rib
Browse files- .gitignore +1 -0
- app.py +105 -0
- requirements.txt +5 -0
- setup.sh +2 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
s2v_reddit_2015_md
|
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from sense2vec import Sense2Vec
|
3 |
+
import spacy
|
4 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
5 |
+
|
6 |
+
# Load models
|
7 |
+
tokenizer = T5Tokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
8 |
+
model = T5ForConditionalGeneration.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
|
9 |
+
|
10 |
+
# Load SpaCy model and Sense2Vec
|
11 |
+
nlp = spacy.load("en_core_web_sm")
|
12 |
+
s2v = Sense2Vec().from_disk('s2v_reddit_2015_md/s2v_old')
|
13 |
+
|
14 |
+
# Function to get important keywords
|
15 |
+
def get_imp_keywords(content):
|
16 |
+
out = []
|
17 |
+
doc = nlp(content)
|
18 |
+
for token in doc:
|
19 |
+
if token.pos_ in ["NOUN", "PROPN", "VERB", "NUM"]:
|
20 |
+
out.append(token.text)
|
21 |
+
return out
|
22 |
+
|
23 |
+
# Function to generate question
|
24 |
+
def get_question(context, answer):
|
25 |
+
sentence = extract_relevant_sentence(context, answer)
|
26 |
+
prompt = f"answer: {answer} context: {context} </s>"
|
27 |
+
max_len = 256
|
28 |
+
encoding = tokenizer.encode_plus(prompt, max_length=max_len, pad_to_max_length=False, truncation=True, return_tensors="pt")
|
29 |
+
|
30 |
+
input_ids = encoding["input_ids"]
|
31 |
+
attention_mask = encoding["attention_mask"]
|
32 |
+
|
33 |
+
try:
|
34 |
+
outs = model.generate(
|
35 |
+
input_ids=input_ids,
|
36 |
+
attention_mask=attention_mask,
|
37 |
+
early_stopping=True,
|
38 |
+
num_beams=5,
|
39 |
+
num_return_sequences=1,
|
40 |
+
no_repeat_ngram_size=2,
|
41 |
+
max_length=300
|
42 |
+
)
|
43 |
+
dec = [tokenizer.decode(ids, skip_special_tokens=True) for ids in outs]
|
44 |
+
question = dec[0].replace("question:", "").strip()
|
45 |
+
return question
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error generating question: {str(e)}"
|
48 |
+
|
49 |
+
# Extract relevant sentence
|
50 |
+
def extract_relevant_sentence(context, answer):
|
51 |
+
sentences = context.split(". ")
|
52 |
+
for sentence in sentences:
|
53 |
+
if answer in sentence:
|
54 |
+
return sentence
|
55 |
+
return context
|
56 |
+
|
57 |
+
# Function to get similar words using Sense2Vec
|
58 |
+
def sense2vec_get_words(word):
|
59 |
+
output = []
|
60 |
+
word = word.lower().replace(" ", "_")
|
61 |
+
sense = s2v.get_best_sense(word)
|
62 |
+
if not sense:
|
63 |
+
return output
|
64 |
+
|
65 |
+
most_similar = s2v.most_similar(sense, n=20)
|
66 |
+
for each_word in most_similar:
|
67 |
+
append_word = each_word[0].split("|")[0].replace("_", " ").lower()
|
68 |
+
if append_word.lower() != word:
|
69 |
+
output.append(append_word.title())
|
70 |
+
return output
|
71 |
+
|
72 |
+
# Generate multiple questions
|
73 |
+
def generate_question(context):
|
74 |
+
np = get_imp_keywords(context)
|
75 |
+
output = ""
|
76 |
+
cnt = 0
|
77 |
+
for answer in np:
|
78 |
+
if cnt >= 5:
|
79 |
+
break
|
80 |
+
distractors = sense2vec_get_words(answer.capitalize())
|
81 |
+
if len(distractors) > 0:
|
82 |
+
ques = get_question(context, answer)
|
83 |
+
output += f"Question: {ques}\n"
|
84 |
+
output += f"Answer: {answer.capitalize()}\n"
|
85 |
+
output += "Options:\n"
|
86 |
+
options = [answer.capitalize()] + distractors[:3]
|
87 |
+
for idx, option in enumerate(options, 1):
|
88 |
+
output += f"{idx}. {option}\n"
|
89 |
+
cnt += 1
|
90 |
+
output += "\n"
|
91 |
+
return output
|
92 |
+
|
93 |
+
# Streamlit Interface
|
94 |
+
st.title("Automatic Question Generator")
|
95 |
+
st.write("Generate multiple-choice questions based on the provided context.")
|
96 |
+
|
97 |
+
context = st.text_area("Enter the context text here:")
|
98 |
+
|
99 |
+
if st.button("Generate Questions"):
|
100 |
+
if context:
|
101 |
+
with st.spinner("Generating questions..."):
|
102 |
+
questions_output = generate_question(context)
|
103 |
+
st.text_area("Generated Questions", questions_output, height=300)
|
104 |
+
else:
|
105 |
+
st.warning("Please enter the context text to generate questions.")
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sense2vec
|
2 |
+
spacy
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
streamlit
|
setup.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
python -m spacy download en_core_web_sm
|