johnnnguyen commited on
Commit
c7d49e4
·
verified ·
1 Parent(s): b9f9d33

Update app.py

Browse files

Train model before generate text

Files changed (1) hide show
  1. app.py +11 -17
app.py CHANGED
@@ -23,6 +23,8 @@ faq_embeddings = embedding_model.encode(faq_questions, convert_to_numpy=True)
23
  index = faiss.IndexFlatL2(faq_embeddings.shape[1])
24
  index.add(faq_embeddings)
25
 
 
 
26
  def retrieve_uber_info(query):
27
  """Retrieve the most relevant Uber FAQ answer for the given query."""
28
  query_embedding = embedding_model.encode([query], convert_to_numpy=True)
@@ -35,35 +37,27 @@ def retrieve_uber_info(query):
35
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
36
 
37
 
38
- def respond(
39
- message,
40
- history: list[tuple[str, str]],
41
- system_message,
42
- max_tokens,
43
- temperature,
44
- top_p,
45
- ):
46
- messages = [{"role": "system", "content": system_message}]
47
 
 
 
48
  for val in history:
49
  if val[0]:
50
  messages.append({"role": "user", "content": val[0]})
51
  if val[1]:
52
  messages.append({"role": "assistant", "content": val[1]})
53
-
54
  messages.append({"role": "user", "content": message})
55
 
56
  response = ""
57
-
58
  for message in client.chat_completion(
59
- messages,
60
- max_tokens=max_tokens,
61
- stream=True,
62
- temperature=temperature,
63
- top_p=top_p,
64
  ):
65
  token = message.choices[0].delta.content
66
-
67
  response += token
68
  yield response
69
 
 
23
  index = faiss.IndexFlatL2(faq_embeddings.shape[1])
24
  index.add(faq_embeddings)
25
 
26
+
27
+
28
  def retrieve_uber_info(query):
29
  """Retrieve the most relevant Uber FAQ answer for the given query."""
30
  query_embedding = embedding_model.encode([query], convert_to_numpy=True)
 
37
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
38
 
39
 
40
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
41
+ """Generate a response using Zephyr 7B while integrating retrieved Uber knowledge."""
42
+
43
+ retrieved_answer = retrieve_uber_info(message)
44
+ system_message += f"\n\nUber FAQ Context: {retrieved_answer}"
 
 
 
 
45
 
46
+ messages = [{"role": "system", "content": system_message}]
47
+
48
  for val in history:
49
  if val[0]:
50
  messages.append({"role": "user", "content": val[0]})
51
  if val[1]:
52
  messages.append({"role": "assistant", "content": val[1]})
53
+
54
  messages.append({"role": "user", "content": message})
55
 
56
  response = ""
 
57
  for message in client.chat_completion(
58
+ messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
 
 
 
 
59
  ):
60
  token = message.choices[0].delta.content
 
61
  response += token
62
  yield response
63