Spaces:
Sleeping
Sleeping
Update app.py
Browse filesTrain model before generate text
app.py
CHANGED
@@ -23,6 +23,8 @@ faq_embeddings = embedding_model.encode(faq_questions, convert_to_numpy=True)
|
|
23 |
index = faiss.IndexFlatL2(faq_embeddings.shape[1])
|
24 |
index.add(faq_embeddings)
|
25 |
|
|
|
|
|
26 |
def retrieve_uber_info(query):
|
27 |
"""Retrieve the most relevant Uber FAQ answer for the given query."""
|
28 |
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
@@ -35,35 +37,27 @@ def retrieve_uber_info(query):
|
|
35 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
36 |
|
37 |
|
38 |
-
def respond(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
temperature,
|
44 |
-
top_p,
|
45 |
-
):
|
46 |
-
messages = [{"role": "system", "content": system_message}]
|
47 |
|
|
|
|
|
48 |
for val in history:
|
49 |
if val[0]:
|
50 |
messages.append({"role": "user", "content": val[0]})
|
51 |
if val[1]:
|
52 |
messages.append({"role": "assistant", "content": val[1]})
|
53 |
-
|
54 |
messages.append({"role": "user", "content": message})
|
55 |
|
56 |
response = ""
|
57 |
-
|
58 |
for message in client.chat_completion(
|
59 |
-
messages,
|
60 |
-
max_tokens=max_tokens,
|
61 |
-
stream=True,
|
62 |
-
temperature=temperature,
|
63 |
-
top_p=top_p,
|
64 |
):
|
65 |
token = message.choices[0].delta.content
|
66 |
-
|
67 |
response += token
|
68 |
yield response
|
69 |
|
|
|
23 |
index = faiss.IndexFlatL2(faq_embeddings.shape[1])
|
24 |
index.add(faq_embeddings)
|
25 |
|
26 |
+
|
27 |
+
|
28 |
def retrieve_uber_info(query):
|
29 |
"""Retrieve the most relevant Uber FAQ answer for the given query."""
|
30 |
query_embedding = embedding_model.encode([query], convert_to_numpy=True)
|
|
|
37 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
38 |
|
39 |
|
40 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
41 |
+
"""Generate a response using Zephyr 7B while integrating retrieved Uber knowledge."""
|
42 |
+
|
43 |
+
retrieved_answer = retrieve_uber_info(message)
|
44 |
+
system_message += f"\n\nUber FAQ Context: {retrieved_answer}"
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
messages = [{"role": "system", "content": system_message}]
|
47 |
+
|
48 |
for val in history:
|
49 |
if val[0]:
|
50 |
messages.append({"role": "user", "content": val[0]})
|
51 |
if val[1]:
|
52 |
messages.append({"role": "assistant", "content": val[1]})
|
53 |
+
|
54 |
messages.append({"role": "user", "content": message})
|
55 |
|
56 |
response = ""
|
|
|
57 |
for message in client.chat_completion(
|
58 |
+
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
|
|
|
|
|
|
|
|
|
59 |
):
|
60 |
token = message.choices[0].delta.content
|
|
|
61 |
response += token
|
62 |
yield response
|
63 |
|