Added hybrid.py and store.
Browse files- .gitattributes +1 -0
- app.py +9 -1
- hybrid.py +293 -0
- pufendorfdocs.store +3 -0
- vector3_db/a1b2bf9f-4f30-46a6-a6c2-b6ca99effce9/length.bin +1 -1
- vector3_db/chroma.sqlite3 +1 -1
.gitattributes
CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
37 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
*.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
37 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
*.store filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -11,7 +11,13 @@ import json
|
|
11 |
from sentence_transformers import CrossEncoder
|
12 |
import numpy as np
|
13 |
from datetime import datetime
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# openAI API credits:
|
16 |
# https://platform.openai.com/settings/organization/billing/overview
|
17 |
|
@@ -414,4 +420,6 @@ with gr.Blocks(theme=theme) as demo_blocks:
|
|
414 |
# demo.launch(share=True)
|
415 |
if __name__ == "__main__":
|
416 |
print("Starting")
|
|
|
|
|
417 |
demo_blocks.launch()
|
|
|
11 |
from sentence_transformers import CrossEncoder
|
12 |
import numpy as np
|
13 |
from datetime import datetime
|
14 |
+
from hybrid import (
|
15 |
+
embedding_model,
|
16 |
+
reranker_model,
|
17 |
+
create_hybrid_retriever,
|
18 |
+
retrieve,
|
19 |
+
InMemoryDocumentStore,
|
20 |
+
)
|
21 |
# openAI API credits:
|
22 |
# https://platform.openai.com/settings/organization/billing/overview
|
23 |
|
|
|
420 |
# demo.launch(share=True)
|
421 |
if __name__ == "__main__":
|
422 |
print("Starting")
|
423 |
+
doc_store = InMemoryDocumentStore().load_from_disk("pufendorfdocs.store")
|
424 |
+
print(f"Number of documents: {doc_store.count_documents()}.")
|
425 |
demo_blocks.launch()
|
hybrid.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
4 |
+
from datasets import load_from_disk
|
5 |
+
from haystack import Document
|
6 |
+
from haystack.components.writers import DocumentWriter
|
7 |
+
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
8 |
+
from haystack.components.preprocessors.document_splitter import DocumentSplitter
|
9 |
+
from haystack import Pipeline
|
10 |
+
from haystack.components.retrievers.in_memory import (
|
11 |
+
InMemoryBM25Retriever,
|
12 |
+
InMemoryEmbeddingRetriever,
|
13 |
+
)
|
14 |
+
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
15 |
+
from haystack.components.joiners import DocumentJoiner
|
16 |
+
|
17 |
+
# from haystack.components.rankers import TransformersSimilarityRanker
|
18 |
+
from haystack.components.rankers import SentenceTransformersSimilarityRanker
|
19 |
+
from haystack.document_stores.types import DuplicatePolicy
|
20 |
+
from haystack.components.converters import PyPDFToDocument
|
21 |
+
from haystack.components.preprocessors import DocumentCleaner
|
22 |
+
from haystack.components.builders import PromptBuilder
|
23 |
+
from haystack_integrations.components.generators.ollama import OllamaGenerator
|
24 |
+
from pathlib import Path
|
25 |
+
from haystack.components.converters import DOCXToDocument
|
26 |
+
import re
|
27 |
+
import argparse
|
28 |
+
|
29 |
+
|
30 |
+
"""
|
31 |
+
python hybrid.py -c newstore.store │
|
32 |
+
python hybrid.py -r newstore.store -q "who is pufendorf"
|
33 |
+
"""
|
34 |
+
|
35 |
+
# embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
|
36 |
+
embedding_model = "sentence-transformers/all-MiniLM-L12-v2"
|
37 |
+
|
38 |
+
# see https://huggingface.co/BAAI/bge-m3
|
39 |
+
reranker_model = "BAAI/bge-reranker-base"
|
40 |
+
|
41 |
+
|
42 |
+
def build_store_from_dir(dir_path: str) -> InMemoryDocumentStore:
|
43 |
+
root = Path(dir_path)
|
44 |
+
pdfs = sorted(str(p) for p in root.rglob("*.pdf"))
|
45 |
+
docxs = sorted(str(p) for p in root.rglob("*.docx"))
|
46 |
+
|
47 |
+
print(pdfs)
|
48 |
+
print(docxs)
|
49 |
+
|
50 |
+
pdf_conv = PyPDFToDocument()
|
51 |
+
docx_conv = DOCXToDocument()
|
52 |
+
|
53 |
+
docs = []
|
54 |
+
if pdfs:
|
55 |
+
out = pdf_conv.run(sources=pdfs, meta=[{"source": p} for p in pdfs])
|
56 |
+
docs.extend(out["documents"])
|
57 |
+
if docxs:
|
58 |
+
out = docx_conv.run(sources=docxs, meta=[{"source": p} for p in docxs])
|
59 |
+
docs.extend(out["documents"])
|
60 |
+
|
61 |
+
return docs
|
62 |
+
|
63 |
+
|
64 |
+
# Example usage:
|
65 |
+
# store = build_store_from_dir("/path/to/folder")
|
66 |
+
# print(len(store.filter_documents({})))
|
67 |
+
|
68 |
+
|
69 |
+
# As above, but splits the contents into sentences.
|
70 |
+
def create_index_split(docs, doc_store, split_length=5, split_overlap=1):
|
71 |
+
document_splitter = DocumentSplitter(
|
72 |
+
split_by="sentence", split_length=split_length, split_overlap=split_overlap
|
73 |
+
)
|
74 |
+
document_embedder = SentenceTransformersDocumentEmbedder(
|
75 |
+
model=embedding_model,
|
76 |
+
)
|
77 |
+
document_writer = DocumentWriter(doc_store, policy=DuplicatePolicy.SKIP)
|
78 |
+
|
79 |
+
indexing_pipeline = Pipeline()
|
80 |
+
indexing_pipeline.add_component("document_splitter", document_splitter)
|
81 |
+
indexing_pipeline.add_component("document_embedder", document_embedder)
|
82 |
+
indexing_pipeline.add_component("document_writer", document_writer)
|
83 |
+
|
84 |
+
indexing_pipeline.connect("document_splitter", "document_embedder")
|
85 |
+
indexing_pipeline.connect("document_embedder", "document_writer")
|
86 |
+
|
87 |
+
indexing_pipeline.run({"document_splitter": {"documents": docs}})
|
88 |
+
|
89 |
+
hybrid_retrieval = create_hybrid_retriever(doc_store)
|
90 |
+
return hybrid_retrieval
|
91 |
+
|
92 |
+
|
93 |
+
# Just the retriever pipeline on a document store.
|
94 |
+
# Creates an embedding and BM25 retriever on the doc_store.
|
95 |
+
def create_hybrid_retriever(doc_store):
|
96 |
+
text_embedder = SentenceTransformersTextEmbedder(
|
97 |
+
model=embedding_model,
|
98 |
+
)
|
99 |
+
embedding_retriever = InMemoryEmbeddingRetriever(doc_store)
|
100 |
+
bm25_retriever = InMemoryBM25Retriever(doc_store)
|
101 |
+
|
102 |
+
document_joiner = DocumentJoiner()
|
103 |
+
# ranker = TransformersSimilarityRanker(model=reranker_model)
|
104 |
+
# Needs haystack-ai >= 2.14
|
105 |
+
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
|
106 |
+
|
107 |
+
hybrid_retrieval = Pipeline()
|
108 |
+
hybrid_retrieval.add_component("text_embedder", text_embedder)
|
109 |
+
hybrid_retrieval.add_component("embedding_retriever", embedding_retriever)
|
110 |
+
hybrid_retrieval.add_component("bm25_retriever", bm25_retriever)
|
111 |
+
hybrid_retrieval.add_component("document_joiner", document_joiner)
|
112 |
+
hybrid_retrieval.add_component("ranker", ranker)
|
113 |
+
|
114 |
+
hybrid_retrieval.connect("text_embedder", "embedding_retriever")
|
115 |
+
hybrid_retrieval.connect("bm25_retriever", "document_joiner")
|
116 |
+
hybrid_retrieval.connect("embedding_retriever", "document_joiner")
|
117 |
+
hybrid_retrieval.connect("document_joiner", "ranker")
|
118 |
+
|
119 |
+
return hybrid_retrieval
|
120 |
+
|
121 |
+
|
122 |
+
def create_embedding_retriever(doc_store):
|
123 |
+
text_embedder = SentenceTransformersTextEmbedder(
|
124 |
+
model=embedding_model, # "BAAI/bge-small-en-v1.5" #, device=ComponentDevice.from_str("cuda:0")
|
125 |
+
)
|
126 |
+
embedding_retriever = InMemoryEmbeddingRetriever(doc_store)
|
127 |
+
|
128 |
+
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
|
129 |
+
|
130 |
+
embedding_retrieval = Pipeline()
|
131 |
+
embedding_retrieval.add_component("text_embedder", text_embedder)
|
132 |
+
embedding_retrieval.add_component("embedding_retriever", embedding_retriever)
|
133 |
+
embedding_retrieval.add_component("ranker", ranker)
|
134 |
+
|
135 |
+
embedding_retrieval.connect("text_embedder", "embedding_retriever")
|
136 |
+
embedding_retrieval.connect("embedding_retriever", "ranker")
|
137 |
+
|
138 |
+
return embedding_retrieval
|
139 |
+
|
140 |
+
|
141 |
+
def create_bm25_retriever(doc_store):
|
142 |
+
bm25_retriever = InMemoryBM25Retriever(doc_store)
|
143 |
+
|
144 |
+
document_joiner = DocumentJoiner()
|
145 |
+
ranker = SentenceTransformersSimilarityRanker(model=reranker_model)
|
146 |
+
|
147 |
+
bm25_retrieval = Pipeline()
|
148 |
+
bm25_retrieval.add_component("bm25_retriever", bm25_retriever)
|
149 |
+
bm25_retrieval.add_component("ranker", ranker)
|
150 |
+
bm25_retrieval.connect("bm25_retriever", "ranker")
|
151 |
+
|
152 |
+
return bm25_retrieval
|
153 |
+
|
154 |
+
|
155 |
+
# Run the pre-defined retrievers, returns the top_k best documents.
|
156 |
+
# We can filter the doc store if we find a name in the query.
|
157 |
+
# filters = {
|
158 |
+
# "operator": "AND",
|
159 |
+
# "conditions": [
|
160 |
+
# {"field": "meta.type", "operator": "==", "value": "article"},
|
161 |
+
# {"field": "meta.genre", "operator": "in", "value": ["economy", "politics"]},
|
162 |
+
# ],
|
163 |
+
# }
|
164 |
+
# results = DocumentStore.filter_documents(filters=filters)
|
165 |
+
def retrieve(retriever, query, top_k=8, scale=True):
|
166 |
+
result = retriever.run(
|
167 |
+
{
|
168 |
+
"text_embedder": {"text": query},
|
169 |
+
"bm25_retriever": {
|
170 |
+
"query": query,
|
171 |
+
"top_k": top_k,
|
172 |
+
"scale_score": scale,
|
173 |
+
# "filters": {"field": "meta.researcher_name",
|
174 |
+
# "operator": "==",
|
175 |
+
# "value": "P. Berck"}
|
176 |
+
},
|
177 |
+
"embedding_retriever": {"top_k": top_k, "scale_score": True},
|
178 |
+
"ranker": {"query": query, "top_k": top_k, "scale_score": True},
|
179 |
+
}
|
180 |
+
)
|
181 |
+
# print(result)
|
182 |
+
# pretty_print_results(result["ranker"])
|
183 |
+
return result["ranker"]["documents"]
|
184 |
+
|
185 |
+
|
186 |
+
def retrieve_embedded(retriever, query, top_k=8, scale=True):
|
187 |
+
result = retriever.run(
|
188 |
+
{
|
189 |
+
"text_embedder": {"text": query},
|
190 |
+
"embedding_retriever": {"top_k": top_k, "scale_score": scale},
|
191 |
+
"ranker": {"query": query, "top_k": top_k, "scale_score": scale},
|
192 |
+
}
|
193 |
+
)
|
194 |
+
return result["ranker"]["documents"]
|
195 |
+
|
196 |
+
|
197 |
+
def retrieve_bm25(retriever, query, top_k=8, scale=True):
|
198 |
+
result = retriever.run(
|
199 |
+
{
|
200 |
+
"bm25_retriever": {
|
201 |
+
"query": query,
|
202 |
+
"top_k": top_k,
|
203 |
+
"scale_score": scale,
|
204 |
+
# "filters": {"field": "meta.researcher_name",
|
205 |
+
# "operator": "==",
|
206 |
+
# "value": "P. Berck"}
|
207 |
+
},
|
208 |
+
"ranker": {"query": query, "top_k": top_k, "scale_score": True},
|
209 |
+
}
|
210 |
+
)
|
211 |
+
# print(result)
|
212 |
+
# pretty_print_results(result["ranker"])
|
213 |
+
return result["ranker"]["documents"]
|
214 |
+
|
215 |
+
|
216 |
+
def print_res(doc, width=0):
|
217 |
+
try:
|
218 |
+
txt = doc.meta["researcher_name"] + ":" + " ".join(doc.content.split())
|
219 |
+
except KeyError:
|
220 |
+
txt = " ".join(doc.content.split())
|
221 |
+
if width > 0:
|
222 |
+
txt_width = width - 8 - 3 - 1 # float and ... and LF
|
223 |
+
txt = txt[0:txt_width] + "..."
|
224 |
+
print("{:.5f}".format(doc.score), txt)
|
225 |
+
|
226 |
+
|
227 |
+
if __name__ == "__main__":
|
228 |
+
terminal_width = os.get_terminal_size().columns
|
229 |
+
parser = argparse.ArgumentParser()
|
230 |
+
parser.add_argument(
|
231 |
+
"-c", "--create_store", help="Create a new data store.", default=None
|
232 |
+
)
|
233 |
+
parser.add_argument("-d", "--dataset", help="Dataset filename.", default=None)
|
234 |
+
parser.add_argument("-r", "--read_store", help="Read a data store.", default=None)
|
235 |
+
parser.add_argument(
|
236 |
+
"-s",
|
237 |
+
"--scale",
|
238 |
+
action="store_false",
|
239 |
+
help="Do not scale retrieved scores.",
|
240 |
+
default=True,
|
241 |
+
)
|
242 |
+
parser.add_argument("--top_k", type=int, help="Retriever top_k.", default=8)
|
243 |
+
parser.add_argument("-q", "--query", help="Query DBs.", default=None)
|
244 |
+
args = parser.parse_args()
|
245 |
+
query = args.query
|
246 |
+
|
247 |
+
if args.create_store:
|
248 |
+
docs = build_store_from_dir("../Gradio/docs")
|
249 |
+
rs_doc_store = InMemoryDocumentStore()
|
250 |
+
print("Starting create_index_nosplit()")
|
251 |
+
create_index_split(docs, rs_doc_store)
|
252 |
+
rs_doc_store.save_to_disk(args.create_store)
|
253 |
+
print("Ready create_index_nosplit()")
|
254 |
+
|
255 |
+
if not args.query:
|
256 |
+
sys.exit(0)
|
257 |
+
|
258 |
+
if not args.read_store and not args.create_store:
|
259 |
+
args.read_store = "research_docs_ns.store"
|
260 |
+
elif not args.read_store and args.create_store:
|
261 |
+
args.read_store = args.create_store
|
262 |
+
print(f"Loading document store {args.read_store}...")
|
263 |
+
doc_store = InMemoryDocumentStore().load_from_disk(args.read_store)
|
264 |
+
print(f"Number of documents: {doc_store.count_documents()}.")
|
265 |
+
|
266 |
+
# Docs are already indexed/embedded in the store.
|
267 |
+
hybrid_retrieval = create_hybrid_retriever(doc_store)
|
268 |
+
|
269 |
+
documents = retrieve(hybrid_retrieval, query, top_k=args.top_k, scale=args.scale)
|
270 |
+
print("=" * 80)
|
271 |
+
print("== Hybrid")
|
272 |
+
print("=" * 80)
|
273 |
+
for doc in documents:
|
274 |
+
# print(doc.id, doc.meta["names"], ":", doc.meta["title"])
|
275 |
+
print_res(doc, terminal_width)
|
276 |
+
|
277 |
+
embedding_retrieval = create_embedding_retriever(doc_store)
|
278 |
+
documents = retrieve_embedded(
|
279 |
+
embedding_retrieval, query, top_k=args.top_k, scale=args.scale
|
280 |
+
)
|
281 |
+
print("=" * 80)
|
282 |
+
print("== Embedding")
|
283 |
+
print("=" * 80)
|
284 |
+
for doc in documents:
|
285 |
+
print_res(doc, terminal_width)
|
286 |
+
|
287 |
+
bm25_retrieval = create_bm25_retriever(doc_store)
|
288 |
+
documents = retrieve_bm25(bm25_retrieval, query, top_k=args.top_k, scale=args.scale)
|
289 |
+
print("=" * 80)
|
290 |
+
print("== bm25")
|
291 |
+
print("=" * 80)
|
292 |
+
for doc in documents:
|
293 |
+
print_res(doc, terminal_width)
|
pufendorfdocs.store
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e1919adcb2c09b60c3e2e731e05bf2fb97246987855c30f6ddd419e009fc64e
|
3 |
+
size 9391350
|
vector3_db/a1b2bf9f-4f30-46a6-a6c2-b6ca99effce9/length.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 40000
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc238a7a80a8cb9db9df824df6a3252ba0dd6f473223db345f2c4727a127151f
|
3 |
size 40000
|
vector3_db/chroma.sqlite3
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 11452416
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cc72bc69672f1f5b68354ede0d475127b802f0ccc23c123c1cdb4186df4e549
|
3 |
size 11452416
|