File size: 9,294 Bytes
eff248a
 
 
 
 
 
 
 
 
 
 
cb81036
eff248a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd397fb
f60fd5e
eff248a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dafbeb4
eff248a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffcb97c
e7df182
eff248a
e7df182
eff248a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527e3e
 
 
eff248a
 
 
 
f19235b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eff248a
 
 
f6bc452
eff248a
 
 
ce96f4e
f19235b
 
 
eff248a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import json
import math
import torch
import pandas as pd
import torch.nn as nn
import torch.nn.functional as F
from datasets import Dataset
import transformers
from transformers import AutoModelForCausalLM, DataCollatorForLanguageModeling, Trainer, TrainingArguments
from peft import LoraConfig, get_peft_model
from sentence_transformers import SentenceTransformer, util

# -----------------------------
# ENVIRONMENT / CACHE
# -----------------------------
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
os.environ["HF_HOME"] = "/tmp/huggingface_cache"
os.environ["HF_DATASETS_CACHE"] = "/tmp/huggingface_cache"
os.environ["HF_METRICS_CACHE"] = "/tmp/huggingface_cache"
os.environ["WANDB_MODE"] = "disabled"

# -----------------------------
# SETTINGS
# -----------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = transformers.AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
model = None

# -----------------------------
# LoRA / MoE Modules
# -----------------------------
class LoraLinear(nn.Module):
    def __init__(self, in_features, out_features, r=8, lora_alpha=16, lora_dropout=0.05, bias=False):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.r = r
        self.scaling = lora_alpha / r if r > 0 else 1.0
        self.weight = nn.Parameter(torch.empty(out_features, in_features), requires_grad=False)
        self.bias = nn.Parameter(torch.zeros(out_features), requires_grad=False) if bias else None

        if r > 0:
            self.lora_A = nn.Parameter(torch.zeros((r, in_features)))
            self.lora_B = nn.Parameter(torch.zeros((out_features, r)))
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_A, self.lora_B, self.lora_dropout = None, None, None

    def forward(self, x):
        result = F.linear(x, self.weight, self.bias)
        if self.r > 0:
            lora_out = self.lora_dropout(x) @ self.lora_A.T @ self.lora_B.T
            result = result + self.scaling * lora_out
        return result

class MoELoRALinear(nn.Module):
    def __init__(self, base_linear, r, num_experts=2, k=1, lora_alpha=16, lora_dropout=0.05):
        super().__init__()
        self.base_linear = base_linear
        self.num_experts = num_experts
        self.k = k
        self.experts = nn.ModuleList([
            LoraLinear(base_linear.in_features, base_linear.out_features, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
            for _ in range(num_experts)
        ])
        self.gate = nn.Linear(base_linear.in_features, num_experts)

    def forward(self, x):
        base_out = self.base_linear(x)
        gate_scores = torch.softmax(self.gate(x), dim=-1)
        expert_out = 0
        for i, expert in enumerate(self.experts):
            expert_out += gate_scores[..., i:i+1] * expert(x)
        return base_out + expert_out

def replace_proj_with_moe_lora(model, r=8, num_experts=2, k=1, lora_alpha=16, lora_dropout=0.05):
    for layer in model.model.layers:
        for proj_name in ["up_proj", "down_proj"]:
            old = getattr(layer.mlp, proj_name)
            moe = MoELoRALinear(
                base_linear=old,
                r=r,
                num_experts=num_experts,
                k=k,
                lora_alpha=lora_alpha,
                lora_dropout=lora_dropout,
            ).to(next(old.parameters()).device)
            setattr(layer.mlp, proj_name, moe)
    return model

# -----------------------------
# DATA PREPROCESSING
# -----------------------------
def preprocess(example):
    tokens = tokenizer(example['text'], truncation=True, padding=False)
    text = example['text']
    assistant_index = text.find("<|assistant|>")
    prefix_ids = tokenizer(text[:assistant_index], add_special_tokens=False)['input_ids']
    prefix_len = len(prefix_ids)
    labels = tokens['input_ids'].copy()
    labels[:prefix_len] = [-100] * prefix_len
    tokens['labels'] = labels
    return tokens

# -----------------------------
# LOAD & TRAIN MODEL
# -----------------------------
def load_and_train(model_id="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
    global model 
    current_dir = os.path.dirname(os.path.abspath(__file__))
    json_file_path = os.path.join(current_dir, 'makemytrip_qa_full.json')

    with open(json_file_path, 'r', encoding='utf-8') as f:
        data = json.load(f)

    df = pd.DataFrame(data)
    print(f"Loaded dataset containing {len(df)} questions")

    system_prompt = "You are a helpful assistant that provides financial data from MakeMyTrip reports."
    training_data = [
        {"text": f"<|system|>\n{system_prompt}</s>\n<|user|>\n{row['question']}</s>\n<|assistant|>\n{row['answer']}</s>"}
        for _, row in df.iterrows()
    ]
    dataset = Dataset.from_list(training_data)
    tokenized_dataset = dataset.map(preprocess, remove_columns=["text"])

    base_model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to(device)
    model = replace_proj_with_moe_lora(base_model)
    peft_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.05, target_modules=["o_proj"], bias="none", task_type="CAUSAL_LM")
    model = get_peft_model(model, peft_config)

    model.config.use_cache = False
    model.gradient_checkpointing_disable()

    data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    training_args = TrainingArguments(
        learning_rate=1e-4,
        lr_scheduler_type="cosine",
        output_dir="./results",
        num_train_epochs=10,
        per_device_train_batch_size=1,
        gradient_accumulation_steps=4,
        logging_steps=1,
        save_steps=10,
        save_total_limit=2,
        fp16=True,
        bf16=False,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_dataset,
        data_collator=data_collator
    )

    print(torch.cuda.is_available())  # True if GPU is detected
    print(next(model.parameters()).device)  # Shows where your model is

    print("Training started")
    trainer.train()
    model.eval()

# ---------------- Guardrails ----------------
BLOCKED_TERMS = ["weather", "cricket", "movie", "song", "football", "holiday",
                 "travel", "recipe", "music", "game", "sports", "politics", "election"]

FINANCE_DOMAINS = [
    "financial reporting", "balance sheet", "income statement",
    "assets and liabilities", "equity", "revenue", "profit and loss",
    "goodwill impairment", "cash flow", "dividends", "taxation",
    "investment", "valuation", "capital structure", "ownership interests",
    "subsidiaries", "shareholders equity", "expenses", "earnings",
    "debt", "amortization", "depreciation"
]
finance_embeds = embed_model.encode(FINANCE_DOMAINS, convert_to_tensor=True)

#--------------------------------------------------------------
#                  GUARD RAIL
#--------------------------------------------------------------
def validate_query(query: str, threshold: float = 0.5) -> bool:
    q_lower = query.lower()
    if any(bad in q_lower for bad in BLOCKED_TERMS):
        print("[Guardrail] Rejected by blocklist.")
        return False
    q_emb = embed_model.encode(query, convert_to_tensor=True)
    sim_scores = util.cos_sim(q_emb, finance_embeds)
    max_score = float(sim_scores.max())
    if max_score > threshold:
        print(f"[Guardrail] Accepted (semantic match {max_score:.2f})")
        return True
    else:
        print(f"[Guardrail] Rejected (low semantic score {max_score:.2f})")
        return False

# -----------------------------
# GENERATE ANSWER
# -----------------------------
def generate_answer(prompt, max_tokens=200):
    if prompt.strip() == "":
        return "Please enter a prompt!"

    if not validate_query(prompt):
        print("Query rejected: Not finance-related.")
        return "Query rejected: Please ask finance-related questions."

    system_prompt = "You are a helpful assistant that provides financial data from MakeMyTrip reports."
    messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}]
    input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(input_text, return_tensors="pt").to(device)

    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_tokens,
            do_sample=True,
            top_p=0.9,
            temperature=0.7,
        )

    decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)

    answer_start_token = '<|assistant|>'
    answer_start_index = decoded_output.rfind(answer_start_token)
    if answer_start_index != -1:
        generated_answer = decoded_output[answer_start_index + len(answer_start_token):].strip()
        if generated_answer.endswith('</s>'):
            generated_answer = generated_answer[:-len('</s>')].strip()
    else:
        generated_answer = "Could not extract answer from model output."

    return generated_answer