neuron-export / app.py
badaoui's picture
badaoui HF Staff
Update app.py
94ec023 verified
import csv
import os
from datetime import datetime
from typing import Optional, Union, List
import gradio as gr
from huggingface_hub import HfApi, Repository
from optimum_neuron_export import convert
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from apscheduler.schedulers.background import BackgroundScheduler
# Define transformer tasks and their categories for coloring
TRANSFORMER_TASKS = {
"auto": {"color": "#6b7280", "category": "Auto"},
"feature-extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"fill-mask": {"color": "#8b5cf6", "category": "NLP"},
"multiple-choice": {"color": "#8b5cf6", "category": "NLP"},
"question-answering": {"color": "#8b5cf6", "category": "NLP"},
"text-classification": {"color": "#8b5cf6", "category": "NLP"},
"token-classification": {"color": "#8b5cf6", "category": "NLP"},
"text-generation": {"color": "#10b981", "category": "Text Generation"},
"text2text-generation": {"color": "#10b981", "category": "Text Generation"},
"audio-classification": {"color": "#f59e0b", "category": "Audio"},
"automatic-speech-recognition": {"color": "#f59e0b", "category": "Audio"},
"audio-frame-classification": {"color": "#f59e0b", "category": "Audio"},
"audio-xvector": {"color": "#f59e0b", "category": "Audio"},
"image-classification": {"color": "#ef4444", "category": "Vision"},
"object-detection": {"color": "#ef4444", "category": "Vision"},
"semantic-segmentation": {"color": "#ef4444", "category": "Vision"},
"zero-shot-image-classification": {"color": "#ec4899", "category": "Multimodal"},
"sentence-similarity": {"color": "#06b6d4", "category": "Similarity"},
}
# Define diffusion pipeline types
DIFFUSION_PIPELINES = {
"text-to-image": {"color": "#ec4899", "category": "Stable Diffusion"},
"image-to-image": {"color": "#ec4899", "category": "Stable Diffusion"},
"inpaint": {"color": "#ec4899", "category": "Stable Diffusion"},
"instruct-pix2pix": {"color": "#ec4899", "category": "Stable Diffusion"},
"latent-consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
"stable-diffusion": {"color": "#10b981", "category": "Stable Diffusion"},
"stable-diffusion-xl": {"color": "#10b981", "category": "Stable Diffusion XL"},
"stable-diffusion-xl-img2img": {"color": "#10b981", "category": "Stable Diffusion XL"},
"stable-diffusion-xl-inpaint": {"color": "#10b981", "category": "Stable Diffusion XL"},
"controlnet": {"color": "#f59e0b", "category": "ControlNet"},
"controlnet-xl": {"color": "#f59e0b", "category": "ControlNet XL"},
"pixart-alpha": {"color": "#ef4444", "category": "PixArt"},
"pixart-sigma": {"color": "#ef4444", "category": "PixArt"},
"flux": {"color": "#06b6d4", "category": "Flux"},
}
TAGS = {
"Feature Extraction": {"color": "#3b82f6", "category": "Feature Extraction"},
"NLP": {"color": "#8b5cf6", "category": "NLP"},
"Text Generation": {"color": "#10b981", "category": "Text Generation"},
"Audio": {"color": "#f59e0b", "category": "Audio"},
"Vision": {"color": "#ef4444", "category": "Vision"},
"Multimodal": {"color": "#ec4899", "category": "Multimodal"},
"Similarity": {"color": "#06b6d4", "category": "Similarity"},
"Stable Diffusion": {"color": "#ec4899", "category": "Stable Diffusion"},
"Stable Diffusion XL": {"color": "#10b981", "category": "Stable Diffusion XL"},
"ControlNet": {"color": "#f59e0b", "category": "ControlNet"},
"ControlNet XL": {"color": "#f59e0b", "category": "ControlNet XL"},
"PixArt": {"color": "#ef4444", "category": "PixArt"},
"Latent Consistency": {"color": "#8b5cf6", "category": "Latent Consistency"},
"Flux": {"color": "#06b6d4", "category": "Flux"},
}
# UPDATED: New choices for the Pull Request destination UI component
DEST_NEW_NEURON_REPO = "Create new Neuron-optimized repository"
DEST_CACHE_REPO = "Create a PR in the cache repository"
DEST_CUSTOM_REPO = "Create a PR in a custom repository"
PR_DESTINATION_CHOICES = [
DEST_NEW_NEURON_REPO,
DEST_CACHE_REPO,
DEST_CUSTOM_REPO
]
DEFAULT_CACHE_REPO = "aws-neuron/optimum-neuron-cache"
# Get all tasks and pipelines for dropdowns
ALL_TRANSFORMER_TASKS = list(TRANSFORMER_TASKS.keys())
ALL_DIFFUSION_PIPELINES = list(DIFFUSION_PIPELINES.keys())
def create_task_tag(task: str) -> str:
"""Create a colored HTML tag for a task"""
if task in TRANSFORMER_TASKS:
color = TRANSFORMER_TASKS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in DIFFUSION_PIPELINES:
color = DIFFUSION_PIPELINES[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
elif task in TAGS:
color = TAGS[task]["color"]
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
else:
return f'<span style="background-color: #6b7280; color: white; padding: 2px 6px; border-radius: 12px; font-size: 0.75rem; font-weight: 500; margin: 1px;">{task}</span>'
def format_tasks_for_table(tasks_str: str) -> str:
"""Convert comma-separated tasks into colored tags"""
tasks = [task.strip() for task in tasks_str.split(',')]
return ' '.join([create_task_tag(task) for task in tasks])
def update_task_dropdown(model_type: str):
"""Update the task dropdown based on selected model type"""
if model_type == "transformers":
return gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer task from model)",
visible=True
)
else: # diffusers
return gr.Dropdown(
choices=ALL_DIFFUSION_PIPELINES,
value="text-to-image",
label="Pipeline Type",
visible=True
)
def toggle_custom_repo_box(pr_destinations: List[str]):
"""Show or hide the custom repo ID textbox based on checkbox selection."""
if DEST_CUSTOM_REPO in pr_destinations:
return gr.Textbox(visible=True)
else:
return gr.Textbox(visible=False, value="")
def neuron_export(model_id: str, model_type: str, task_or_pipeline: str,
pr_destinations: List[str], custom_repo_id: str, custom_cache_repo: str, oauth_token: gr.OAuthToken):
log_buffer = ""
def log(msg):
nonlocal log_buffer
# Handle cases where the message from the backend is not a string
if not isinstance(msg, str):
msg = str(msg)
log_buffer += msg + "\n"
return log_buffer
if oauth_token.token is None:
yield log("You must be logged in to use this space")
return
if not model_id:
yield log("🚫 Invalid input. Please specify a model name from the hub.")
return
try:
api = HfApi(token=oauth_token.token)
# Set custom cache repo as environment variable
if custom_cache_repo:
os.environ['CUSTOM_CACHE_REPO'] = custom_cache_repo.strip()
yield log(f"🔑 Logging in ...")
try:
api.model_info(model_id, token=oauth_token.token)
except Exception as e:
yield log(f"❌ Could not access model `{model_id}`: {e}")
return
yield log(f"✅ Model `{model_id}` is accessible. Starting Neuron export...")
# UPDATED: Build pr_options with new structure
pr_options = {
"create_neuron_repo": DEST_NEW_NEURON_REPO in pr_destinations,
"create_cache_pr": DEST_CACHE_REPO in pr_destinations,
"create_custom_pr": DEST_CUSTOM_REPO in pr_destinations,
"custom_repo_id": custom_repo_id.strip() if custom_repo_id else ""
}
# The convert function is a generator, so we iterate through its messages
for status_code, message in convert(api, model_id, task_or_pipeline, model_type,
token=oauth_token.token, pr_options=pr_options):
if isinstance(message, str):
yield log(message)
else: # It's the final result dictionary
final_message = "🎉 Process finished.\n"
if message.get("neuron_repo"):
final_message += f"🏗️ New Neuron Repository: {message['neuron_repo']}\n"
if message.get("readme_pr"):
final_message += f"📝 README PR (Original Model): {message['readme_pr']}\n"
if message.get("cache_pr"):
final_message += f"🔗 Cache PR: {message['cache_pr']}\n"
if message.get("custom_pr"):
final_message += f"🔗 Custom PR: {message['custom_pr']}\n"
yield log(final_message)
except Exception as e:
yield log(f"❗ An unexpected error occurred in the Gradio interface: {e}")
TITLE_IMAGE = """
<div style="display: block; margin-left: auto; margin-right: auto; width: 50%;">
<img src="https://huggingface.co/spaces/optimum/neuron-export/resolve/main/huggingfaceXneuron.png"/>
</div>
"""
TITLE = """
<div style="text-align: center; max-width: 1400px; margin: 0 auto;">
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px; font-size: 2.2rem;">
🤗 Optimum Neuron Model Exporter 🏎️
</h1>
</div>
"""
# UPDATED: Description to reflect new workflow
DESCRIPTION = """
This Space allows you to automatically export 🤗 transformers and 🧨 diffusion models to AWS Neuron-optimized format for Inferentia/Trainium acceleration.
Simply provide a model ID from the Hugging Face Hub, and choose your desired output.
### ✨ Key Features
* **🚀 Create a New Optimized Repo**: Automatically converts your model and uploads it to a new repository under your username (e.g., `your-username/model-name-neuron`).
* **🔗 Link Back to Original**: Creates a Pull Request on the original model’s repository to add a link to your optimized version, making it easier for the community to discover.
* **🛠️ PR to a Custom Repo**: For custom workflows, you can create a Pull Request to add the optimized files directly into an existing repository you own.
* **📦 Contribute to Cache**: Contribute the generated compilation artifacts to a centralized cache repository (or your own private cache), helping avoid recompilation of already exported models.
### ⚙️ How to Use
1. **Model ID**: Enter the ID of the model you want to export (e.g., `bert-base-uncased` or `stabilityai/stable-diffusion-xl-base-1.0`) and choose the corresponding task.
2. **Export Options**: Select at least one option for where to save the exported model. You can provide your own cache repo ID or use the default (`aws-neuron/optimum-neuron-cache`).
3. **Convert & Upload**: Click the button and follow the logs to track progress!
"""
CUSTOM_CSS = """
/* Primary button styling with warm colors */
button.gradio-button.lg.primary {
/* Changed the blue/green gradient to an orange/yellow one */
background: linear-gradient(135deg, #F97316, #FBBF24) !important;
color: white !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
/* Updated the shadow to match the new orange color */
box-shadow: 0 0 15px rgba(249, 115, 22, 0.5) !important;
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
}
/* Login button styling with glow effect using dark blue and violet colors */
#login-button {
background: linear-gradient(135deg, #1a237e, #6a1b9a) !important; /* Dark Blue to Violet */
color: white !important;
font-weight: 700 !important;
border: none !important;
border-radius: 12px !important;
box-shadow: 0 0 15px rgba(106, 27, 154, 0.6) !important; /* Cool violet glow */
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
position: relative;
overflow: hidden;
animation: glow 1.5s ease-in-out infinite alternate;
max-width: 350px !important;
margin: 0 auto !important;
}
#login-button::before {
content: "🔑 ";
display: inline-block !important;
vertical-align: middle !important;
margin-right: 5px !important;
line-height: normal !important;
}
#login-button:hover {
transform: translateY(-3px) scale(1.03) !important;
box-shadow: 0 10px 25px rgba(26, 35, 126, 0.7) !important; /* Deeper blue glow */
}
#login-button::after {
content: "";
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.25), transparent);
transition: 0.5s;
}
#login-button:hover::after {
left: 100%;
}
"""
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
gr.Markdown("**You must be logged in to use this space**")
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
gr.HTML(TITLE_IMAGE)
gr.HTML(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.Tab("Export Model"):
with gr.Group():
with gr.Row():
pr_destinations_checkbox = gr.CheckboxGroup(
choices=PR_DESTINATION_CHOICES,
label="Export Destination",
value=[DEST_NEW_NEURON_REPO],
info="Select one or more destinations for the compiled model."
)
custom_repo_id_textbox = gr.Textbox(
label="Custom Repository ID",
placeholder="e.g., your-username/your-repo-name",
visible=False,
interactive=True
)
custom_cache_repo_textbox = gr.Textbox(
label="Custom Cache Repository",
placeholder="e.g., your-org/your-cache-repo",
value=DEFAULT_CACHE_REPO,
info=f"Repository to store and fetch from compilation cache artifacts (default: {DEFAULT_CACHE_REPO}) ",
interactive=True
)
with gr.Row():
model_type = gr.Radio(
choices=["transformers", "diffusers"],
value="transformers",
label="Model Type",
info="Choose the type of model you want to export"
)
with gr.Row():
input_model = HuggingfaceHubSearch(
label="Hub model ID",
placeholder="Search for a model on the Hub...",
search_type="model",
)
task_dropdown = gr.Dropdown(
choices=ALL_TRANSFORMER_TASKS,
value="auto",
label="Task (auto can infer from model)",
)
btn = gr.Button("Export to Neuron", size="lg", variant="primary")
log_box = gr.Textbox(label="Logs", lines=20, interactive=False, show_copy_button=True)
# Event Handlers
model_type.change(
fn=update_task_dropdown,
inputs=[model_type],
outputs=[task_dropdown]
)
pr_destinations_checkbox.change(
fn=toggle_custom_repo_box,
inputs=pr_destinations_checkbox,
outputs=custom_repo_id_textbox
)
btn.click(
fn=neuron_export,
inputs=[
input_model,
model_type,
task_dropdown,
pr_destinations_checkbox,
custom_repo_id_textbox,
custom_cache_repo_textbox
],
outputs=log_box,
)
with gr.Tab("Supported Architectures"):
gr.HTML(f"""
<div style="margin-bottom: 20px;">
<h3>🎨 Task Categories Legend</h3>
<div class="task-tags">
{create_task_tag("Feature Extraction")}
{create_task_tag("NLP")}
{create_task_tag("Text Generation")}
{create_task_tag("Audio")}
{create_task_tag("Vision")}
{create_task_tag("Multimodal")}
{create_task_tag("Similarity")}
</div>
</div>
""")
gr.HTML(f"""
<h2>🤗 Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ALBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">AST</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">BLOOM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Beit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CamemBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNext</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ConvNextV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CvT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DeBERTa-v2 (INF2 only)</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Deit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DistilBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">DonutSwin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Dpt</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ELECTRA</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ESM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">FlauBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">GPT2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Hubert</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Levit</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Llama, Llama 2, Llama 3</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mistral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Mixtral</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileNetV2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MobileViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification, semantic-segmentation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ModernBERT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">MPNet</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">OPT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Phi</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">RoFormer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Swin</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">T5</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text2text-generation")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">UniSpeech-SAT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">ViT</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, image-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Wav2Vec2</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">WavLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, automatic-speech-recognition, audio-classification, audio-frame-classification, audio-xvector")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Whisper</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("automatic-speech-recognition")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">XLM-RoBERTa</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, fill-mask, multiple-choice, question-answering, text-classification, token-classification")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Yolos</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, object-detection")}</td></tr>
</tbody>
</table>
<h2>🧨 Diffusers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Base</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Stable Diffusion XL Refiner</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">SDXL Turbo</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image, image-to-image, inpaint")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">LCM</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-α</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">PixArt-Σ</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Flux</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("text-to-image")}</td></tr>
</tbody>
</table>
<h2>🤖 Sentence Transformers</h2>
<table style="width: 100%; border-collapse: collapse; margin: 20px 0;">
<colgroup>
<col style="width: 30%;">
<col style="width: 70%;">
</colgroup>
<thead>
<tr style="background-color: var(--background-fill-secondary);">
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Architecture</th>
<th style="border: 1px solid var(--border-color-primary); padding: 12px; text-align: left;">Supported Tasks</th>
</tr>
</thead>
<tbody>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">Transformer</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, sentence-similarity")}</td></tr>
<tr><td style="border: 1px solid var(--border-color-primary); padding: 8px; font-weight: bold;">CLIP</td><td style="border: 1px solid var(--border-color-primary); padding: 8px;" class="task-tags">{format_tasks_for_table("feature-extraction, zero-shot-image-classification")}</td></tr>
</tbody>
</table>
<div style="margin-top: 20px;">
<p>💡 <strong>Note</strong>: Some architectures may have specific requirements or limitations. DeBERTa models are only supported on INF2 instances.</p>
<p>For more details, check the <a href="https://huggingface.co/docs/optimum-neuron" target="_blank">Optimum Neuron documentation</a>.</p>
</div>
""")
# Add spacing between tabs and content
gr.Markdown("<br><br><br><br>")
if __name__ == "__main__":
demo.launch(debug=True)