    refer_speech = item["content"][0]
                    refer_speech_text = item["content"][1]
        history = []
        global previous_turn_is_tts
        previous_turn_is_tts = True

        # Process text input
        if text:
            history.append({"role": "user", "content": text})
        else:
            history.append({"role": "assistant", "content": "Don't forget to input text for text to speech synthesis."})
            yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history
            return

        if refer_speech is not None:
            history.append({"role": "user", "content": (refer_speech, refer_speech_text)})

        formatted_history = format_history(history=history,
                                           system_prompt=system_prompt)

        yield None, None, None, None, None, None, None, history

        history.append({"role": "assistant", "content": ""})
        sample_rate = 24000
        audio = []
        for chunk in tts_run(formatted_history):
            if chunk["type"] == "text":
                history[-1]["content"] = chunk["data"]
                yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(
                ), None, history
            elif chunk["type"] == "audio":
                audio.append(chunk["data"])
                audio_output = (sample_rate, chunk["data"]) if autoplay else None
                yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), audio_output, history
        audio = np.concatenate(audio)
        history.append({"role": "assistant", "content": gr.Audio((sample_rate, audio))})
        yield gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), None, history

    with gr.Blocks(title="MGM-Omni", theme=gr.themes.Soft()) as demo:  # Using a clean theme similar to ChatGPT
        with gr.Sidebar(open=False):
            system_prompt_textbox = gr.Textbox(label="System Prompt",
                                            value=default_system_prompt)
        gr.HTML(
                    """
                    <style>
                    .grid-wrap.fixed-height {
                        min-height: 0 !important;
                        max-height: 55vh;
                    }
                    .container-display { 
                        display: none; 
                    }
                    .gallery_reference_example .caption-label {
                        font-size: 12px !important;
                    }
                    .gallery_reference_example {
                        max-height: 60vh !important;
                    }
                    .small-radio {font-size: 14px !important;}
                    .right-align { display: flex; justify-content: flex-end; }
                    </style>
                    """
                )
        gr.Markdown("# MGM-Omni: An Open-source Omni Model")
        gr.Markdown("### [Github](https://github.com/dvlab-research/MGM-Omni)  [Blog](https://mgm-omni.notion.site/MGM-Omni-An-Open-source-Omni-Chatbot-2395728e0b0180149ac9f24683fc9907)  [Models](https://huggingface.co/collections/wcy1122/mgm-omni-6896075e97317a88825032e1) [Local Demo](http://103.170.5.190:7860/)")
        gr.Markdown("If you like our demo, a like ❤️ and a star 🌟 would be appreciated!")

        # Hidden components for handling uploads and outputs
        audio_input = gr.Audio(visible=True, type="filepath", elem_classes="container-display" )
        image_input = gr.Image(visible=True, type="filepath", elem_classes="container-display" )
        video_input = gr.Video(visible=True, elem_classes="container-display" )
        audio_output = gr.Audio(
            label="Generated Audio",
            autoplay=True,
            streaming=True,
            visible=True,
            elem_classes="container-display" 
        )
        placeholder = placeholder = """
**Welcome to MGM-Omni!** 🎉  

Start chatting or generate voice responses with these options:  

- 🎙️ **Reference Voice**: Choose, upload or record an audio clip for voice clone.
- 📤 **Upload**: Upload video, image, or audio files.   
- ✍️ **Input Mode**:  
  - **Text**: Type your message to chat.
  - **Talk**: Record or upload audio to chat.  
- 🚀 **Generate Mode**:  
  - **Chat**: Engage in a conversation with MGM-Omni.  
  - **TTS**: Text to speech generation with reference voice.

**Get started by typing or uploading below!** 😊
"""
        with gr.Row(equal_height=True):
            with gr.Column(scale=7, min_width="70%"):
                # Chatbot as the main component
                chatbot = gr.Chatbot(
                    type="messages",
                    height=600,
                    placeholder=placeholder,
                    show_label=False
                )
            with gr.Column(scale=3):
                refer_speech = gr.Audio(sources=["microphone", "upload"],
                                    type="filepath",
                                    label="Upload Reference Voice",
                                    elem_classes="media-upload",
                                    value=None,
                                    scale=0
                                    )
                # Restore reference speech gallery in sidebar for better layout
                gr.Markdown("### Voice Clone Examples")
                refer_items = [
                    ("assets/ref_img/Man_ZH.jpg", "assets/ref_audio/Man_ZH.wav", "Man-ZH"),
                    ("assets/ref_img/Man_EN.jpg", "assets/ref_audio/Man_EN.wav", "Man-EN"),
                    ("assets/ref_img/Woman_ZH.jpg", "assets/ref_audio/Woman_ZH.wav", "Woman-ZH"),
                    ("assets/ref_img/Woman_EN.jpg", "assets/ref_audio/Woman_EN.wav", "Woman-EN"),
                    ("assets/ref_img/Old_Woman_ZH.jpg", "assets/ref_audio/Old_Woman_ZH.wav", "Old-Woman-ZH"),
                    ("assets/ref_img/Musk.jpg", "assets/ref_audio/Musk.wav", "Elon Musk"),
                    ("assets/ref_img/Trump.jpg", "assets/ref_audio/Trump.wav", "Donald Trump"),
                    ("assets/ref_img/Jensen.jpg", "assets/ref_audio/Jensen.wav", "Jensen Huang"),
                    ("assets/ref_img/Lebron.jpg", "assets/ref_audio/Lebron.wav", "LeBron James"),
                    ("assets/ref_img/jay.jpg", "assets/ref_audio/Jay.wav", "Jay Chou(周杰伦)"),
                    ("assets/ref_img/GEM.jpg", "assets/ref_audio/GEM.wav", "G.E.M.(邓紫棋)"),
                    ("assets/ref_img/Zhiling.jpg", "assets/ref_audio/Zhiling.wav", "Lin Chi-Ling(林志玲)"),
                    ("assets/ref_img/mabaoguo.jpg", "assets/ref_audio/mabaoguo.wav", "Ma Baoguo(马保国)"),
                    ("assets/ref_img/Taiyi.jpg", "assets/ref_audio/Taiyi.wav", "Taiyi(太乙真人)"),
                    ("assets/ref_img/StarRail_Firefly.jpg", "assets/ref_audio/StarRail_Firefly.wav", "崩铁-流萤"),
                    ("assets/ref_img/genshin_Kokomi.jpg", "assets/ref_audio/genshin_Kokomi.wav", "原神-珊瑚宫心海"),
                    ("assets/ref_img/genshin_Raiden.jpg", "assets/ref_audio/genshin_Raiden.wav", "原神-雷电将军"),
                    ("assets/ref_img/genshin_ZhongLi.jpg", "assets/ref_audio/genshin_ZhongLi.wav", "原神-钟离"),
                    ("assets/ref_img/genshin_Hutao.jpg", "assets/ref_audio/genshin_Hutao.wav", "原神-胡桃"),
                    ("assets/ref_img/Wave_Jinhsi.jpg", "assets/ref_audio/Wave_Jinhsi.wav", "鸣潮-今汐"),
                    ("assets/ref_img/Wave_Carlotta.jpg", "assets/ref_audio/Wave_Carlotta.wav", "鸣潮-珂莱塔"),
                ]
                gallery_items = [(img, label) for img, _, label in refer_items]
                
                
                gallery = gr.Gallery(
                    value=gallery_items,
                    label=None,
                    show_label=False,
                    allow_preview=False,
                    columns=3,  # Adjusted for sidebar width
                    height="auto",
                    object_fit="cover",
                    elem_classes="gallery_reference_example" 
                )
                

                def on_image_click(evt: gr.SelectData):
                    index = evt.index
                    if index is not None and 0 <= index < len(refer_items):
                        audio_path = refer_items[index][1]
                        return gr.update(value=audio_path)
                    return gr.update()

                gallery.select(
                    fn=on_image_click,
                    inputs=None,
                    outputs=refer_speech
                )
                clear_btn = gr.Button("Clear")
                autoplay_checkbox = gr.Checkbox(
                    label="Autoplay",
                    value=True
                )

        text_input = gr.Textbox(
            show_label=False,
            placeholder="Type your message here...",
            container=False
        )
        talk_input = gr.Audio(sources=["microphone", ], visible=False, type="filepath", label="Audio Message" )

        with gr.Row(equal_height=True):
            upload_btn = gr.UploadButton(
                label="Upload",
                file_types=["image", "video", "audio"],
                file_count="single",
                size="md",
                scale=1,
                visible=True
            )
            chat_mode_selector = gr.Radio(
                choices=["Text", "Talk"],
                value="Text",
                show_label=False,
                interactive=True,
                elem_classes="small-radio",
                scale=2,
            )
            submit_mode_selector = gr.Radio(
                choices=["Chat", "TTS"],
                value="Chat",
                show_label=False,
                interactive=True,
                elem_classes="small-radio",
                scale=2,
            )
            gr.Column(scale=3, min_width=0)  
            submit_btn = gr.Button(
                "Send",
                variant="primary",
                min_width=0,
                size="md",
                scale=1,
                visible=True
            )
            tts_submit_btn = gr.Button(
                "TTS Submit",
                variant="primary",
                min_width=0,
                size="md",
                scale=1,
                visible=False
            )

        # State to hold history
        state = gr.State([])

        def handle_upload(file, history):
            if file:
                mime = client_utils.get_mimetype(file.name)
                if mime.startswith("image"):
                    history.append({"role": "user", "content": (file, )})
                    return file, None, None, history
                elif mime.startswith("video"):
                    history.append({"role": "user", "content": (file, )})
                    return None, file, None, history
                elif mime.startswith("audio"):
                    history.append({"role": "user", "content": (file, )})
                    return None, None, file, history
            return None, None, None, history

        upload_btn.upload(
            handle_upload,
            inputs=[upload_btn, chatbot],
            outputs=[image_input, video_input, audio_input, chatbot]
        )

        def clear_chat_history():
            return [], gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value=None), gr.update(value="Text"), gr.update(value="Chat")

        def handle_submit(mode, *inputs):
            if mode == "Chat":
                yield from chat_predict(*inputs)
            else:  # mode == "TTS"
                yield from tts_predict(*inputs)

        # submit_event = gr.on(
        #         triggers=[submit_btn.click, text_input.submit],
        #         fn=chat_predict,
        #         inputs=[
        #             text_input, refer_speech, audio_input, talk_input, image_input, video_input, chatbot,
        #             system_prompt_textbox, autoplay_checkbox
        #         ],
        #         outputs=[
        #             text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot
        #         ])
        # tts_submit_event = gr.on(
        #         triggers=[tts_submit_btn.click],
        #         fn=tts_predict,
        #         inputs=[
        #             text_input, refer_speech, system_prompt_textbox, chatbot, autoplay_checkbox
        #         ],
        #         outputs=[
        #             text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot
        #         ])
        
        submit_event = gr.on(
            triggers=[submit_btn.click, text_input.submit, tts_submit_btn.click], 
            fn=handle_submit,
            inputs=[
                submit_mode_selector,
                text_input, refer_speech, audio_input, talk_input, image_input, video_input, chatbot,
                system_prompt_textbox, autoplay_checkbox
            ],
            outputs=[
                text_input, refer_speech, audio_input, talk_input, image_input, video_input, audio_output, chatbot
            ]
        )

        def chat_switch_mode(mode):
            if mode == "Text":
                return gr.update(visible=True), gr.update(visible=False)
            else: 
                return gr.update(visible=False), gr.update(visible=True)

        def submit_switch_mode(mode):
            if mode == "Chat":
                return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
            else: 
                return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)

        chat_mode_selector.change(
            fn=chat_switch_mode,
            inputs=[chat_mode_selector],
            outputs=[text_input, talk_input]
        )
        
        submit_mode_selector.change(
            fn=submit_switch_mode,
            inputs=[submit_mode_selector],
            outputs=[upload_btn, submit_btn, tts_submit_btn]
        )

        clear_btn.click(fn=clear_chat_history,
                        inputs=None,
                        outputs=[
                            chatbot, text_input, refer_speech, audio_input, talk_input, image_input,
                            video_input, audio_output, chat_mode_selector, submit_mode_selector  
                        ])



        # Custom CSS for ChatGPT-like styling
        demo.css = """
            .gradio-container {
                max-width: 90vw !important;
                margin: auto;
                padding: 20px;
            }
            .chatbot .message {
                border-radius: 10px;
                padding: 10px;
            }
            .chatbot .user {
                background-color: #f0f0f0;
            }
            .chatbot .assistant {
                background-color: #e6e6e6;
            }
            footer {display:none !important}
        """

    demo.queue(default_concurrency_limit=100, max_size=100).launch(max_threads=100,
                                                                share=True,
                                                                show_error=True,
                                                                ssl_certfile=None,
                                                                ssl_keyfile=None,
                                                                ssl_verify=False,
                                                                inbrowser=args.inbrowser)


def _get_args():
    parser = ArgumentParser()
    parser.add_argument('--cpu-only', action='store_true', help='Run demo with CPU only')
    parser.add_argument('--flash-attn2',
                        action='store_true',
                        default=False,
                        help='Enable flash_attention_2 when loading the model.')
    parser.add_argument('--share',
                        action='store_true',
                        default=False,
                        help='Create a publicly shareable link for the interface.')
    parser.add_argument('--inbrowser',
                        action='store_true',
                        default=False,
                        help='Automatically launch the interface in a new tab on the default browser.')
    parser.add_argument('--ui-language', type=str, choices=['en', 'zh'], default='en', help='Display language for the UI.')
    parser.add_argument("--model", type=str, default="wcy1122/MGM-Omni-7B")
    parser.add_argument("--speechlm", type=str, default="wcy1122/MGM-Omni-TTS-2B")
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")

    args = parser.parse_args()
    return args

if __name__ == "__main__":
    args = _get_args()
    tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe = _load_model_processor(args)
    _launch_demo(args, tokenizer, tokenizer_speech, model, image_processor, audio_processor, asr_pipe)