Srihari Thyagarajan commited on
Commit
8088df6
·
unverified ·
2 Parent(s): ec4fda8 5490952

Merge pull request #105 from etrotta/polars/loading_data

Browse files
Files changed (1) hide show
  1. polars/03_loading_data.py +680 -0
polars/03_loading_data.py ADDED
@@ -0,0 +1,680 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.12"
3
+ # dependencies = [
4
+ # "adbc-driver-sqlite==1.7.0",
5
+ # "duckdb>=1.4.0.dev",
6
+ # "lxml==6.0.0",
7
+ # "marimo",
8
+ # "pandas==2.3.2",
9
+ # "polars==1.32.3",
10
+ # "pyarrow==21.0.0",
11
+ # "sqlalchemy==2.0.43",
12
+ # ]
13
+ # ///
14
+
15
+ import marimo
16
+
17
+ __generated_with = "0.15.2"
18
+ app = marimo.App(width="medium")
19
+
20
+
21
+ @app.cell(hide_code=True)
22
+ def _(mo):
23
+ mo.md(
24
+ r"""
25
+ # Loading Data
26
+
27
+ _By [etrotta](https://github.com/etrotta)._
28
+
29
+ This tutorial covers how to load data of varying formats and from different sources using [polars](https://docs.pola.rs/).
30
+
31
+ It includes examples of how to load and write to a variety of formats, shows how to convert data from other libraries to support formats not supported directly by polars, includes relevant links for users that need to connect with external sources, and explains how to deal with custom formats via plugins.
32
+ """
33
+ )
34
+ return
35
+
36
+
37
+ @app.cell(hide_code=True)
38
+ def _(mo, pl):
39
+ df = pl.DataFrame(
40
+ [
41
+ {"format": "Parquet", "lazy": True, "notes": None},
42
+ {"format": "CSV", "lazy": True, "notes": None},
43
+ {
44
+ "format": "Databases",
45
+ "lazy": False,
46
+ "notes": "Requires another library as an Engine",
47
+ },
48
+ {
49
+ "format": "Excel",
50
+ "lazy": False,
51
+ "notes": "Requires another library as an Engine",
52
+ },
53
+ {
54
+ "format": "Newline-delimited JSON",
55
+ "lazy": True,
56
+ "notes": None,
57
+ },
58
+ {
59
+ "format": "Traditional JSON",
60
+ "lazy": False,
61
+ "notes": None,
62
+ },
63
+ {"format": "Arrow", "lazy": False, "notes": "You can load XML and HTML files via pandas"},
64
+ {"format": "Plugins", "lazy": True, "notes": "The most flexible, but takes some effort to implement"},
65
+ {"format": "Feather / IPC", "lazy": True, "notes": None},
66
+ {"format": "Avro", "lazy": False, "notes": None},
67
+ {"format": "Delta", "lazy": True, "notes": "No Lazy writing"},
68
+ {"format": "Iceberg", "lazy": True, "notes": "No Lazy writing"},
69
+ ],
70
+ orient="rows",
71
+ )
72
+ mo.vstack(
73
+ [
74
+ mo.ui.table(df, label="Quick Reference", pagination=False),
75
+ "We will also use this table to demonstrate writing and reading to each format",
76
+ ]
77
+ )
78
+ return (df,)
79
+
80
+
81
+ @app.cell(hide_code=True)
82
+ def _(mo):
83
+ mo.md(
84
+ r"""
85
+ ## Parquet
86
+ Parquet is a popular format for storing tabular data based on the Arrow memory spec, it is a great default and you'll find a lot of datasets already using it in sites like HuggingFace
87
+ """
88
+ )
89
+ return
90
+
91
+
92
+ @app.cell
93
+ def _(df, folder, pl):
94
+ df.write_parquet(folder / "data.parquet") # Eager API - Writing to a file
95
+ _ = pl.read_parquet(folder / "data.parquet") # Eager API - Reading from a file
96
+ lz = pl.scan_parquet(folder / "data.parquet") # Lazy API - Reading from a file
97
+ lz.sink_parquet(folder / "data_copy.parquet") # Lazy API - Writing to a file
98
+ return (lz,)
99
+
100
+
101
+ @app.cell(hide_code=True)
102
+ def _(mo):
103
+ mo.md(
104
+ r"""
105
+ ## CSV
106
+ A classic and common format that has been widely used for decades.
107
+
108
+ The API is almost identical to Parquet - You can just replace `parquet` by `csv` and it will work with the default settings, but polars also allows for you to customize some settings such as the delimiter and quoting rules.
109
+ """
110
+ )
111
+ return
112
+
113
+
114
+ @app.cell
115
+ def _(df, folder, lz, pl):
116
+ lz.sink_csv(folder / "data.csv") # Lazy API - Writing to a file
117
+ df.write_csv(folder / "data_no_head.csv", include_header=False, separator=";") # Eager API - Writing to a file
118
+
119
+ _ = pl.scan_csv(folder / "data.csv") # Lazy API - Reading from a file
120
+ _ = pl.read_csv(folder / "data_no_head.csv", has_header=False, separator=";") # Eager API - Reading from a file
121
+ return
122
+
123
+
124
+ @app.cell(hide_code=True)
125
+ def _(mo):
126
+ mo.md(
127
+ r"""
128
+ ## JSON
129
+
130
+ JavaScript Object Notation is somewhat commonly used for storing unstructed data, and extremely commonly used for API responses.
131
+
132
+ For large datasets you'll frequently see a variation in which each line in the file defines one separate object, called "Newline delimited JSON" (`ndjson`) or "JSON Lines" (`jsonl`)
133
+
134
+ /// Note
135
+
136
+ It's a lot more common to find Nested data in JSON than in other formats, but other formats such as Parquet also support nested datatypes.
137
+
138
+ Polars supports Lists with variable length, Arrays with fixed length, and Structs with well defined fields, but not mappings with arbitrary keys.
139
+
140
+ You might want to transform data by unnesting structs and exploding lists after loading from complex JSON files.
141
+ """
142
+ )
143
+ return
144
+
145
+
146
+ @app.cell
147
+ def _(df, folder, lz, pl):
148
+ # Newline Delimited JSON
149
+ lz.sink_ndjson(folder / "data.ndjson") # Lazy API - Writing to a file
150
+ df.write_ndjson(folder / "data.ndjson") # Eager API - Writing to a file
151
+
152
+ _ = pl.scan_ndjson(folder / "data.ndjson") # Lazy API - Reading from a file
153
+ _ = pl.read_ndjson(folder / "data.ndjson") # Eager API - Reading from a file
154
+
155
+ # Normal JSON
156
+ df.write_json(folder / "data.json") # Eager API - Writing to a file
157
+ _ = pl.read_json(folder / "data.json") # Eager API - Reading from a file
158
+
159
+ # Note that there are no Lazy methods for normal JSON files,
160
+ # either use NDJSON instead or use `lz.collect().write_json()` to collect into memory before writing, and `pl.read_json().lazy()` to read into memory before operating in lazy mode
161
+ return
162
+
163
+
164
+ @app.cell(hide_code=True)
165
+ def _(mo):
166
+ mo.md(
167
+ r"""
168
+ ## Databases
169
+
170
+ Polars doesn't supports any databases _directly_, but rather uses other libraries as Engines. Reading and writing to databases using polars methods does not supports Lazy execution, but you may pass an SQL Query for the database to pre-filter the data before reaches polars. See the [User Guide](https://docs.pola.rs/user-guide/io/database) for more details.
171
+
172
+ You can also use other libraries with [arrow support](#arrow-support) or [polars plugins](#plugin-support) to read from databases before loading into polars, some of which support lazy reading.
173
+
174
+ Using the Arrow Database Connectivity SQLite support as an example:
175
+ """
176
+ )
177
+ return
178
+
179
+
180
+ @app.cell
181
+ def _(df, folder, pl):
182
+ URI = "sqlite:///" + f"/{folder.resolve()}/db.sqlite"
183
+ df.write_database(table_name="quick_reference", connection=URI, engine="adbc", if_table_exists="replace")
184
+
185
+ query = """SELECT * FROM quick_reference WHERE format LIKE '%Database%'"""
186
+
187
+ pl.read_database_uri(query=query, uri=URI, engine="adbc")
188
+ return
189
+
190
+
191
+ @app.cell(hide_code=True)
192
+ def _(mo):
193
+ mo.md(
194
+ r"""
195
+ ## Excel
196
+
197
+ From a performance perspective, we recommend using other formats if possible, such as Parquet or CSV files.
198
+
199
+ Similarly to Databases, polars doesn't supports it natively but rather uses other libraries as Engines. See the [User Guide](https://docs.pola.rs/user-guide/io/excel) if you need to use it.
200
+ """
201
+ )
202
+ return
203
+
204
+
205
+ @app.cell(hide_code=True)
206
+ def _(mo):
207
+ mo.md(
208
+ r"""
209
+ ## Others natively supported
210
+
211
+ If you understood the above examples, then all other formats should feel familiar - the core API is the same for all formats, `read` and `write` for the Eager API or `scan` and `sink` for the lazy API.
212
+
213
+ See https://docs.pola.rs/api/python/stable/reference/io.html for the full list of formats natively supported by Polars
214
+ """
215
+ )
216
+ return
217
+
218
+
219
+ @app.cell(hide_code=True)
220
+ def _(mo):
221
+ mo.md(
222
+ r"""
223
+ ## Arrow Support
224
+
225
+ You can convert Arrow compatible data from other libraries such as `pandas`, `duckdb` or `pyarrow` to polars DataFrames and vice-versa, much of the time without even having to copy data.
226
+
227
+ This allows for you to use other libraries to load data in formats not support by polars, then convert the dataframe in-memory to polars.
228
+ """
229
+ )
230
+ return
231
+
232
+
233
+ @app.cell
234
+ def _(df, folder, pd, pl):
235
+ # XML Example using `pandas` read_xml() and to_xml() methods
236
+ df.to_pandas().to_xml(folder / "data.xml")
237
+ pandas_df = pd.read_xml(folder / "data.xml")
238
+ _ = pl.from_pandas(pandas_df)
239
+ return
240
+
241
+
242
+ @app.cell(hide_code=True)
243
+ def _(mo):
244
+ mo.md(
245
+ r"""
246
+ ## Plugin Support
247
+
248
+ You can also write [IO Plugins](https://docs.pola.rs/user-guide/plugins/io_plugins/) for Polars in order to support any format you need, or use other libraries that support polars via their own plugins such as DuckDB.
249
+ """
250
+ )
251
+ return
252
+
253
+
254
+ @app.cell
255
+ def _(duckdb, folder):
256
+ # Requires duckdb >= 1.4.0
257
+ conn = duckdb.connect(folder / "db.sqlite")
258
+ conn.sql("SELECT * FROM quick_reference").pl(lazy=True)
259
+ return
260
+
261
+
262
+ @app.cell(hide_code=True)
263
+ def _(mo):
264
+ mo.md(
265
+ r"""
266
+ ### Creating your own Plugin
267
+
268
+ The simplest form of plugins are essentially generators that yield DataFrames.
269
+
270
+ Without parsing filters you will be missing on performance improvements, but even just this can help improve your performance in many cases as it allows for polars to optimize the query and request data in batches as opposed to always loading everything in memory.
271
+
272
+ Below is a example plugin which just takes the product between multiple iterables, some highlights are that:
273
+
274
+ - You must use `register_io_source` for polars to create the LazyFrame which will consume the Generator
275
+ - You are expected to provide a Schema before the Generator starts
276
+ - - For many use cases the Plugin may be able to infer it, but you could also pass it explicitly to the plugin function
277
+ - Ideally you should parse some of the filters and column selectors to avoid unnecessary work, but it is possible to delegate that to polars after loading the data in order to keep it simpler (at the cost of efficiency)
278
+
279
+ Efficiently parsing the filter expressions is out of the scope for this notebook.
280
+ """
281
+ )
282
+ return
283
+
284
+
285
+ @app.cell
286
+ def _(my_custom_input_plugin):
287
+ my_custom_input_plugin(int, range(3), range(5))
288
+ return
289
+
290
+
291
+ @app.cell
292
+ def _(my_custom_input_plugin, pl):
293
+ my_custom_input_plugin(bool, [True, False], [True, False]).with_columns(
294
+ (pl.col("A") & pl.col("B")).alias("AND"),
295
+ (pl.col("A") & pl.col("B")).not_().alias("NAND"),
296
+ (pl.col("A") | pl.col("B")).alias("OR"),
297
+ (pl.col("A") ^ pl.col("B")).alias("XOR"),
298
+ ).collect()
299
+ return
300
+
301
+
302
+ @app.cell
303
+ def _(Iterator, get_positional_names, itertools, pl, register_io_source):
304
+ def my_custom_input_plugin(dtype, *iterables) -> pl.LazyFrame:
305
+ schema = pl.Schema({key: dtype for key in get_positional_names(len(iterables))})
306
+
307
+ def source_generator(
308
+ with_columns: list[str] | None,
309
+ predicate: pl.Expr | None,
310
+ n_rows: int | None,
311
+ batch_size: int | None,
312
+ ) -> Iterator[pl.DataFrame]:
313
+ """
314
+ Generator function that creates the source.
315
+ This function will be registered as IO source.
316
+ """
317
+ if batch_size is None:
318
+ batch_size = 100
319
+ if n_rows is not None:
320
+ batch_size = min(batch_size, n_rows)
321
+
322
+ generator = itertools.product(*iterables)
323
+ while n_rows is None or n_rows > 0:
324
+ rows = []
325
+ try:
326
+ while len(rows) < batch_size:
327
+ rows.append(next(generator))
328
+ except StopIteration:
329
+ n_rows = -1
330
+
331
+ df = pl.from_records(rows, schema=schema, orient="row")
332
+ if n_rows is not None:
333
+ n_rows -= df.height
334
+ batch_size = min(batch_size, n_rows)
335
+
336
+ # If we would make a performant reader, we would not read these
337
+ # columns at all.
338
+ if with_columns is not None:
339
+ df = df.select(with_columns)
340
+
341
+ # If the source supports predicate pushdown, the expression can be parsed
342
+ # to skip rows/groups.
343
+ if predicate is not None:
344
+ df = df.filter(predicate)
345
+
346
+ yield df
347
+
348
+ return register_io_source(io_source=source_generator, schema=schema)
349
+ return (my_custom_input_plugin,)
350
+
351
+
352
+ @app.cell(hide_code=True)
353
+ def _(mo):
354
+ mo.md(
355
+ r"""
356
+ ### DuckDB
357
+
358
+ As demonstrated above, in addition to Arrow interoperability support, [DuckDB](https://duckdb.org/) also has added support for loading query results into a polars DataFrame or LazyFrame via a polars plugin.
359
+
360
+ You can read more about polars and duckdb integrations in
361
+
362
+ - https://docs.pola.rs/user-guide/ecosystem/#duckdb
363
+ - https://duckdb.org/docs/stable/guides/python/polars.html
364
+
365
+ You can learn more about DuckDB in the marimo course about it as well, including Marimo SQL related features
366
+ """
367
+ )
368
+ return
369
+
370
+
371
+ @app.cell
372
+ def _():
373
+ # Amazing if you need of features not yet supported by Polars such as geospatial data
374
+ duckdb_query = """
375
+ SELECT
376
+ id,
377
+ name,
378
+ ST_X(geometry) as longitude,
379
+ ST_Y(geometry) as latitude
380
+ FROM locations
381
+ """
382
+ return (duckdb_query,)
383
+
384
+
385
+ @app.cell
386
+ def _(duckdb_conn, duckdb_query):
387
+ # Eager (default):
388
+ duckdb_conn.sql(duckdb_query).pl()
389
+ return
390
+
391
+
392
+ @app.cell
393
+ def _(duckdb_conn, duckdb_query):
394
+ # Lazy (requires >= 1.4.0):
395
+ duckdb_conn.sql(duckdb_query).pl(lazy=True)
396
+ return
397
+
398
+
399
+ @app.cell(hide_code=True)
400
+ def _(mo):
401
+ mo.md(
402
+ r"""
403
+ ## Hive Partitions
404
+
405
+ There is also support for [Hive](https://docs.pola.rs/user-guide/io/hive/) partitioned data, but parts of the API are still unstable (may change in future polars versions
406
+ ).
407
+
408
+ Even without using partitions, many methods also support glob patterns to read multiple files in the same folder such as `scan_csv(folder / "*.csv")`
409
+ """
410
+ )
411
+ return
412
+
413
+
414
+ @app.cell
415
+ def _(df, folder, pl):
416
+ df.write_parquet(str((folder / "hive").resolve()) + "/", partition_by=["lazy"])
417
+ _ = pl.scan_parquet(str((folder / "hive").resolve()) + "/").filter(pl.col("lazy").eq(True)).collect()
418
+
419
+ print(*(folder / "hive").rglob("*.parquet"), sep="\n")
420
+ return
421
+
422
+
423
+ @app.cell(hide_code=True)
424
+ def _(mo):
425
+ mo.md(
426
+ r"""
427
+ # Reading from the Cloud
428
+
429
+ Polars also has support for reading public and private datasets from multiple websites
430
+ and cloud storage solutions.
431
+
432
+ If you must (re)use the same file many times in the same machine you may want to manually download it then load from your local file system instead to avoid re-downloading though, or download and write to disk only if the file does not exists.
433
+ """
434
+ )
435
+ return
436
+
437
+
438
+ @app.cell(hide_code=True)
439
+ def _(mo):
440
+ mo.md(
441
+ r"""
442
+ ## Arbitrary web sites
443
+
444
+ You can load files from nearly any website just by using a HTTPS URL, as long as it is not locked behind authorization.
445
+ """
446
+ )
447
+ return
448
+
449
+
450
+ @app.cell(disabled=True)
451
+ def _():
452
+ # df = pl.read_csv('https://example.com/file.csv')
453
+ return
454
+
455
+
456
+ @app.cell(hide_code=True)
457
+ def _(mo):
458
+ mo.md(
459
+ r"""
460
+ ## Hugging Face & Kaggle Datasets
461
+
462
+ Look for polars inside of dropdowns such as "Use this dataset" in Hugging Face or "Code" in Kaggle, and oftentimes you'll get a snippet to load data directly into a dataframe you can use
463
+
464
+ Read more: [Hugging Face](https://docs.pola.rs/user-guide/io/hugging-face/), [Kaggle](https://github.com/Kaggle/kagglehub/blob/main/README.md#kaggledatasetadapterpolars)
465
+ """
466
+ )
467
+ return
468
+
469
+
470
+ @app.cell(disabled=True)
471
+ def _():
472
+ # df = pl.read_parquet('hf://datasets/username/dataset/*.parquet')
473
+ return
474
+
475
+
476
+ @app.cell(hide_code=True)
477
+ def _(mo):
478
+ mo.md(
479
+ r"""
480
+ ## Cloud Storage - AWS S3, Azure Blob Storage, Google Cloud Storage
481
+
482
+ The API is the same for all three storage providers, check the [User Guide](https://docs.pola.rs/user-guide/io/cloud-storage/) if you need of any of them.
483
+
484
+ Runnable examples are not included in this Notebook as it would require setting up authentication, but the disabled cell below shows an example using Azure.
485
+ """
486
+ )
487
+ return
488
+
489
+
490
+ @app.cell(disabled=True)
491
+ def _(adlfs, df, os, pl):
492
+ fs = adlfs.AzureBlobFileSystem(connection_string=os.environ["AZURE_STORAGE_CONNECTION_STRING"])
493
+ destination = f"abfs://{os.environ['AZURE_CONTAINER_NAME']}/file.parquet"
494
+
495
+ # Writing
496
+ with fs.open(destination, mode="wb") as f:
497
+ df.write_parquet(f)
498
+
499
+ # Reading
500
+ pl.read_parquet(
501
+ destination, storage_options={"account_name": os.environ["AZURE_STORAGE_ACCOUNT"], "use_azure_cli": "True"}
502
+ )
503
+
504
+ # Deleting
505
+ fs.delete(destination)
506
+
507
+ # If you get an error saying that the account does not exists, double check you logged in the correct account and subscription via `az login`
508
+ return
509
+
510
+
511
+ @app.cell(hide_code=True)
512
+ def _(mo):
513
+ mo.md(
514
+ r"""
515
+ # Multiplexing
516
+
517
+ You can also split a query into multiple sinks via [multiplexing](https://docs.pola.rs/user-guide/lazy/multiplexing/), to avoid reading multiple times, repeating the same operations for each sink or collecting intermediary results into memory.
518
+ """
519
+ )
520
+ return
521
+
522
+
523
+ @app.cell
524
+ def _(folder, lz, pl):
525
+ lz2 = lz.with_columns(pl.col(pl.String).str.to_uppercase())
526
+ lz3 = lz.with_columns(pl.col(pl.String).str.to_lowercase())
527
+
528
+ # Collecting multiple LazyFrames into memory
529
+ _df, _df2, _df3 = pl.collect_all([lz, lz2, lz3])
530
+
531
+ # Sinking multiple LazyFrames into different destinations
532
+ sinks = [
533
+ lz.sink_csv(folder / "data_1.csv", lazy=True),
534
+ lz2.sink_csv(folder / "data_2.csv", lazy=True),
535
+ lz3.sink_csv(folder / "data_3.csv", lazy=True),
536
+ ]
537
+ _ = pl.collect_all(sinks)
538
+ return (sinks,)
539
+
540
+
541
+ @app.cell(hide_code=True)
542
+ def _(mo):
543
+ mo.md(
544
+ r"""
545
+ # Async Execution
546
+
547
+ Polars also has experimental support for running lazy queries in `async` mode, letting you `await` operations inside of async functions.
548
+ """
549
+ )
550
+ return
551
+
552
+
553
+ @app.cell
554
+ async def _(lz):
555
+ await lz.collect_async()
556
+ return
557
+
558
+
559
+ @app.cell
560
+ async def _(folder, lz, pl, sinks):
561
+ # If you want to write to a file, use `lz.sink_format(lazy=True)` followed by `...collect_async()` or `pl.collect_all_async(...)`
562
+ _ = await lz.sink_csv(folder / "data_from_async.csv", lazy=True).collect_async()
563
+ _ = await pl.collect_all_async(sinks)
564
+ return
565
+
566
+
567
+ @app.cell(hide_code=True)
568
+ def _(mo):
569
+ mo.md(
570
+ r"""
571
+ ## Conclusion
572
+ As you have seen, polars makes it easy to work with a variety of formats and different data sources.
573
+
574
+ From natively supported formats such as Parquet and CSV files, to using other libraries as an intermediary for XML or geospatial data, and plugins for newly emerging or proprietary formats, as long as your data can fit in a table then odds are you can turn it into a polars DataFrame.
575
+
576
+ Combined with loading directly from remote sources, including public data platforms such as Hugging Face and Kaggle as well as private data in your cloud, you can import datasets for almost anything you can imagine.
577
+ """
578
+ )
579
+ return
580
+
581
+
582
+ @app.cell(hide_code=True)
583
+ def _(mo):
584
+ mo.md(
585
+ r"""
586
+ ## Utilities
587
+ Imports, utility functions and alike used through the Notebook
588
+ """
589
+ )
590
+ return
591
+
592
+
593
+ @app.cell
594
+ def _():
595
+ import marimo as mo
596
+ return (mo,)
597
+
598
+
599
+ @app.cell(disabled=True)
600
+ def _():
601
+ # You may need to install `fsspec ` and `adlfs ` beyond the dependencies included in the notebook
602
+ import os
603
+ import adlfs
604
+ return adlfs, os
605
+
606
+
607
+ @app.cell
608
+ def _():
609
+ import pathlib
610
+ import tempfile
611
+
612
+ folder = pathlib.Path(tempfile.mkdtemp())
613
+ folder
614
+ return (folder,)
615
+
616
+
617
+ @app.cell
618
+ def _():
619
+ import math
620
+ import string
621
+ import itertools
622
+ from typing import Iterator
623
+ return Iterator, itertools, string
624
+
625
+
626
+ @app.cell
627
+ def _():
628
+ import polars as pl
629
+ import pandas as pd
630
+ from polars.io.plugins import register_io_source
631
+ import duckdb
632
+ return duckdb, pd, pl, register_io_source
633
+
634
+
635
+ @app.cell
636
+ def _(itertools, string):
637
+ def get_positional_names(count: int) -> list[str]:
638
+ out = []
639
+ size = 0
640
+ while True:
641
+ size += 1 # number of characters in each column name
642
+ for column in itertools.product(*itertools.repeat(string.ascii_uppercase, size)):
643
+ if len(out) >= count:
644
+ return out
645
+ out.append("".join(column))
646
+ return (get_positional_names,)
647
+
648
+
649
+ @app.cell
650
+ def _(duckdb):
651
+ # Connect to an ephemeral in-memory DuckDB database
652
+ duckdb_conn = duckdb.connect(":memory:")
653
+
654
+ # Install and load the spatial extension for geometry support
655
+ duckdb_conn.install_extension("spatial")
656
+ duckdb_conn.load_extension("spatial")
657
+
658
+ # Create a table with geometry column
659
+ duckdb_conn.sql("""
660
+ CREATE TABLE locations (
661
+ id INTEGER,
662
+ name VARCHAR,
663
+ geometry GEOMETRY
664
+ )
665
+ """)
666
+
667
+ # Insert some sample data with geometry points
668
+ duckdb_conn.sql("""
669
+ INSERT INTO locations VALUES
670
+ (1, 'New York', ST_Point(-74.0059, 40.7128)),
671
+ (2, 'Los Angeles', ST_Point(-118.2437, 34.0522)),
672
+ (3, 'Chicago', ST_Point(-87.6298, 41.8781)),
673
+ (4, 'Houston', ST_Point(-95.3698, 29.7604)),
674
+ (5, 'Phoenix', ST_Point(-112.0740, 33.4484))
675
+ """)
676
+ return (duckdb_conn,)
677
+
678
+
679
+ if __name__ == "__main__":
680
+ app.run()