new
Browse files- app.py +116 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from pinecone import Pinecone
|
3 |
+
import os
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
from transformers import AutoProcessor, CLIPModel
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# β
Set Page Config (Must be the first Streamlit command)
|
11 |
+
st.set_page_config(page_title="Image Search App", layout="wide", initial_sidebar_state="expanded")
|
12 |
+
|
13 |
+
# β
Initialize Pinecone
|
14 |
+
pc = Pinecone(api_key="pcsk_6r4DPn_4P9LckhZak3PhebvSebnEBKQZuzYFeJL2X93LtLxZVBxyJ93inBAktefa8usvJC") # Replace with your Pinecone API key
|
15 |
+
index_name = "unsplash-index"
|
16 |
+
unsplash_index = pc.Index(index_name)
|
17 |
+
|
18 |
+
# β
Load CLIP Model & Processor
|
19 |
+
@st.cache_resource
|
20 |
+
def load_clip_model():
|
21 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
22 |
+
processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
23 |
+
return model, processor
|
24 |
+
|
25 |
+
model, processor = load_clip_model()
|
26 |
+
|
27 |
+
# β
Sidebar for Inputs
|
28 |
+
st.sidebar.title("π Search Options")
|
29 |
+
top_k = st.sidebar.slider("π’ Number of Similar Images", 1, 20, 10)
|
30 |
+
|
31 |
+
# π **Option 1: Text-to-Image Search**
|
32 |
+
st.sidebar.subheader("π Search by Text")
|
33 |
+
search_query = st.sidebar.text_input("Enter a description (e.g., 'a cute cat', 'a red car')")
|
34 |
+
text_search_btn = st.sidebar.button("π Search by Text")
|
35 |
+
|
36 |
+
# π **Option 2: Image-to-Image Search**
|
37 |
+
st.sidebar.subheader("πΌοΈ Search by Image")
|
38 |
+
uploaded_file = st.sidebar.file_uploader("Upload an image...", type=["jpg", "png", "jpeg"])
|
39 |
+
image_search_btn = st.sidebar.button("π Search by Image")
|
40 |
+
|
41 |
+
# β
Function to Generate Embedding from Text
|
42 |
+
def get_text_embedding(text):
|
43 |
+
inputs = processor(text=[text], return_tensors="pt", padding=True, truncation=True)
|
44 |
+
with torch.no_grad():
|
45 |
+
text_features = model.get_text_features(**inputs)
|
46 |
+
return text_features.detach().cpu().numpy().flatten().tolist()
|
47 |
+
|
48 |
+
# β
Function to Generate Embedding from Image
|
49 |
+
def get_image_embedding(image):
|
50 |
+
inputs = processor(images=image, return_tensors="pt")
|
51 |
+
with torch.no_grad():
|
52 |
+
image_features = model.get_image_features(**inputs)
|
53 |
+
return image_features.detach().cpu().numpy().flatten().tolist()
|
54 |
+
|
55 |
+
# β
Function to Query Pinecone and Fetch Similar Images
|
56 |
+
def search_similar_images(embedding, top_k=10):
|
57 |
+
results = unsplash_index.query(
|
58 |
+
vector=embedding,
|
59 |
+
top_k=top_k,
|
60 |
+
include_metadata=True,
|
61 |
+
namespace="image-search-dataset"
|
62 |
+
)
|
63 |
+
return results.get("matches", [])
|
64 |
+
|
65 |
+
# β
Streamlit UI
|
66 |
+
st.title("π Image & Text Search with CLIP & Pinecone")
|
67 |
+
|
68 |
+
# π **Process Text-to-Image Search**
|
69 |
+
if search_query and text_search_btn:
|
70 |
+
with st.spinner("Generating embedding..."):
|
71 |
+
embedding = get_text_embedding(search_query)
|
72 |
+
with st.spinner("Searching for similar images..."):
|
73 |
+
matches = search_similar_images(embedding, top_k=top_k)
|
74 |
+
|
75 |
+
st.subheader("π Top Similar Images")
|
76 |
+
if matches:
|
77 |
+
cols = st.columns(3) # Arrange images in 3 columns
|
78 |
+
for i, match in enumerate(matches):
|
79 |
+
cosine_distance = 1 - match.get("score", 0) # Convert similarity score to cosine distance
|
80 |
+
photo_id = match.get("id", "Unknown ID")
|
81 |
+
url = match.get("metadata", {}).get("url", None)
|
82 |
+
|
83 |
+
with cols[i % 3]: # Alternate images in columns
|
84 |
+
st.write(f"π· **Photo ID**: {photo_id} | π **Cosine Distance**: {cosine_distance:.4f}")
|
85 |
+
if url:
|
86 |
+
st.image(url, caption=f"Photo ID: {photo_id}", use_container_width=True)
|
87 |
+
else:
|
88 |
+
st.warning(f"β οΈ Image URL not found for Photo ID: {photo_id}")
|
89 |
+
else:
|
90 |
+
st.warning("β οΈ No similar images found!")
|
91 |
+
|
92 |
+
# π **Process Image-to-Image Search**
|
93 |
+
if uploaded_file and image_search_btn:
|
94 |
+
image = Image.open(uploaded_file).convert("RGB")
|
95 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
96 |
+
|
97 |
+
with st.spinner("Generating embedding..."):
|
98 |
+
embedding = get_image_embedding(image)
|
99 |
+
with st.spinner("Searching for similar images..."):
|
100 |
+
matches = search_similar_images(embedding, top_k=top_k)
|
101 |
+
|
102 |
+
st.subheader("π Top Similar Images")
|
103 |
+
if matches:
|
104 |
+
cols = st.columns(3) # Arrange in 3 columns
|
105 |
+
for i, match in enumerate(matches):
|
106 |
+
cosine_distance = 1 - match.get("score", 0) # Convert similarity score to cosine distance
|
107 |
+
photo_id = match.get("id", "Unknown ID")
|
108 |
+
url = match.get("metadata", {}).get("url", None)
|
109 |
+
|
110 |
+
with cols[i % 3]: # Alternate images in columns
|
111 |
+
st.write(f"π· **Photo ID**: {photo_id} | π **Cosine Distance**: {cosine_distance:.4f}")
|
112 |
+
if url:
|
113 |
+
st.image(url, caption=f"Photo ID: {photo_id}", use_container_width=True)
|
114 |
+
else:
|
115 |
+
st.warning(f"β οΈ Image URL not found for Photo ID: {photo_id}")
|
116 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
requests
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
pinecone
|
6 |
+
numpy
|
7 |
+
Pillow
|