|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from transformers.image_utils import load_image |
|
from PIL import Image |
|
import torch |
|
|
|
|
|
model_name = "prithivMLmods/Mnist-Digits-SigLIP2" |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
def classify_digit(image): |
|
"""Predicts the digit in the given handwritten digit image.""" |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
labels = { |
|
"0": "0", "1": "1", "2": "2", "3": "3", "4": "Four", |
|
"5": "5", "6": "6", "7": "7", "8": "8", "9": "Nine" |
|
} |
|
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))} |
|
|
|
return predictions |
|
|
|
|
|
iface = gr.Interface( |
|
fn=classify_digit, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(label="Prediction Scores"), |
|
title="MNIST Digit Classification 🔢", |
|
description="Upload a handwritten digit image (0-9) to recognize it using MNIST-Digits-SigLIP2." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|