File size: 9,294 Bytes
eff248a cb81036 eff248a dd397fb f60fd5e eff248a dafbeb4 eff248a ffcb97c e7df182 eff248a e7df182 eff248a 3527e3e eff248a f19235b eff248a f6bc452 eff248a ce96f4e f19235b eff248a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import json
import math
import torch
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
from datasets import Dataset
import transformers
from transformers import AutoModelForCausalLM, DataCollatorForLanguageModeling, Trainer, TrainingArguments
from peft import LoraConfig, get_peft_model
from sentence_transformers import SentenceTransformer, util
# -----------------------------
# ENVIRONMENT / CACHE
# -----------------------------
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
os.environ["HF_DATASETS_CACHE"] = "/tmp/huggingface_cache"
os.environ["HF_METRICS_CACHE"] = "/tmp/huggingface_cache"
os.environ["WANDB_MODE"] = "disabled"
# -----------------------------
# SETTINGS
# -----------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = transformers.AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
model = None
# -----------------------------
# LoRA / MoE Modules
# -----------------------------
class LoraLinear(nn.Module):
def __init__(self, in_features, out_features, r=8, lora_alpha=16, lora_dropout=0.05, bias=False):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.r = r
self.scaling = lora_alpha / r if r > 0 else 1.0
self.weight = nn.Parameter(torch.empty(out_features, in_features), requires_grad=False)
self.bias = nn.Parameter(torch.zeros(out_features), requires_grad=False) if bias else None
if r > 0:
self.lora_A = nn.Parameter(torch.zeros((r, in_features)))
self.lora_B = nn.Parameter(torch.zeros((out_features, r)))
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_A, self.lora_B, self.lora_dropout = None, None, None
def forward(self, x):
result = F.linear(x, self.weight, self.bias)
if self.r > 0:
lora_out = self.lora_dropout(x) @ self.lora_A.T @ self.lora_B.T
result = result + self.scaling * lora_out
return result
class MoELoRALinear(nn.Module):
def __init__(self, base_linear, r, num_experts=2, k=1, lora_alpha=16, lora_dropout=0.05):
super().__init__()
self.base_linear = base_linear
self.num_experts = num_experts
self.k = k
self.experts = nn.ModuleList([
LoraLinear(base_linear.in_features, base_linear.out_features, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
for _ in range(num_experts)
])
self.gate = nn.Linear(base_linear.in_features, num_experts)
def forward(self, x):
base_out = self.base_linear(x)
gate_scores = torch.softmax(self.gate(x), dim=-1)
expert_out = 0
for i, expert in enumerate(self.experts):
expert_out += gate_scores[..., i:i+1] * expert(x)
return base_out + expert_out
def replace_proj_with_moe_lora(model, r=8, num_experts=2, k=1, lora_alpha=16, lora_dropout=0.05):
for layer in model.model.layers:
for proj_name in ["up_proj", "down_proj"]:
old = getattr(layer.mlp, proj_name)
moe = MoELoRALinear(
base_linear=old,
r=r,
num_experts=num_experts,
k=k,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
).to(next(old.parameters()).device)
setattr(layer.mlp, proj_name, moe)
return model
# -----------------------------
# DATA PREPROCESSING
# -----------------------------
def preprocess(example):
tokens = tokenizer(example['text'], truncation=True, padding=False)
text = example['text']
assistant_index = text.find("<|assistant|>")
prefix_ids = tokenizer(text[:assistant_index], add_special_tokens=False)['input_ids']
prefix_len = len(prefix_ids)
labels = tokens['input_ids'].copy()
labels[:prefix_len] = [-100] * prefix_len
tokens['labels'] = labels
return tokens
# -----------------------------
# LOAD & TRAIN MODEL
# -----------------------------
def load_and_train(model_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
global model
current_dir = os.path.dirname(os.path.abspath(__file__))
json_file_path = os.path.join(current_dir, 'makemytrip_qa_full.json')
with open(json_file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
df = pd.DataFrame(data)
print(f"Loaded dataset containing {len(df)} questions")
system_prompt = "You are a helpful assistant that provides financial data from MakeMyTrip reports."
training_data = [
{"text": f"<|system|>\n{system_prompt}</s>\n<|user|>\n{row['question']}</s>\n<|assistant|>\n{row['answer']}</s>"}
for _, row in df.iterrows()
]
dataset = Dataset.from_list(training_data)
tokenized_dataset = dataset.map(preprocess, remove_columns=["text"])
base_model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to(device)
model = replace_proj_with_moe_lora(base_model)
peft_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.05, target_modules=["o_proj"], bias="none", task_type="CAUSAL_LM")
model = get_peft_model(model, peft_config)
model.config.use_cache = False
model.gradient_checkpointing_disable()
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = TrainingArguments(
learning_rate=1e-4,
lr_scheduler_type="cosine",
output_dir="./results",
num_train_epochs=10,
per_device_train_batch_size=1,
gradient_accumulation_steps=4,
logging_steps=1,
save_steps=10,
save_total_limit=2,
fp16=True,
bf16=False,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,
data_collator=data_collator
)
print(torch.cuda.is_available()) # True if GPU is detected
print(next(model.parameters()).device) # Shows where your model is
print("Training started")
trainer.train()
model.eval()
# ---------------- Guardrails ----------------
BLOCKED_TERMS = ["weather", "cricket", "movie", "song", "football", "holiday",
"travel", "recipe", "music", "game", "sports", "politics", "election"]
FINANCE_DOMAINS = [
"financial reporting", "balance sheet", "income statement",
"assets and liabilities", "equity", "revenue", "profit and loss",
"goodwill impairment", "cash flow", "dividends", "taxation",
"investment", "valuation", "capital structure", "ownership interests",
"subsidiaries", "shareholders equity", "expenses", "earnings",
"debt", "amortization", "depreciation"
]
finance_embeds = embed_model.encode(FINANCE_DOMAINS, convert_to_tensor=True)
#--------------------------------------------------------------
# GUARD RAIL
#--------------------------------------------------------------
def validate_query(query: str, threshold: float = 0.5) -> bool:
q_lower = query.lower()
if any(bad in q_lower for bad in BLOCKED_TERMS):
print("[Guardrail] Rejected by blocklist.")
return False
q_emb = embed_model.encode(query, convert_to_tensor=True)
sim_scores = util.cos_sim(q_emb, finance_embeds)
max_score = float(sim_scores.max())
if max_score > threshold:
print(f"[Guardrail] Accepted (semantic match {max_score:.2f})")
return True
else:
print(f"[Guardrail] Rejected (low semantic score {max_score:.2f})")
return False
# -----------------------------
# GENERATE ANSWER
# -----------------------------
def generate_answer(prompt, max_tokens=200):
if prompt.strip() == "":
return "Please enter a prompt!"
if not validate_query(prompt):
print("Query rejected: Not finance-related.")
return "Query rejected: Please ask finance-related questions."
system_prompt = "You are a helpful assistant that provides financial data from MakeMyTrip reports."
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=True,
top_p=0.9,
temperature=0.7,
)
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
answer_start_token = '<|assistant|>'
answer_start_index = decoded_output.rfind(answer_start_token)
if answer_start_index != -1:
generated_answer = decoded_output[answer_start_index + len(answer_start_token):].strip()
if generated_answer.endswith('</s>'):
generated_answer = generated_answer[:-len('</s>')].strip()
else:
generated_answer = "Could not extract answer from model output."
return generated_answer |