|
|
|
|
|
import os |
|
import chromadb |
|
from dotenv import load_dotenv |
|
import json |
|
|
|
|
|
from langchain_core.documents import Document |
|
from langchain_core.runnables import RunnablePassthrough |
|
from langchain_core.output_parsers import StrOutputParser |
|
from langchain.prompts import ChatPromptTemplate |
|
from langchain.chains.query_constructor.base import AttributeInfo |
|
from langchain.retrievers.self_query.base import SelfQueryRetriever |
|
from langchain.retrievers.document_compressors import LLMChainExtractor, CrossEncoderReranker |
|
from langchain.retrievers import ContextualCompressionRetriever |
|
|
|
|
|
from langchain_community.vectorstores import Chroma |
|
from langchain_community.document_loaders import PyPDFDirectoryLoader, PyPDFLoader |
|
from langchain_community.cross_encoders import HuggingFaceCrossEncoder |
|
from langchain_experimental.text_splitter import SemanticChunker |
|
from langchain.text_splitter import ( |
|
CharacterTextSplitter, |
|
RecursiveCharacterTextSplitter |
|
) |
|
from langchain_core.tools import tool |
|
from langchain.agents import create_tool_calling_agent, AgentExecutor |
|
from langchain_core.prompts import ChatPromptTemplate |
|
|
|
|
|
from langchain_openai import AzureOpenAIEmbeddings, ChatOpenAI |
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
|
|
|
|
from llama_parse import LlamaParse |
|
from llama_index.core import Settings, SimpleDirectoryReader |
|
|
|
|
|
from langgraph.graph import StateGraph, END, START |
|
|
|
|
|
from pydantic import BaseModel |
|
|
|
|
|
from typing import Dict, List, Tuple, Any, TypedDict |
|
|
|
|
|
import numpy as np |
|
from groq import Groq |
|
from mem0 import MemoryClient |
|
import streamlit as st |
|
from datetime import datetime |
|
|
|
|
|
|
|
api_key = os.environ['OPENAI_API_KEY'] |
|
endpoint = os.environ['OPENAI_API_BASE'] |
|
llama_api_key = os.environ['GROQ_API_KEY'] |
|
MEM0_api_key = os.environ['mem0'] |
|
|
|
|
|
|
|
embedding_function = chromadb.utils.embedding_functions.OpenAIEmbeddingFunction( |
|
api_base=endpoint, |
|
api_key=api_key, |
|
model_name='text-embedding-ada-002' |
|
) |
|
|
|
|
|
|
|
|
|
embedding_model = OpenAIEmbeddings( |
|
openai_api_base=endpoint, |
|
openai_api_key=api_key, |
|
model='text-embedding-ada-002' |
|
) |
|
|
|
|
|
|
|
llm = ChatOpenAI( |
|
openai_api_base=endpoint, |
|
openai_api_key=api_key, |
|
model="gpt-4o-mini", |
|
streaming=True |
|
) |
|
|
|
|
|
|
|
Settings.llm = llm |
|
Settings.embedding = embedding_model |
|
|
|
|
|
|
|
class AgentState(TypedDict): |
|
query: str |
|
expanded_query: str |
|
context: List[Dict[str, Any]] |
|
response: str |
|
precision_score: float |
|
groundedness_score: float |
|
groundedness_loop_count: int |
|
precision_loop_count: int |
|
feedback: str |
|
query_feedback: str |
|
groundedness_check: bool |
|
loop_max_iter: int |
|
|
|
def expand_query(state): |
|
""" |
|
Expands the user query to improve retrieval of nutrition disorder-related information. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the user query. |
|
|
|
Returns: |
|
Dict: The updated state with the expanded query. |
|
""" |
|
print("---------Expanding Query---------") |
|
system_message = '''You are a helpful assistant that expands nutrition-related questions to include relevant keywords, concepts, and related conditions for better information retrieval from a nutritional medical reference. For example, if the user asks about "rickets", you might expand the query to include terms like "vitamin D deficiency", "bone health in children", "calcium metabolism", or "treatment of rickets". Ensure the expanded query remains focused on the original intent but covers a broader range of related terms to improve search results.''' |
|
|
|
|
|
expand_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Expand this query: {query} using the feedback: {query_feedback}") |
|
|
|
]) |
|
|
|
chain = expand_prompt | llm | StrOutputParser() |
|
expanded_query = chain.invoke({"query": state['query'], "query_feedback":state["query_feedback"]}) |
|
print("expanded_query", expanded_query) |
|
state["expanded_query"] = expanded_query |
|
return state |
|
|
|
|
|
|
|
vector_store = Chroma( |
|
collection_name="nutritional_hypotheticals", |
|
persist_directory="./nutritional_db", |
|
embedding_function=embedding_model |
|
|
|
) |
|
|
|
|
|
retriever = vector_store.as_retriever( |
|
search_type='similarity', |
|
search_kwargs={'k': 3} |
|
) |
|
|
|
def retrieve_context(state): |
|
""" |
|
Retrieves context from the vector store using the expanded or original query. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and expanded query. |
|
|
|
Returns: |
|
Dict: The updated state with the retrieved context. |
|
""" |
|
print("---------retrieve_context---------") |
|
query = state['expanded_query'] |
|
|
|
|
|
|
|
docs = retriever.invoke(query) |
|
print("Retrieved documents:", docs) |
|
|
|
|
|
context= [ |
|
{ |
|
"content": doc.page_content, |
|
"metadata": doc.metadata |
|
} |
|
for doc in docs |
|
] |
|
state['context'] = context |
|
print("Extracted context with metadata:", context) |
|
|
|
return state |
|
|
|
|
|
|
|
def craft_response(state: Dict) -> Dict: |
|
""" |
|
Generates a response using the retrieved context, focusing on nutrition disorders. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and retrieved context. |
|
|
|
Returns: |
|
Dict: The updated state with the generated response. |
|
""" |
|
print("---------craft_response---------") |
|
system_message = '''You are a helpful and informative AI assistant specialized in providing information about nutrition disorders based on the provided context. Use the context to answer the user's query accurately and comprehensively. If the context does not contain enough information to answer the query, state that you cannot provide a complete answer based on the available information. Always prioritize information from the context and avoid making up information.''' |
|
|
|
response_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Query: {query}\nContext: {context}\n\nfeedback: {feedback}") |
|
]) |
|
|
|
chain = response_prompt | llm |
|
response = chain.invoke({ |
|
"query": state['query'], |
|
"context": "\n".join([doc["content"] for doc in state['context']]), |
|
"feedback": state.get('feedback', '') |
|
}) |
|
state['response'] = response |
|
print("intermediate response: ", response) |
|
|
|
return state |
|
|
|
|
|
|
|
def score_groundedness(state: Dict) -> Dict: |
|
""" |
|
Checks whether the response is grounded in the retrieved context. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the response and context. |
|
|
|
Returns: |
|
Dict: The updated state with the groundedness score. |
|
""" |
|
print("---------check_groundedness---------") |
|
system_message = '''You are an AI assistant that evaluates how well a generated response is supported by the provided context. Your task is to assign a groundedness score between 0 and 1, where 1 means the response is fully supported by the context and 0 means it is not supported at all. Consider if the response introduces information not present in the context or contradicts the context. Provide only the numerical score.''' |
|
|
|
groundedness_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Context: {context}\nResponse: {response}\n\nGroundedness score:") |
|
]) |
|
|
|
chain = groundedness_prompt | llm | StrOutputParser() |
|
groundedness_score = float(chain.invoke({ |
|
"context": "\n".join([doc["content"] for doc in state['context']]), |
|
"response": state['response'] |
|
})) |
|
print("groundedness_score: ", groundedness_score) |
|
state['groundedness_loop_count'] += 1 |
|
print("#########Groundedness Incremented###########") |
|
state['groundedness_score'] = groundedness_score |
|
|
|
return state |
|
|
|
|
|
|
|
def check_precision(state: Dict) -> Dict: |
|
""" |
|
Checks whether the response precisely addresses the user’s query. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and response. |
|
|
|
Returns: |
|
Dict: The updated state with the precision score. |
|
""" |
|
print("---------check_precision---------") |
|
system_message = '''You are an AI assistant that evaluates how well a generated response precisely addresses the user's query. Your task is to assign a precision score between 0 and 1, where 1 means the response is a precise answer to the query and 0 means it is not precise at all. Consider if the response directly answers the question and provides the specific information requested. Provide only the numerical score.''' |
|
|
|
precision_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Query: {query}\nResponse: {response}\n\nPrecision score:") |
|
]) |
|
|
|
chain = precision_prompt | llm | StrOutputParser() |
|
precision_score = float(chain.invoke({ |
|
"query": state['query'], |
|
"response": state['response'] |
|
})) |
|
state['precision_score'] = precision_score |
|
state['precision_loop_count'] +=1 |
|
print("#########Precision Incremented###########") |
|
return state |
|
|
|
|
|
|
|
def refine_response(state: Dict) -> Dict: |
|
""" |
|
Suggests improvements for the generated response. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and response. |
|
|
|
Returns: |
|
Dict: The updated state with response refinement suggestions. |
|
""" |
|
print("---------refine_response---------") |
|
|
|
system_message = '''You are an AI assistant that provides constructive feedback on a generated response to a user's query about nutrition disorders. Your goal is to identify any gaps, ambiguities, or missing details in the response when compared to the original query and the retrieved context. Do not rewrite the response, but suggest specific improvements that could enhance its accuracy, completeness, and relevance to the user's question. Focus on factual correctness and adherence to the provided context.''' |
|
|
|
refine_response_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Query: {query}\nResponse: {response}\n\n" |
|
"What improvements can be made to enhance accuracy and completeness?") |
|
]) |
|
|
|
chain = refine_response_prompt | llm| StrOutputParser() |
|
|
|
|
|
feedback = f"Previous Response: {state['response']}\nSuggestions: {chain.invoke({'query': state['query'], 'response': state['response']})}" |
|
print("feedback: ", feedback) |
|
print(f"State: {state}") |
|
state['feedback'] = feedback |
|
return state |
|
|
|
|
|
|
|
def refine_query(state: Dict) -> Dict: |
|
""" |
|
Suggests improvements for the expanded query. |
|
|
|
Args: |
|
state (Dict): The current state of the workflow, containing the query and expanded query. |
|
|
|
Returns: |
|
Dict: The updated state with query refinement suggestions. |
|
""" |
|
print("---------refine_query---------") |
|
system_message = '''You are an AI assistant that provides constructive feedback on an expanded user query for nutrition disorders. Your goal is to identify any missing details, specific keywords, or scope refinements that can enhance search precision in a nutritional medical reference. Suggest specific improvements that could lead to better retrieval of relevant information.''' |
|
|
|
refine_query_prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_message), |
|
("user", "Original Query: {query}\nExpanded Query: {expanded_query}\n\n" |
|
"What improvements can be made for a better search?") |
|
]) |
|
|
|
chain = refine_query_prompt | llm | StrOutputParser() |
|
|
|
|
|
query_feedback = f"Previous Expanded Query: {state['expanded_query']}\nSuggestions: {chain.invoke({'query': state['query'], 'expanded_query': state['expanded_query']})}" |
|
print("query_feedback: ", query_feedback) |
|
print(f"Groundedness loop count: {state['groundedness_loop_count']}") |
|
state['query_feedback'] = query_feedback |
|
return state |
|
|
|
|
|
|
|
def should_continue_groundedness(state): |
|
"""Decides if groundedness is sufficient or needs improvement.""" |
|
print("---------should_continue_groundedness---------") |
|
print("groundedness loop count: ", state['groundedness_loop_count']) |
|
if state['groundedness_score'] >= 0.7: |
|
print("Moving to precision") |
|
return "check_precision" |
|
else: |
|
if state["groundedness_loop_count"] > state['loop_max_iter']: |
|
return "max_iterations_reached" |
|
else: |
|
print(f"---------Groundedness Score Threshold Not met. Refining Response-----------") |
|
return "refine_response" |
|
|
|
|
|
def should_continue_precision(state: Dict) -> str: |
|
"""Decides if precision is sufficient or needs improvement.""" |
|
print("---------should_continue_precision---------") |
|
print("precision loop count: ", state['precision_loop_count']) |
|
if state['precision_score'] > 0.7: |
|
return "pass" |
|
else: |
|
if state['precision_loop_count'] >= state['loop_max_iter']: |
|
return "max_iterations_reached" |
|
else: |
|
print(f"---------Precision Score Threshold Not met. Refining Query-----------") |
|
return "refine_query" |
|
|
|
|
|
|
|
|
|
def max_iterations_reached(state: Dict) -> Dict: |
|
"""Handles the case when the maximum number of iterations is reached.""" |
|
print("---------max_iterations_reached---------") |
|
"""Handles the case when the maximum number of iterations is reached.""" |
|
response = "I'm unable to refine the response further. Please provide more context or clarify your question." |
|
state['response'] = response |
|
return state |
|
|
|
|
|
|
|
from langgraph.graph import END, StateGraph, START |
|
|
|
def create_workflow() -> StateGraph: |
|
"""Creates the updated workflow for the AI nutrition agent.""" |
|
workflow = StateGraph(AgentState) |
|
|
|
|
|
workflow.add_node("expand_query", expand_query) |
|
workflow.add_node("retrieve_context", retrieve_context) |
|
workflow.add_node("craft_response", craft_response) |
|
workflow.add_node("score_groundedness", score_groundedness) |
|
workflow.add_node("refine_response", refine_response) |
|
workflow.add_node("check_precision", check_precision) |
|
workflow.add_node("refine_query", refine_query) |
|
workflow.add_node("max_iterations_reached", max_iterations_reached) |
|
|
|
|
|
workflow.add_edge(START, "expand_query") |
|
workflow.add_edge("expand_query", "retrieve_context") |
|
workflow.add_edge("retrieve_context", "craft_response") |
|
workflow.add_edge("craft_response", "score_groundedness") |
|
|
|
|
|
workflow.add_conditional_edges( |
|
"score_groundedness", |
|
should_continue_groundedness, |
|
{ |
|
"check_precision": "check_precision", |
|
"refine_response": "refine_response", |
|
"max_iterations_reached": "max_iterations_reached" |
|
} |
|
) |
|
|
|
workflow.add_edge("refine_response", "craft_response") |
|
|
|
|
|
workflow.add_conditional_edges( |
|
"check_precision", |
|
should_continue_precision, |
|
{ |
|
"pass": END, |
|
"refine_query": "refine_query", |
|
"max_iterations_reached": "max_iterations_reached" |
|
} |
|
) |
|
|
|
workflow.add_edge("refine_query", "expand_query") |
|
|
|
workflow.add_edge("max_iterations_reached", END) |
|
|
|
return workflow |
|
|
|
|
|
|
|
|
|
|
|
WORKFLOW_APP = create_workflow().compile() |
|
@tool |
|
def agentic_rag(query: str): |
|
""" |
|
Runs the RAG-based agent with conversation history for context-aware responses. |
|
|
|
Args: |
|
query (str): The current user query. |
|
|
|
Returns: |
|
Dict[str, Any]: The updated state with the generated response and conversation history. |
|
""" |
|
|
|
inputs = { |
|
"query": query, |
|
"expanded_query": "", |
|
"context": [], |
|
"response": "", |
|
"precision_score": 0.0, |
|
"groundedness_score": 0.0, |
|
"groundedness_loop_count": 0, |
|
"precision_loop_count": 0, |
|
"feedback": "", |
|
"query_feedback": "", |
|
"loop_max_iter": 3 |
|
} |
|
|
|
output = WORKFLOW_APP.invoke(inputs) |
|
|
|
return output |
|
|
|
|
|
|
|
llama_guard_client = Groq(api_key=llama_api_key) |
|
|
|
def filter_input_with_llama_guard(user_input, model="meta-llama/llama-guard-4-12b"): |
|
""" |
|
Filters user input using Llama Guard to ensure it is safe. |
|
|
|
Parameters: |
|
- user_input: The input provided by the user. |
|
- model: The Llama Guard model to be used for filtering (default is "meta-llama/llama-guard-4-12b"). |
|
|
|
Returns: |
|
- The filtered and safe input. |
|
""" |
|
try: |
|
|
|
response = llama_guard_client.chat.completions.create( |
|
messages=[{"role": "user", "content": user_input}], |
|
model=model, |
|
) |
|
|
|
return response.choices[0].message.content.strip() |
|
except Exception as e: |
|
print(f"Error with Llama Guard: {e}") |
|
return None |
|
|
|
|
|
|
|
|
|
class NutritionBot: |
|
def __init__(self): |
|
""" |
|
Initialize the NutritionBot class, setting up memory, the LLM client, tools, and the agent executor. |
|
""" |
|
|
|
|
|
self.memory = MemoryClient(api_key=MEM0_api_key) |
|
|
|
|
|
self.client = ChatOpenAI( |
|
model_name="gpt-4o-mini", |
|
api_key=api_key, |
|
openai_api_base = endpoint, |
|
temperature=0 |
|
) |
|
|
|
|
|
tools = [agentic_rag] |
|
|
|
|
|
system_prompt = """You are a caring and knowledgeable Medical Support Agent, specializing in nutrition disorder-related guidance. Your goal is to provide accurate, empathetic, and tailored nutritional recommendations while ensuring a seamless customer experience. |
|
Guidelines for Interaction: |
|
Maintain a polite, professional, and reassuring tone. |
|
Show genuine empathy for customer concerns and health challenges. |
|
Reference past interactions to provide personalized and consistent advice. |
|
Engage with the customer by asking about their food preferences, dietary restrictions, and lifestyle before offering recommendations. |
|
Ensure consistent and accurate information across conversations. |
|
If any detail is unclear or missing, proactively ask for clarification. |
|
Always use the agentic_rag tool to retrieve up-to-date and evidence-based nutrition insights. |
|
Keep track of ongoing issues and follow-ups to ensure continuity in support. |
|
Your primary goal is to help customers make informed nutrition decisions that align with their health conditions and personal preferences. |
|
|
|
""" |
|
|
|
|
|
prompt = ChatPromptTemplate.from_messages([ |
|
("system", system_prompt), |
|
("human", "{input}"), |
|
("placeholder", "{agent_scratchpad}") |
|
]) |
|
|
|
|
|
agent = create_tool_calling_agent(self.client, tools, prompt) |
|
|
|
|
|
self.agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) |
|
|
|
|
|
def store_customer_interaction(self, user_id: str, message: str, response: str, metadata: Dict = None): |
|
""" |
|
Store customer interaction in memory for future reference. |
|
|
|
Args: |
|
user_id (str): Unique identifier for the customer. |
|
message (str): Customer's query or message. |
|
response (str): Chatbot's response. |
|
metadata (Dict, optional): Additional metadata for the interaction. |
|
""" |
|
if metadata is None: |
|
metadata = {} |
|
|
|
|
|
metadata["timestamp"] = datetime.now().isoformat() |
|
|
|
|
|
conversation = [ |
|
{"role": "user", "content": message}, |
|
{"role": "assistant", "content": response} |
|
] |
|
|
|
|
|
self.memory.add( |
|
conversation, |
|
user_id=user_id, |
|
output_format="v1.1", |
|
metadata=metadata |
|
) |
|
|
|
|
|
def get_relevant_history(self, user_id: str, query: str) -> List[Dict]: |
|
""" |
|
Retrieve past interactions relevant to the current query. |
|
|
|
Args: |
|
user_id (str): Unique identifier for the customer. |
|
query (str): The customer's current query. |
|
|
|
Returns: |
|
List[Dict]: A list of relevant past interactions. |
|
""" |
|
return self.memory.search( |
|
query=query, |
|
user_id=user_id, |
|
limit=5 |
|
) |
|
|
|
|
|
def handle_customer_query(self, user_id: str, query: str) -> str: |
|
""" |
|
Process a customer's query and provide a response, taking into account past interactions. |
|
|
|
Args: |
|
user_id (str): Unique identifier for the customer. |
|
query (str): Customer's query. |
|
|
|
Returns: |
|
str: Chatbot's response. |
|
""" |
|
|
|
|
|
relevant_history = self.get_relevant_history(user_id, query) |
|
|
|
|
|
context = "Previous relevant interactions:\n" |
|
for memory in relevant_history: |
|
context += f"Customer: {memory['memory']}\n" |
|
context += f"Support: {memory['memory']}\n" |
|
context += "---\n" |
|
|
|
|
|
print("Context: ", context) |
|
|
|
|
|
prompt = f""" |
|
Context: |
|
{context} |
|
|
|
Current customer query: {query} |
|
|
|
Provide a helpful response that takes into account any relevant past interactions. |
|
""" |
|
|
|
|
|
response = self.agent_executor.invoke({"input": prompt}) |
|
|
|
|
|
self.store_customer_interaction( |
|
user_id=user_id, |
|
message=query, |
|
response=response["output"], |
|
metadata={"type": "support_query"} |
|
) |
|
|
|
|
|
return response['output'] |
|
|
|
|
|
|
|
def nutrition_disorder_streamlit(): |
|
""" |
|
A Streamlit-based UI for the Nutrition Disorder Specialist Agent. |
|
""" |
|
st.title("Nutrition Disorder Specialist") |
|
st.write("Ask me anything about nutrition disorders, symptoms, causes, treatments, and more.") |
|
st.write("Type 'exit' to end the conversation.") |
|
|
|
|
|
if 'chat_history' not in st.session_state: |
|
st.session_state.chat_history = [] |
|
if 'user_id' not in st.session_state: |
|
st.session_state.user_id = None |
|
|
|
|
|
if st.session_state.user_id is None: |
|
with st.form("login_form", clear_on_submit=True): |
|
user_id = st.text_input("Please enter your name to begin:") |
|
submit_button = st.form_submit_button("Login") |
|
if submit_button and user_id: |
|
st.session_state.user_id = user_id |
|
st.session_state.chat_history.append({ |
|
"role": "assistant", |
|
"content": f"Welcome, {user_id}! How can I help you with nutrition disorders today?" |
|
}) |
|
st.session_state.login_submitted = True |
|
if st.session_state.get("login_submitted", False): |
|
st.session_state.pop("login_submitted") |
|
st.rerun() |
|
else: |
|
|
|
for message in st.session_state.chat_history: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
user_query = st.chat_input("Type your question here (or 'exit' to end)...") |
|
if user_query: |
|
if user_query.lower() == "exit": |
|
st.session_state.chat_history.append({"role": "user", "content": "exit"}) |
|
with st.chat_message("user"): |
|
st.write("exit") |
|
goodbye_msg = "Goodbye! Feel free to return if you have more questions about nutrition disorders." |
|
st.session_state.chat_history.append({"role": "assistant", "content": goodbye_msg}) |
|
with st.chat_message("assistant"): |
|
st.write(goodbye_msg) |
|
st.session_state.user_id = None |
|
st.rerun() |
|
return |
|
|
|
st.session_state.chat_history.append({"role": "user", "content": user_query}) |
|
with st.chat_message("user"): |
|
st.write(user_query) |
|
|
|
|
|
filtered_result = filter_input_with_llama_guard(user_query) |
|
filtered_result = filtered_result.replace("\n", " ") |
|
|
|
|
|
if filtered_result in ["safe", "SAFE", "UNSAFE S7", "UNSAFE S6"]: |
|
try: |
|
if 'chatbot' not in st.session_state: |
|
st.session_state.chatbot = NutritionBot() |
|
response = st.session_state.chatbot.handle_customer_query(st.session_state.user_id, user_query) |
|
st.write(response) |
|
st.session_state.chat_history.append({"role": "assistant", "content": response}) |
|
except Exception as e: |
|
error_msg = f"Sorry, I encountered an error while processing your query. Please try again. Error: {str(e)}" |
|
st.write(error_msg) |
|
st.session_state.chat_history.append({"role": "assistant", "content": error_msg}) |
|
else: |
|
inappropriate_msg = "I apologize, but I cannot process that input as it may be inappropriate. Please try again." |
|
st.write(inappropriate_msg) |
|
st.session_state.chat_history.append({"role": "assistant", "content": inappropriate_msg}) |
|
|
|
if __name__ == "__main__": |
|
nutrition_disorder_streamlit() |
|
|