Commit
·
5bb9924
1
Parent(s):
81917a3
Update agent code
Browse files- agent.py +129 -0
- app.py +199 -196
- requirements.txt +8 -2
- tools.py +170 -0
agent.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""GAIA benchmark agent using *smolagents*.
|
2 |
+
|
3 |
+
This module exposes:
|
4 |
+
|
5 |
+
* ``gaia_agent()`` – factory returning a ready‑to‑use agent instance.
|
6 |
+
* ``GAIAAgent`` – subclass of ``smolagents.CodeAgent``.
|
7 |
+
|
8 |
+
The LLM backend is chosen at runtime via the ``MODEL_PROVIDER``
|
9 |
+
environment variable (``hf`` or ``openai``) exactly like *example.py*.
|
10 |
+
"""
|
11 |
+
|
12 |
+
import os
|
13 |
+
from typing import Any, Sequence
|
14 |
+
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
|
17 |
+
# SmolAgents Tools
|
18 |
+
from smolagents import (
|
19 |
+
CodeAgent,
|
20 |
+
DuckDuckGoSearchTool,
|
21 |
+
Tool
|
22 |
+
)
|
23 |
+
|
24 |
+
# Custom Tools from tools.py
|
25 |
+
from tools import (
|
26 |
+
PythonRunTool,
|
27 |
+
ExcelLoaderTool,
|
28 |
+
YouTubeTranscriptTool,
|
29 |
+
AudioTranscriptionTool,
|
30 |
+
SimpleOCRTool,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
# ---------------------------------------------------------------------------
|
35 |
+
# Load the added system prompt from system_prompt.txt (located in the same directory)
|
36 |
+
# ---------------------------------------------------------------------------
|
37 |
+
ADDED_PROMPT_PATH = os.path.join(os.path.dirname(__file__), "added_prompt.txt")
|
38 |
+
with open(ADDED_PROMPT_PATH, "r", encoding="utf-8") as f:
|
39 |
+
ADDED_PROMPT = f.read().strip()
|
40 |
+
|
41 |
+
|
42 |
+
# ---------------------------------------------------------------------------
|
43 |
+
# Model selection helper
|
44 |
+
# ---------------------------------------------------------------------------
|
45 |
+
|
46 |
+
load_dotenv() # Make sure we read credentials from .env when running locally
|
47 |
+
|
48 |
+
def _select_model():
|
49 |
+
"""Return a smolagents *model* as configured by the ``MODEL_PROVIDER`` env."""
|
50 |
+
|
51 |
+
provider = os.getenv("MODEL_PROVIDER", "hf").lower()
|
52 |
+
|
53 |
+
if provider == "hf":
|
54 |
+
from smolagents import InferenceClientModel
|
55 |
+
hf_model_id = os.getenv("HF_MODEL", "HuggingFaceH4/zephyr-7b-beta")
|
56 |
+
hf_token = os.getenv("HF_API_KEY")
|
57 |
+
return InferenceClientModel(
|
58 |
+
model_id=hf_model_id,
|
59 |
+
token=hf_token
|
60 |
+
)
|
61 |
+
|
62 |
+
if provider == "openai":
|
63 |
+
from smolagents import OpenAIServerModel
|
64 |
+
openai_model_id = os.getenv("OPENAI_MODEL", "gpt-3.5-turbo")
|
65 |
+
openai_token = os.getenv("OPENAI_API_KEY")
|
66 |
+
return OpenAIServerModel(
|
67 |
+
model_id=openai_model_id,
|
68 |
+
api_key=openai_token
|
69 |
+
)
|
70 |
+
|
71 |
+
raise ValueError(
|
72 |
+
f"Unsupported MODEL_PROVIDER: {provider!r}. "
|
73 |
+
"Use 'hf' (default) or 'openai'."
|
74 |
+
)
|
75 |
+
|
76 |
+
# ---------------------------------------------------------------------------
|
77 |
+
# Core Agent implementation
|
78 |
+
# ---------------------------------------------------------------------------
|
79 |
+
|
80 |
+
DEFAULT_TOOLS = [
|
81 |
+
DuckDuckGoSearchTool(),
|
82 |
+
PythonRunTool(),
|
83 |
+
ExcelLoaderTool(),
|
84 |
+
YouTubeTranscriptTool(),
|
85 |
+
AudioTranscriptionTool(),
|
86 |
+
SimpleOCRTool(),
|
87 |
+
]
|
88 |
+
|
89 |
+
class GAIAAgent(CodeAgent):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
tools=None
|
93 |
+
):
|
94 |
+
super().__init__(
|
95 |
+
tools=tools or DEFAULT_TOOLS,
|
96 |
+
model=_select_model()
|
97 |
+
)
|
98 |
+
# Append the additional prompt to the existing system prompt
|
99 |
+
self.prompt_templates["system_prompt"] += f"\n\n{ADDED_PROMPT}"
|
100 |
+
|
101 |
+
# Convenience so the object itself can be *called* directly
|
102 |
+
def __call__(self, question: str, **kwargs: Any) -> str:
|
103 |
+
steps = self.run(question, **kwargs)
|
104 |
+
# If steps is a primitive, just return it
|
105 |
+
if isinstance(steps, (int, float, str)):
|
106 |
+
return str(steps).strip()
|
107 |
+
last_step = None
|
108 |
+
for step in steps:
|
109 |
+
last_step = step
|
110 |
+
# Defensive: handle int/float/str directly
|
111 |
+
if isinstance(last_step, (int, float, str)):
|
112 |
+
return str(last_step).strip()
|
113 |
+
answer = getattr(last_step, "answer", None)
|
114 |
+
if answer is not None:
|
115 |
+
return str(answer).strip()
|
116 |
+
return str(last_step).strip()
|
117 |
+
|
118 |
+
# ---------------------------------------------------------------------------
|
119 |
+
# Factory helpers expected by app.py
|
120 |
+
# ---------------------------------------------------------------------------
|
121 |
+
|
122 |
+
def gaia_agent(*, extra_tools: Sequence[Tool] | None = None) -> GAIAAgent:
|
123 |
+
# Compose the toolset: always include all default tools, plus any extras
|
124 |
+
toolset = list(DEFAULT_TOOLS)
|
125 |
+
if extra_tools:
|
126 |
+
toolset.extend(extra_tools)
|
127 |
+
return GAIAAgent(tools=toolset)
|
128 |
+
|
129 |
+
__all__ = ["GAIAAgent", "gaia_agent"]
|
app.py
CHANGED
@@ -1,196 +1,199 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
print(f"
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
#
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
status_message = "Submission Failed:
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.
|
132 |
-
status_message =
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
-
except
|
137 |
-
status_message = f"
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
print("
|
185 |
-
|
186 |
-
|
187 |
-
print(
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
print("
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# --- Our Agent ---
|
7 |
+
from agent import gaia_agent
|
8 |
+
|
9 |
+
# Debugging level. If DEBUG=0 then DEBUG will be False. If DEBUG=1 then DEBUG will be True.
|
10 |
+
DEBUG = os.getenv("DEBUG", "0") == "1"
|
11 |
+
|
12 |
+
# (Keep Constants as is)
|
13 |
+
# --- Constants ---
|
14 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
+
|
16 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
17 |
+
"""
|
18 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
19 |
+
and displays the results.
|
20 |
+
"""
|
21 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
22 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
23 |
+
|
24 |
+
if profile:
|
25 |
+
username= f"{profile.username}"
|
26 |
+
print(f"User logged in: {username}")
|
27 |
+
else:
|
28 |
+
print("User not logged in.")
|
29 |
+
return "Please Login to Hugging Face with the button.", None
|
30 |
+
|
31 |
+
api_url = DEFAULT_API_URL
|
32 |
+
questions_url = f"{api_url}/questions"
|
33 |
+
submit_url = f"{api_url}/submit"
|
34 |
+
|
35 |
+
# 1. Instantiate Agent (now using smolagents)
|
36 |
+
try:
|
37 |
+
agent = gaia_agent()
|
38 |
+
print("SmolAgent instantiated successfully.")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error instantiating agent: {e}")
|
41 |
+
return f"Error initializing agent: {e}", None
|
42 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( useful for others so please keep it public)
|
43 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
44 |
+
print(agent_code)
|
45 |
+
|
46 |
+
# 2. Fetch Questions
|
47 |
+
print(f"Fetching questions from: {questions_url}")
|
48 |
+
import json
|
49 |
+
|
50 |
+
try:
|
51 |
+
response = requests.get(questions_url, timeout=15)
|
52 |
+
response.raise_for_status()
|
53 |
+
questions_data = response.json()
|
54 |
+
if not questions_data:
|
55 |
+
print("Fetched questions list is empty.")
|
56 |
+
return "Fetched questions list is empty or invalid format.", None
|
57 |
+
print(f"Fetched {len(questions_data)} questions.")
|
58 |
+
except json.JSONDecodeError as e:
|
59 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
60 |
+
print(f"Response text: {response.text[:500]}")
|
61 |
+
return f"Error decoding server response for questions: {e}", None
|
62 |
+
except requests.exceptions.RequestException as e:
|
63 |
+
print(f"Error fetching questions: {e}")
|
64 |
+
return f"Error fetching questions: {e}", None
|
65 |
+
except Exception as e:
|
66 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
67 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
68 |
+
|
69 |
+
# 3. Run the Agent
|
70 |
+
results_log = []
|
71 |
+
answers_payload = []
|
72 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
73 |
+
for item in questions_data:
|
74 |
+
task_id = item.get("task_id")
|
75 |
+
question_text = item.get("question")
|
76 |
+
if not task_id or question_text is None:
|
77 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
78 |
+
continue
|
79 |
+
try:
|
80 |
+
submitted_answer = agent(question_text)
|
81 |
+
# --- DEBUG LOGGING ---
|
82 |
+
if DEBUG:
|
83 |
+
print(f"[DEBUG] Task {task_id}: Answer type: {type(submitted_answer)}, Value: {repr(submitted_answer)}")
|
84 |
+
else:
|
85 |
+
print(f"[{task_id}] {question_text[:50]}... → {submitted_answer[:40]}")
|
86 |
+
|
87 |
+
# Force string type here just in case (defensive)
|
88 |
+
submitted_answer = str(submitted_answer).strip()
|
89 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
90 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
91 |
+
except Exception as e:
|
92 |
+
print(f"Error running agent on task {task_id}: {e}")
|
93 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
94 |
+
|
95 |
+
if not answers_payload:
|
96 |
+
print("Agent did not produce any answers to submit.")
|
97 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
98 |
+
|
99 |
+
# 4. Prepare Submission
|
100 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
101 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
102 |
+
print(status_update)
|
103 |
+
|
104 |
+
# 5. Submit
|
105 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
106 |
+
try:
|
107 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
108 |
+
response.raise_for_status()
|
109 |
+
result_data = response.json()
|
110 |
+
final_status = (
|
111 |
+
f"Submission Successful!\n"
|
112 |
+
f"User: {result_data.get('username')}\n"
|
113 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
114 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
115 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
116 |
+
)
|
117 |
+
print("Submission successful.")
|
118 |
+
results_df = pd.DataFrame(results_log)
|
119 |
+
return final_status, results_df
|
120 |
+
except requests.exceptions.HTTPError as e:
|
121 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
122 |
+
try:
|
123 |
+
error_json = e.response.json()
|
124 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
125 |
+
except requests.exceptions.JSONDecodeError:
|
126 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
127 |
+
status_message = f"Submission Failed: {error_detail}"
|
128 |
+
print(status_message)
|
129 |
+
results_df = pd.DataFrame(results_log)
|
130 |
+
return status_message, results_df
|
131 |
+
except requests.exceptions.Timeout:
|
132 |
+
status_message = "Submission Failed: The request timed out."
|
133 |
+
print(status_message)
|
134 |
+
results_df = pd.DataFrame(results_log)
|
135 |
+
return status_message, results_df
|
136 |
+
except requests.exceptions.RequestException as e:
|
137 |
+
status_message = f"Submission Failed: Network error - {e}"
|
138 |
+
print(status_message)
|
139 |
+
results_df = pd.DataFrame(results_log)
|
140 |
+
return status_message, results_df
|
141 |
+
except Exception as e:
|
142 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
143 |
+
print(status_message)
|
144 |
+
results_df = pd.DataFrame(results_log)
|
145 |
+
return status_message, results_df
|
146 |
+
|
147 |
+
|
148 |
+
# --- Build Gradio Interface using Blocks ---
|
149 |
+
with gr.Blocks() as demo:
|
150 |
+
gr.Markdown("# Agent Evaluation Runner")
|
151 |
+
gr.Markdown(
|
152 |
+
"""
|
153 |
+
**Instructions:**
|
154 |
+
|
155 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
156 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
157 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
158 |
+
|
159 |
+
---
|
160 |
+
**Disclaimers:**
|
161 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
162 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
163 |
+
"""
|
164 |
+
)
|
165 |
+
|
166 |
+
gr.LoginButton()
|
167 |
+
|
168 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
169 |
+
|
170 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
171 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
172 |
+
|
173 |
+
run_button.click(
|
174 |
+
fn=run_and_submit_all,
|
175 |
+
outputs=[status_output, results_table]
|
176 |
+
)
|
177 |
+
|
178 |
+
if __name__ == "__main__":
|
179 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
180 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
181 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
182 |
+
|
183 |
+
if space_host_startup:
|
184 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
185 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
186 |
+
else:
|
187 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
188 |
+
|
189 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
190 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
191 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
192 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
193 |
+
else:
|
194 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
195 |
+
|
196 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
197 |
+
|
198 |
+
print("Launching Gradio Interface for Agent Evaluation…")
|
199 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
CHANGED
@@ -1,2 +1,8 @@
|
|
1 |
-
gradio
|
2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
requests
|
3 |
+
pandas
|
4 |
+
smolagents[openai]
|
5 |
+
duckduckgo-search
|
6 |
+
youtube-transcript-api
|
7 |
+
pytesseract
|
8 |
+
pillow
|
tools.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Custom tools for smolagents GAIA agent
|
2 |
+
from __future__ import annotations
|
3 |
+
import contextlib
|
4 |
+
import io
|
5 |
+
import os
|
6 |
+
from typing import Any, Dict, List
|
7 |
+
|
8 |
+
from smolagents import Tool
|
9 |
+
|
10 |
+
# ---- 1. PythonRunTool ------------------------------------------------------
|
11 |
+
class PythonRunTool(Tool):
|
12 |
+
name = "python_run"
|
13 |
+
description = """
|
14 |
+
Execute trusted Python code and return printed output + repr() of the last expression (or _result variable).
|
15 |
+
"""
|
16 |
+
inputs = {
|
17 |
+
"code": {
|
18 |
+
"type": "string",
|
19 |
+
"description": "Python code to execute",
|
20 |
+
"required": True
|
21 |
+
}
|
22 |
+
}
|
23 |
+
output_type = "string"
|
24 |
+
|
25 |
+
def forward(self, code: str) -> str:
|
26 |
+
buf, ns = io.StringIO(), {}
|
27 |
+
last = None
|
28 |
+
try:
|
29 |
+
with contextlib.redirect_stdout(buf):
|
30 |
+
exec(compile(code, "<agent-python>", "exec"), {}, ns)
|
31 |
+
last = ns.get("_result", None)
|
32 |
+
except Exception as e:
|
33 |
+
raise RuntimeError(f"PythonRunTool error: {e}") from e
|
34 |
+
out = buf.getvalue()
|
35 |
+
# Always return a string
|
36 |
+
result = (out + (repr(last) if last is not None else "")).strip()
|
37 |
+
return str(result)
|
38 |
+
|
39 |
+
# ---- 2. ExcelLoaderTool ----------------------------------------------------
|
40 |
+
class ExcelLoaderTool(Tool):
|
41 |
+
name = "load_spreadsheet"
|
42 |
+
description = """
|
43 |
+
Read .xlsx/.xls/.csv from disk and return rows as a list of dictionaries with string keys.
|
44 |
+
"""
|
45 |
+
inputs = {
|
46 |
+
"path": {
|
47 |
+
"type": "string",
|
48 |
+
"description": "Path to .csv/.xls/.xlsx file",
|
49 |
+
"required": True
|
50 |
+
},
|
51 |
+
"sheet": {
|
52 |
+
"type": "string",
|
53 |
+
"description": "Sheet name or index (optional, required for Excel files only)",
|
54 |
+
"required": False,
|
55 |
+
"default": "",
|
56 |
+
"nullable": True
|
57 |
+
}
|
58 |
+
}
|
59 |
+
output_type = "array"
|
60 |
+
|
61 |
+
def forward(self, path: str, sheet: str | int | None = None) -> str:
|
62 |
+
import pandas as pd
|
63 |
+
if not os.path.isfile(path):
|
64 |
+
raise FileNotFoundError(path)
|
65 |
+
ext = os.path.splitext(path)[1].lower()
|
66 |
+
if sheet == "":
|
67 |
+
sheet = None
|
68 |
+
if ext == ".csv":
|
69 |
+
df = pd.read_csv(path)
|
70 |
+
else:
|
71 |
+
df = pd.read_excel(path, sheet_name=sheet)
|
72 |
+
if isinstance(df, dict):
|
73 |
+
# If user did not specify a sheet, use the first one found
|
74 |
+
first_sheet = next(iter(df))
|
75 |
+
df = df[first_sheet]
|
76 |
+
records = [{str(k): v for k, v in row.items()} for row in df.to_dict(orient="records")]
|
77 |
+
# Always return a string
|
78 |
+
return str(records)
|
79 |
+
|
80 |
+
# ---- 3. YouTubeTranscriptTool ---------------------------------------------
|
81 |
+
class YouTubeTranscriptTool(Tool):
|
82 |
+
name = "youtube_transcript"
|
83 |
+
description = """
|
84 |
+
Return the subtitles of a YouTube URL using youtube-transcript-api.
|
85 |
+
"""
|
86 |
+
inputs = {
|
87 |
+
"url": {
|
88 |
+
"type": "string",
|
89 |
+
"description": "YouTube URL",
|
90 |
+
"required": True
|
91 |
+
},
|
92 |
+
"lang": {
|
93 |
+
"type": "string",
|
94 |
+
"description": "Transcript language (default: en)",
|
95 |
+
"required": False,
|
96 |
+
"default": "en",
|
97 |
+
"nullable": True
|
98 |
+
}
|
99 |
+
}
|
100 |
+
output_type = "string"
|
101 |
+
|
102 |
+
def forward(self, url: str, lang: str = "en") -> str:
|
103 |
+
from urllib.parse import urlparse, parse_qs
|
104 |
+
from youtube_transcript_api._api import YouTubeTranscriptApi
|
105 |
+
vid = parse_qs(urlparse(url).query).get("v", [None])[0] or url.split("/")[-1]
|
106 |
+
data = YouTubeTranscriptApi.get_transcript(vid, languages=[lang, "en", "en-US", "en-GB"])
|
107 |
+
text = " ".join(d["text"] for d in data).strip()
|
108 |
+
return str(text)
|
109 |
+
|
110 |
+
# ---- 4. AudioTranscriptionTool --------------------------------------------
|
111 |
+
class AudioTranscriptionTool(Tool):
|
112 |
+
name = "transcribe_audio"
|
113 |
+
description = """
|
114 |
+
Transcribe an audio file with OpenAI Whisper, returns plain text."
|
115 |
+
"""
|
116 |
+
inputs = {
|
117 |
+
"path": {
|
118 |
+
"type": "string",
|
119 |
+
"description": "Path to audio file",
|
120 |
+
"required": True
|
121 |
+
},
|
122 |
+
"model": {
|
123 |
+
"type": "string",
|
124 |
+
"description": "Model name for transcription (default: whisper-1)",
|
125 |
+
"required": False,
|
126 |
+
"default": "whisper-1",
|
127 |
+
"nullable": True
|
128 |
+
}
|
129 |
+
}
|
130 |
+
output_type = "string"
|
131 |
+
|
132 |
+
def forward(self, path: str, model: str = "whisper-1") -> str:
|
133 |
+
import openai
|
134 |
+
if not os.path.isfile(path):
|
135 |
+
raise FileNotFoundError(path)
|
136 |
+
client = openai.OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
137 |
+
with open(path, "rb") as fp:
|
138 |
+
transcript = client.audio.transcriptions.create(model=model, file=fp)
|
139 |
+
return str(transcript.text.strip())
|
140 |
+
|
141 |
+
# ---- 5. SimpleOCRTool ------------------------------------------------------
|
142 |
+
class SimpleOCRTool(Tool):
|
143 |
+
name = "image_ocr"
|
144 |
+
description = """
|
145 |
+
Return any text spotted in an image via pytesseract OCR.
|
146 |
+
"""
|
147 |
+
inputs = {
|
148 |
+
"path": {
|
149 |
+
"type": "string",
|
150 |
+
"description": "Path to image file",
|
151 |
+
"required": True
|
152 |
+
}
|
153 |
+
}
|
154 |
+
output_type = "string"
|
155 |
+
|
156 |
+
def forward(self, path: str) -> str:
|
157 |
+
from PIL import Image
|
158 |
+
import pytesseract
|
159 |
+
if not os.path.isfile(path):
|
160 |
+
raise FileNotFoundError(path)
|
161 |
+
return str(pytesseract.image_to_string(Image.open(path)).strip())
|
162 |
+
|
163 |
+
# ---------------------------------------------------------------------------
|
164 |
+
__all__ = [
|
165 |
+
"PythonRunTool",
|
166 |
+
"ExcelLoaderTool",
|
167 |
+
"YouTubeTranscriptTool",
|
168 |
+
"AudioTranscriptionTool",
|
169 |
+
"SimpleOCRTool",
|
170 |
+
]
|