Spaces:
Running
Running
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
# Model configuration
|
7 |
+
MID = "apple/FastVLM-0.5B"
|
8 |
+
IMAGE_TOKEN_INDEX = -200
|
9 |
+
|
10 |
+
# Load model and tokenizer once at startup
|
11 |
+
print("Loading model...")
|
12 |
+
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
MID,
|
15 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
16 |
+
device_map="auto",
|
17 |
+
trust_remote_code=True,
|
18 |
+
)
|
19 |
+
print("Model loaded successfully!")
|
20 |
+
|
21 |
+
def caption_image(image, custom_prompt=None):
|
22 |
+
"""
|
23 |
+
Generate a caption for the input image.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
image: PIL Image from Gradio
|
27 |
+
custom_prompt: Optional custom prompt to use instead of default
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
Generated caption text
|
31 |
+
"""
|
32 |
+
if image is None:
|
33 |
+
return "Please upload an image first."
|
34 |
+
|
35 |
+
try:
|
36 |
+
# Convert image to RGB if needed
|
37 |
+
if image.mode != "RGB":
|
38 |
+
image = image.convert("RGB")
|
39 |
+
|
40 |
+
# Use custom prompt or default
|
41 |
+
prompt = custom_prompt if custom_prompt else "Describe this image in detail."
|
42 |
+
|
43 |
+
# Build chat message
|
44 |
+
messages = [
|
45 |
+
{"role": "user", "content": f"<image>\n{prompt}"}
|
46 |
+
]
|
47 |
+
|
48 |
+
# Render to string to place <image> token correctly
|
49 |
+
rendered = tok.apply_chat_template(
|
50 |
+
messages, add_generation_prompt=True, tokenize=False
|
51 |
+
)
|
52 |
+
|
53 |
+
# Split at image token
|
54 |
+
pre, post = rendered.split("<image>", 1)
|
55 |
+
|
56 |
+
# Tokenize text around the image token
|
57 |
+
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
|
58 |
+
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
|
59 |
+
|
60 |
+
# Insert IMAGE token id at placeholder position
|
61 |
+
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
|
62 |
+
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
|
63 |
+
attention_mask = torch.ones_like(input_ids, device=model.device)
|
64 |
+
|
65 |
+
# Preprocess image using model's vision tower
|
66 |
+
px = model.get_vision_tower().image_processor(
|
67 |
+
images=image, return_tensors="pt"
|
68 |
+
)["pixel_values"]
|
69 |
+
px = px.to(model.device, dtype=model.dtype)
|
70 |
+
|
71 |
+
# Generate caption
|
72 |
+
with torch.no_grad():
|
73 |
+
out = model.generate(
|
74 |
+
inputs=input_ids,
|
75 |
+
attention_mask=attention_mask,
|
76 |
+
images=px,
|
77 |
+
max_new_tokens=128,
|
78 |
+
do_sample=False, # Deterministic generation
|
79 |
+
temperature=1.0,
|
80 |
+
)
|
81 |
+
|
82 |
+
# Decode and return the generated text
|
83 |
+
generated_text = tok.decode(out[0], skip_special_tokens=True)
|
84 |
+
|
85 |
+
# Extract only the assistant's response
|
86 |
+
if "assistant" in generated_text:
|
87 |
+
response = generated_text.split("assistant")[-1].strip()
|
88 |
+
else:
|
89 |
+
response = generated_text
|
90 |
+
|
91 |
+
return response
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
return f"Error generating caption: {str(e)}"
|
95 |
+
|
96 |
+
# Create Gradio interface
|
97 |
+
with gr.Blocks(title="FastVLM Image Captioning") as demo:
|
98 |
+
gr.Markdown(
|
99 |
+
"""
|
100 |
+
# 🖼️ FastVLM Image Captioning
|
101 |
+
|
102 |
+
Upload an image to generate a detailed caption using Apple's FastVLM-0.5B model.
|
103 |
+
You can use the default prompt or provide your own custom prompt.
|
104 |
+
"""
|
105 |
+
)
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column():
|
109 |
+
image_input = gr.Image(
|
110 |
+
type="pil",
|
111 |
+
label="Upload Image",
|
112 |
+
elem_id="image-upload"
|
113 |
+
)
|
114 |
+
|
115 |
+
custom_prompt = gr.Textbox(
|
116 |
+
label="Custom Prompt (Optional)",
|
117 |
+
placeholder="Leave empty for default: 'Describe this image in detail.'",
|
118 |
+
lines=2
|
119 |
+
)
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
clear_btn = gr.ClearButton([image_input, custom_prompt])
|
123 |
+
generate_btn = gr.Button("Generate Caption", variant="primary")
|
124 |
+
|
125 |
+
with gr.Column():
|
126 |
+
output = gr.Textbox(
|
127 |
+
label="Generated Caption",
|
128 |
+
lines=8,
|
129 |
+
max_lines=15,
|
130 |
+
show_copy_button=True
|
131 |
+
)
|
132 |
+
|
133 |
+
# Event handlers
|
134 |
+
generate_btn.click(
|
135 |
+
fn=caption_image,
|
136 |
+
inputs=[image_input, custom_prompt],
|
137 |
+
outputs=output
|
138 |
+
)
|
139 |
+
|
140 |
+
# Also generate on image upload if no custom prompt
|
141 |
+
image_input.change(
|
142 |
+
fn=lambda img, prompt: caption_image(img, prompt) if img is not None and not prompt else None,
|
143 |
+
inputs=[image_input, custom_prompt],
|
144 |
+
outputs=output
|
145 |
+
)
|
146 |
+
|
147 |
+
gr.Markdown(
|
148 |
+
"""
|
149 |
+
---
|
150 |
+
**Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
|
151 |
+
|
152 |
+
**Note:** This model runs best on GPU. CPU inference may be slower.
|
153 |
+
"""
|
154 |
+
)
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
demo.launch(
|
158 |
+
share=False,
|
159 |
+
show_error=True,
|
160 |
+
server_name="0.0.0.0",
|
161 |
+
server_port=7860
|
162 |
+
)
|