rahul7star commited on
Commit
12b894c
·
verified ·
1 Parent(s): 0516255

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -121
app.py CHANGED
@@ -8,7 +8,7 @@ import spaces
8
  MID = "apple/FastVLM-0.5B"
9
  IMAGE_TOKEN_INDEX = -200
10
 
11
- # Load model and tokenizer (will be loaded on first GPU allocation)
12
  tok = None
13
  model = None
14
 
@@ -17,157 +17,61 @@ def load_model():
17
  if tok is None or model is None:
18
  print("Loading model...")
19
  tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
 
 
 
 
 
 
 
 
 
20
  model = AutoModelForCausalLM.from_pretrained(
21
  MID,
22
- torch_dtype=torch.float16,
23
- device_map="cuda",
24
  trust_remote_code=True,
25
  )
26
- print("Model loaded successfully!")
27
  return tok, model
28
 
29
  @spaces.GPU(duration=60)
30
  def caption_image(image, custom_prompt=None):
31
- """
32
- Generate a caption for the input image.
33
-
34
- Args:
35
- image: PIL Image from Gradio
36
- custom_prompt: Optional custom prompt to use instead of default
37
-
38
- Returns:
39
- Generated caption text
40
- """
41
  if image is None:
42
  return "Please upload an image first."
43
 
44
  try:
45
- # Load model if not already loaded
46
  tok, model = load_model()
47
- # Convert image to RGB if needed
48
  if image.mode != "RGB":
49
  image = image.convert("RGB")
50
-
51
- # Use custom prompt or default
52
  prompt = custom_prompt if custom_prompt else "Describe this image in detail."
53
-
54
- # Build chat message
55
- messages = [
56
- {"role": "user", "content": f"<image>\n{prompt}"}
57
- ]
58
-
59
- # Render to string to place <image> token correctly
60
- rendered = tok.apply_chat_template(
61
- messages, add_generation_prompt=True, tokenize=False
62
- )
63
-
64
- # Split at image token
65
  pre, post = rendered.split("<image>", 1)
66
-
67
- # Tokenize text around the image token
68
  pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
69
  post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
70
-
71
- # Insert IMAGE token id at placeholder position
72
  img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
73
  input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
74
  attention_mask = torch.ones_like(input_ids, device=model.device)
75
-
76
- # Preprocess image using model's vision tower
77
- px = model.get_vision_tower().image_processor(
78
- images=image, return_tensors="pt"
79
- )["pixel_values"]
80
  px = px.to(model.device, dtype=model.dtype)
81
-
82
- # Generate caption
83
  with torch.no_grad():
84
  out = model.generate(
85
  inputs=input_ids,
86
  attention_mask=attention_mask,
87
  images=px,
88
  max_new_tokens=128,
89
- do_sample=False, # Deterministic generation
90
  temperature=1.0,
91
  )
92
-
93
- # Decode and return the generated text
94
  generated_text = tok.decode(out[0], skip_special_tokens=True)
95
-
96
- # Extract only the assistant's response
97
- if "assistant" in generated_text:
98
- response = generated_text.split("assistant")[-1].strip()
99
- else:
100
- response = generated_text
101
-
102
- return response
103
-
104
  except Exception as e:
105
  return f"Error generating caption: {str(e)}"
106
-
107
- # Create Gradio interface
108
- with gr.Blocks(title="FastVLM Image Captioning") as demo:
109
- gr.Markdown(
110
- """
111
- # 🖼️ FastVLM Image Captioning
112
-
113
- Upload an image to generate a detailed caption using Apple's FastVLM-0.5B model.
114
- You can use the default prompt or provide your own custom prompt.
115
- """
116
- )
117
-
118
- with gr.Row():
119
- with gr.Column():
120
- image_input = gr.Image(
121
- type="pil",
122
- label="Upload Image",
123
- elem_id="image-upload"
124
- )
125
-
126
- custom_prompt = gr.Textbox(
127
- label="Custom Prompt (Optional)",
128
- placeholder="Leave empty for default: 'Describe this image in detail.'",
129
- lines=2
130
- )
131
-
132
- with gr.Row():
133
- clear_btn = gr.ClearButton([image_input, custom_prompt])
134
- generate_btn = gr.Button("Generate Caption", variant="primary")
135
-
136
- with gr.Column():
137
- output = gr.Textbox(
138
- label="Generated Caption",
139
- lines=8,
140
- max_lines=15,
141
- show_copy_button=True
142
- )
143
-
144
- # Event handlers
145
- generate_btn.click(
146
- fn=caption_image,
147
- inputs=[image_input, custom_prompt],
148
- outputs=output
149
- )
150
-
151
- # Also generate on image upload if no custom prompt
152
- image_input.change(
153
- fn=lambda img, prompt: caption_image(img, prompt) if img is not None and not prompt else None,
154
- inputs=[image_input, custom_prompt],
155
- outputs=output
156
- )
157
-
158
- gr.Markdown(
159
- """
160
- ---
161
- **Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B)
162
-
163
- **Note:** This Space uses ZeroGPU for dynamic GPU allocation.
164
- """
165
- )
166
-
167
- if __name__ == "__main__":
168
- demo.launch(
169
- share=False,
170
- show_error=True,
171
- server_name="0.0.0.0",
172
- server_port=7860
173
- )
 
8
  MID = "apple/FastVLM-0.5B"
9
  IMAGE_TOKEN_INDEX = -200
10
 
11
+ # Load model and tokenizer
12
  tok = None
13
  model = None
14
 
 
17
  if tok is None or model is None:
18
  print("Loading model...")
19
  tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True)
20
+
21
+ # Fallback: GPU if available, else CPU
22
+ if torch.cuda.is_available():
23
+ device = "cuda"
24
+ dtype = torch.float16
25
+ else:
26
+ device = "cpu"
27
+ dtype = torch.float32 # safer on CPU
28
+
29
  model = AutoModelForCausalLM.from_pretrained(
30
  MID,
31
+ torch_dtype=dtype,
32
+ device_map=device, # can be "cuda" or "cpu"
33
  trust_remote_code=True,
34
  )
35
+ print(f"Model loaded on {device.upper()} successfully!")
36
  return tok, model
37
 
38
  @spaces.GPU(duration=60)
39
  def caption_image(image, custom_prompt=None):
 
 
 
 
 
 
 
 
 
 
40
  if image is None:
41
  return "Please upload an image first."
42
 
43
  try:
 
44
  tok, model = load_model()
 
45
  if image.mode != "RGB":
46
  image = image.convert("RGB")
47
+
 
48
  prompt = custom_prompt if custom_prompt else "Describe this image in detail."
49
+ messages = [{"role": "user", "content": f"<image>\n{prompt}"}]
50
+ rendered = tok.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
51
+
 
 
 
 
 
 
 
 
 
52
  pre, post = rendered.split("<image>", 1)
 
 
53
  pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids
54
  post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids
55
+
 
56
  img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype)
57
  input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device)
58
  attention_mask = torch.ones_like(input_ids, device=model.device)
59
+
60
+ px = model.get_vision_tower().image_processor(images=image, return_tensors="pt")["pixel_values"]
 
 
 
61
  px = px.to(model.device, dtype=model.dtype)
62
+
 
63
  with torch.no_grad():
64
  out = model.generate(
65
  inputs=input_ids,
66
  attention_mask=attention_mask,
67
  images=px,
68
  max_new_tokens=128,
69
+ do_sample=False,
70
  temperature=1.0,
71
  )
72
+
 
73
  generated_text = tok.decode(out[0], skip_special_tokens=True)
74
+ return generated_text.split("assistant")[-1].strip() if "assistant" in generated_text else generated_text
75
+
 
 
 
 
 
 
 
76
  except Exception as e:
77
  return f"Error generating caption: {str(e)}"