File size: 63,719 Bytes
cca4a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>🤖 AI-Powered Document Search & RAG Chat</title>
    <script type="module">
        // Import transformers.js 3.0.0 from CDN (new Hugging Face ownership)
        import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0';
        
        // Make available globally
        window.transformers = { pipeline, env };
        window.transformersLoaded = true;
        
        console.log('✅ Transformers.js 3.0.0 loaded via ES modules (Hugging Face)');
    </script>
    <script src="https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0/dist/transformers.min.js"></script>
    <style>
        * { margin: 0; padding: 0; box-sizing: border-box; }
        
        body {
            font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            min-height: 100vh;
            padding: 20px;
        }
        
        .container {
            max-width: 1200px;
            margin: 0 auto;
            background: white;
            border-radius: 20px;
            box-shadow: 0 20px 60px rgba(0,0,0,0.1);
            overflow: hidden;
        }
        
        .header {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            color: white;
            padding: 30px;
            text-align: center;
        }
        
        .header h1 { font-size: 2.5em; margin-bottom: 10px; }
        .header p { font-size: 1.2em; opacity: 0.9; }
        
        .status {
            background: #f8f9fa;
            padding: 15px 30px;
            border-bottom: 1px solid #e9ecef;
            font-weight: 600;
            color: #495057;
        }
        
        .tabs {
            display: flex;
            background: #f8f9fa;
            border-bottom: 1px solid #e9ecef;
        }
        
        .tab {
            flex: 1;
            padding: 15px 20px;
            background: none;
            border: none;
            cursor: pointer;
            font-weight: 600;
            font-size: 14px;
            transition: all 0.3s;
            border-bottom: 3px solid transparent;
        }
        
        .tab:hover { background: #e9ecef; }
        .tab.active { background: white; border-bottom-color: #667eea; color: #667eea; }
        
        .tab-content {
            display: none;
            padding: 30px;
        }
        
        .tab-content.active { display: block; }
        
        .form-group {
            margin-bottom: 20px;
        }
        
        label {
            display: block;
            margin-bottom: 5px;
            font-weight: 600;
            color: #495057;
        }
        
        input, textarea, select {
            width: 100%;
            padding: 12px;
            border: 2px solid #e9ecef;
            border-radius: 8px;
            font-size: 16px;
            transition: border-color 0.3s;
        }
        
        input:focus, textarea:focus, select:focus {
            outline: none;
            border-color: #667eea;
        }
        
        button {
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            color: white;
            border: none;
            padding: 12px 24px;
            border-radius: 8px;
            font-size: 16px;
            font-weight: 600;
            cursor: pointer;
            transition: transform 0.2s;
        }
        
        button:hover { transform: translateY(-2px); }
        button:disabled { opacity: 0.6; cursor: not-allowed; transform: none; }
        
        .btn-secondary {
            background: linear-gradient(135deg, #6c757d 0%, #495057 100%);
        }
        
        .result {
            background: #f8f9fa;
            border: 1px solid #e9ecef;
            border-radius: 8px;
            padding: 20px;
            margin-top: 15px;
            white-space: pre-wrap;
            max-height: 400px;
            overflow-y: auto;
        }
        
        .upload-section {
            margin-bottom: 30px;
        }
        
        .upload-area {
            border: 2px dashed #007bff;
            border-radius: 12px;
            padding: 40px;
            text-align: center;
            background: #f8f9ff;
            cursor: pointer;
            transition: all 0.3s ease;
            margin: 20px 0;
        }
        
        .upload-area:hover {
            border-color: #0056b3;
            background: #e3f2fd;
        }
        
        .upload-area.dragover {
            border-color: #28a745;
            background: #e8f5e8;
        }
        
        .upload-content {
            pointer-events: none;
        }
        
        .upload-icon {
            font-size: 48px;
            margin-bottom: 15px;
        }
        
        .upload-text {
            color: #666;
            font-size: 16px;
        }
        
        .divider {
            text-align: center;
            margin: 30px 0;
            position: relative;
            color: #666;
            font-weight: bold;
            background: white;
            padding: 0 20px;
            display: inline-block;
            width: 100%;
        }
        
        .divider::before {
            content: '';
            position: absolute;
            top: 50%;
            left: 0;
            right: 0;
            height: 1px;
            background: #ddd;
            z-index: 1;
        }
        
        .manual-entry {
            margin-top: 20px;
        }
        
        .progress-container {
            background: #f0f0f0;
            border-radius: 6px;
            margin: 15px 0;
            overflow: hidden;
            position: relative;
        }
        
        .progress-bar {
            background: linear-gradient(45deg, #007bff, #0056b3);
            height: 20px;
            border-radius: 6px;
            transition: width 0.3s ease;
            width: 0%;
        }
        
        .progress-text {
            position: absolute;
            top: 50%;
            left: 50%;
            transform: translate(-50%, -50%);
            font-size: 12px;
            font-weight: bold;
            color: #333;
            white-space: nowrap;
        }
        
        .grid {
            display: grid;
            grid-template-columns: 1fr 1fr;
            gap: 20px;
        }
        
        .alert {
            padding: 15px;
            border-radius: 8px;
            margin-bottom: 20px;
        }
        
        .alert-info {
            background: #d1ecf1;
            border: 1px solid #b8daff;
            color: #0c5460;
        }
        
        .alert-success {
            background: #d4edda;
            border: 1px solid #c3e6cb;
            color: #155724;
        }
        
        .alert-warning {
            background: #fff3cd;
            border: 1px solid #ffeeba;
            color: #856404;
        }
        
        .slider-container {
            display: flex;
            align-items: center;
            gap: 15px;
        }
        
        .slider {
            flex: 1;
        }
        
        .slider-value {
            min-width: 40px;
            text-align: center;
            font-weight: 600;
            color: #667eea;
        }
        
        .loading {
            display: inline-block;
            width: 20px;
            height: 20px;
            border: 2px solid #f3f3f3;
            border-top: 2px solid #667eea;
            border-radius: 50%;
            animation: spin 1s linear infinite;
        }
        
        .progress {
            width: 100%;
            height: 8px;
            background: #e9ecef;
            border-radius: 4px;
            overflow: hidden;
            margin: 10px 0;
        }
        
        .progress-bar {
            height: 100%;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
            transition: width 0.3s ease;
        }
        
        @keyframes spin {
            0% { transform: rotate(0deg); }
            100% { transform: rotate(360deg); }
        }
        
        .model-info {
            background: #e8f4f8;
            border: 1px solid #bee5eb;
            border-radius: 8px;
            padding: 15px;
            margin: 15px 0;
        }
        
        .model-info h4 {
            color: #0c5460;
            margin-bottom: 8px;
        }
        
        .model-info p {
            color: #0c5460;
            font-size: 14px;
            margin: 5px 0;
        }
    </style>
</head>
<body>
    <div class="container">
        <div class="header">
            <h1>🤖 AI-Powered Document Search & RAG Chat</h1>
            <p>Real transformer models running in your browser with Transformers.js</p>
        </div>
        
        <div class="status" id="status">
            📊 Documents: 3 | 🤖 AI Models: Not loaded | 🧠 Embedding Model: Not loaded
        </div>
        
        <div class="tabs">
            <button class="tab active" onclick="showTab('init')">🚀 Initialize AI</button>
            <button class="tab" onclick="showTab('chat')">🤖 AI Chat (RAG)</button>
            <button class="tab" onclick="showTab('llm')">🚀 LLM Chat</button>
            <button class="tab" onclick="showTab('search')">🔍 Semantic Search</button>
            <button class="tab" onclick="showTab('add')">📝 Add Documents</button>
            <button class="tab" onclick="showTab('test')">🧪 System Test</button>
        </div>
        
        <!-- Initialize AI Tab -->
        <div id="init" class="tab-content active">
            <div class="alert alert-info">
                <strong>🚀 Real AI Models!</strong> This system uses actual transformer models via Transformers.js.
            </div>
            
            <div class="model-info">
                <h4>🧠 Models Being Loaded:</h4>
                <p><strong>Embedding Model:</strong> Xenova/all-MiniLM-L6-v2 (384-dimensional sentence embeddings)</p>
                <p><strong>Q&A Model:</strong> Xenova/distilbert-base-cased-distilled-squad (Question Answering)</p>
                <p><strong>LLM Model:</strong> Auto-selected GPT-2 or DistilGPT-2 (Transformers.js 3.0.0)</p>
                <p><strong>Size:</strong> ~100MB total (cached after first load)</p>
                <p><strong>Performance:</strong> CPU inference, ~2-8 seconds per operation</p>
                <p><strong>Status:</strong> <span id="transformersStatus">⏳ Loading library...</span></p>
            </div>
            
            <div class="alert alert-warning">
                <strong>⚠️ First Load:</strong> Model downloading may take 1-2 minutes depending on your internet connection. Models are cached for subsequent uses.
            </div>
            
            <button onclick="initializeModels()" id="initBtn" style="font-size: 18px; padding: 15px 30px;">
                🚀 Initialize Real AI Models
            </button>
            
            <div id="initProgress" style="display: none;">
                <div class="progress">
                    <div class="progress-bar" id="progressBar" style="width: 0%"></div>
                </div>
                <p id="progressText">Preparing to load models...</p>
            </div>
            
            <div id="initStatus" class="result" style="display: none;"></div>
        </div>
        
        <!-- AI Chat Tab -->
        <div id="chat" class="tab-content">
            <div class="alert alert-info">
                <strong>🤖 Real AI Chat!</strong> Ask questions and get answers from actual transformer models.
            </div>
            <div class="alert alert-success">
                <strong>💡 Try asking:</strong><br>
                • "What is artificial intelligence?"<br>
                • "How does space exploration work?"<br>
                • "What are renewable energy sources?"<br>
                • "Explain machine learning in simple terms"
            </div>
            <div class="grid">
                <div>
                    <label for="chatQuestion">Your Question</label>
                    <textarea id="chatQuestion" rows="3" placeholder="Ask anything about the documents..."></textarea>
                </div>
                <div>
                    <label for="maxContext">Context Documents</label>
                    <div class="slider-container">
                        <input type="range" id="maxContext" class="slider" min="1" max="5" value="3" oninput="updateSliderValue('maxContext')">
                        <span id="maxContextValue" class="slider-value">3</span>
                    </div>
                </div>
            </div>
            <button onclick="chatWithRAG()" id="chatBtn">🤖 Ask AI</button>
            <div id="chatResponse" class="result" style="display: none;"></div>
        </div>
        
        <!-- LLM Chat Tab -->
        <div id="llm" class="tab-content">
            <div class="alert alert-info">
                <strong>🚀 Pure LLM Chat!</strong> Chat with a language model (GPT-2 or Llama2.c) running in your browser.
            </div>
            <div class="alert alert-success">
                <strong>💡 Try these prompts:</strong><br>
                • "Tell me a story about space exploration"<br>
                • "Explain machine learning in simple terms"<br>
                • "Write a poem about artificial intelligence"<br>
                • "What are the benefits of renewable energy?"
            </div>
            <div class="grid">
                <div>
                    <label for="llmPrompt">Your Prompt</label>
                    <textarea id="llmPrompt" rows="3" placeholder="Enter your prompt for the language model..."></textarea>
                </div>
                <div>
                    <label for="maxTokens">Max Tokens</label>
                    <div class="slider-container">
                        <input type="range" id="maxTokens" class="slider" min="20" max="200" value="100" oninput="updateSliderValue('maxTokens')">
                        <span id="maxTokensValue" class="slider-value">100</span>
                    </div>
                    <label for="temperature">Temperature</label>
                    <div class="slider-container">
                        <input type="range" id="temperature" class="slider" min="0.1" max="1.5" step="0.1" value="0.7" oninput="updateSliderValue('temperature')">
                        <span id="temperatureValue" class="slider-value">0.7</span>
                    </div>
                </div>
            </div>
            <div style="display: flex; gap: 10px;">
                <button onclick="chatWithLLM()" id="llmBtn">🚀 Generate Text</button>
                <button class="btn-secondary" onclick="chatWithLLMRAG()" id="llmRagBtn">🤖 LLM + RAG</button>
            </div>
            <div id="llmResponse" class="result" style="display: none;"></div>
        </div>
        
        <!-- Semantic Search Tab -->
        <div id="search" class="tab-content">
            <div class="alert alert-info">
                <strong>🔮 Real semantic search!</strong> Using transformer embeddings to find documents by meaning.
            </div>
            <div class="grid">
                <div>
                    <label for="searchQuery">Search Query</label>
                    <input type="text" id="searchQuery" placeholder="Try: 'machine learning', 'Mars missions', 'solar power'">
                </div>
                <div>
                    <label for="maxResults">Max Results</label>
                    <div class="slider-container">
                        <input type="range" id="maxResults" class="slider" min="1" max="10" value="5" oninput="updateSliderValue('maxResults')">
                        <span id="maxResultsValue" class="slider-value">5</span>
                    </div>
                </div>
            </div>
            <div style="display: flex; gap: 10px;">
                <button onclick="searchDocumentsSemantic()" id="searchBtn">🔮 Semantic Search</button>
                <button class="btn-secondary" onclick="searchDocumentsKeyword()">🔤 Keyword Search</button>
            </div>
            <div id="searchResults" class="result" style="display: none;"></div>
        </div>
        
        <!-- Add Documents Tab -->
        <div id="add" class="tab-content">
            <div class="alert alert-info">
                <strong>📚 Expand your knowledge base!</strong> Upload files or paste text with real AI embeddings.
            </div>
            
            <!-- File Upload Section -->
            <div class="upload-section">
                <h4>📁 Upload Files</h4>
                <div class="upload-area" id="uploadArea">
                    <div class="upload-content">
                        <div class="upload-icon">📄</div>
                        <div class="upload-text">
                            <strong>Drop files here or click to select</strong>
                            <br>Supports: .md, .txt, .json, .csv, .html, .js, .py, .xml
                        </div>
                    </div>
                    <input type="file" id="fileInput" accept=".md,.txt,.json,.csv,.html,.js,.py,.xml,.rst,.yaml,.yml" multiple style="display: none;">
                </div>
                <div id="uploadProgress" class="progress-container" style="display: none;">
                    <div class="progress-bar" id="uploadProgressBar"></div>
                    <div class="progress-text" id="uploadProgressText">Processing files...</div>
                </div>
                <div id="uploadStatus" class="result" style="display: none;"></div>
            </div>
            
            <div class="divider">OR</div>
            
            <!-- Manual Entry Section -->
            <div class="manual-entry">
                <h4>✏️ Manual Entry</h4>
                <div class="form-group">
                    <label for="docTitle">Document Title (optional)</label>
                    <input type="text" id="docTitle" placeholder="Enter document title...">
                </div>
                <div class="form-group">
                    <label for="docContent">Document Content</label>
                    <textarea id="docContent" rows="8" placeholder="Paste your document text here..."></textarea>
                </div>
                <button onclick="addDocumentManual()" id="addBtn">📝 Add Document</button>
                <div class="grid">
                    <div id="addStatus" class="result" style="display: none;"></div>
                    <div id="docPreview" class="result" style="display: none;"></div>
                </div>
            </div>
        </div>
        
        <!-- System Test Tab -->
        <div id="test" class="tab-content">
            <div class="alert alert-info">
                <strong>🧪 Test the system</strong> to verify AI models are working correctly.
            </div>
            <button onclick="testSystem()" id="testBtn">🧪 Run System Test</button>
            <div id="testOutput" class="result" style="display: none;"></div>
        </div>
    </div>

    <script>
        // Global variables for transformers.js
        let pipeline = null;
        let env = null;
        let transformersReady = false;
        
        // Initialize transformers.js when the script loads
        async function initTransformers() {
            try {
                console.log('🔄 Initializing Transformers.js...');
                
                // Try ES modules first (preferred method)
                if (window.transformers && window.transformersLoaded) {
                    console.log('✅ Using ES modules version (Transformers.js 3.0.0)');
                    ({ pipeline, env } = window.transformers);
                } 
                // Fallback to UMD version
                else if (window.Transformers) {
                    console.log('✅ Using UMD version (Transformers.js 3.0.0)');
                    ({ pipeline, env } = window.Transformers);
                }
                // Wait for library to load
                else {
                    console.log('⏳ Waiting for library to load...');
                    let attempts = 0;
                    while (!window.Transformers && !window.transformersLoaded && attempts < 50) {
                        await new Promise(resolve => setTimeout(resolve, 200));
                        attempts++;
                    }
                    
                    if (window.transformers && window.transformersLoaded) {
                        ({ pipeline, env } = window.transformers);
                    } else if (window.Transformers) {
                        ({ pipeline, env } = window.Transformers);
                    } else {
                        throw new Error('Failed to load Transformers.js library');
                    }
                }
                
                // Configure transformers.js with minimal settings
                if (env) {
                    env.allowLocalModels = false;
                    env.allowRemoteModels = true;
                    // Let Transformers.js use default WASM paths for better compatibility
                }
                
                transformersReady = true;
                console.log('✅ Transformers.js initialized successfully');
                
                // Update UI to show ready state
                updateStatus();
                
                // Update status indicator
                const statusSpan = document.getElementById('transformersStatus');
                if (statusSpan) {
                    statusSpan.textContent = '✅ Ready!';
                    statusSpan.style.color = 'green';
                }
                
            } catch (error) {
                console.error('❌ Error initializing Transformers.js:', error);
                
                // Show error in UI
                const statusDiv = document.getElementById('status');
                if (statusDiv) {
                    statusDiv.textContent = `❌ Failed to load Transformers.js: ${error.message}`;
                    statusDiv.style.color = 'red';
                }
                
                // Update status indicator
                const statusSpan = document.getElementById('transformersStatus');
                if (statusSpan) {
                    statusSpan.textContent = `❌ Failed: ${error.message}`;
                    statusSpan.style.color = 'red';
                }
            }
        }
        
        // Initialize when page loads
        document.addEventListener('DOMContentLoaded', function() {
            initTransformers();
            initFileUpload();
        });
        
        // Document storage and AI state
        let documents = [
            {
                id: 0,
                title: "Artificial Intelligence Overview",
                content: "Artificial Intelligence (AI) is a branch of computer science that aims to create intelligent machines that work and react like humans. Some activities computers with AI are designed for include speech recognition, learning, planning, and problem-solving. AI is used in healthcare, finance, transportation, and entertainment. Machine learning enables computers to learn from experience without explicit programming. Deep learning uses neural networks to understand complex patterns in data.",
                embedding: null
            },
            {
                id: 1,
                title: "Space Exploration",
                content: "Space exploration is the ongoing discovery and exploration of celestial structures in outer space through evolving space technology. Physical exploration is conducted by unmanned robotic probes and human spaceflight. Space exploration has been used for geopolitical rivalries like the Cold War. The early era was driven by a Space Race between the Soviet Union and United States. Modern exploration includes Mars missions, the International Space Station, and satellite programs.",
                embedding: null
            },
            {
                id: 2,
                title: "Renewable Energy", 
                content: "Renewable energy comes from naturally replenished resources on a human timescale. It includes sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy contrasts with fossil fuels that are used faster than replenished. Most renewable sources are sustainable. Solar energy is abundant and promising. Wind energy and hydroelectric power are major contributors to renewable generation worldwide.",
                embedding: null
            }
        ];

        let embeddingModel = null;
        let qaModel = null;
        let llmModel = null;
        let loadedModelName = '';
        let modelsInitialized = false;

        // Calculate cosine similarity between two vectors
        function cosineSimilarity(a, b) {
            const dotProduct = a.reduce((sum, val, i) => sum + val * b[i], 0);
            const magnitudeA = Math.sqrt(a.reduce((sum, val) => sum + val * val, 0));
            const magnitudeB = Math.sqrt(b.reduce((sum, val) => sum + val * val, 0));
            
            if (magnitudeA === 0 || magnitudeB === 0) return 0;
            return dotProduct / (magnitudeA * magnitudeB);
        }

        // UI Functions
        function showTab(tabName) {
            // Hide all tabs
            document.querySelectorAll('.tab-content').forEach(tab => {
                tab.classList.remove('active');
            });
            document.querySelectorAll('.tab').forEach(button => {
                button.classList.remove('active');
            });
            
            // Show selected tab
            document.getElementById(tabName).classList.add('active');
            event.target.classList.add('active');
        }

        function updateSliderValue(sliderId) {
            const slider = document.getElementById(sliderId);
            const valueSpan = document.getElementById(sliderId + 'Value');
            valueSpan.textContent = slider.value;
        }

        function updateStatus() {
            const status = document.getElementById('status');
            const transformersStatus = transformersReady ? 'Ready' : 'Not ready';
            const embeddingStatus = embeddingModel ? 'Loaded' : 'Not loaded';
            const qaStatus = qaModel ? 'Loaded' : 'Not loaded';
            const llmStatus = llmModel ? 'Loaded' : 'Not loaded';
            status.textContent = `📊 Documents: ${documents.length} | 🔧 Transformers.js: ${transformersStatus} | 🤖 QA: ${qaStatus} | 🧠 Embedding: ${embeddingStatus} | 🚀 LLM: ${llmStatus}`;
        }

        function updateProgress(percent, text) {
            const progressBar = document.getElementById('progressBar');
            const progressText = document.getElementById('progressText');
            progressBar.style.width = percent + '%';
            progressText.textContent = text;
        }

        // AI Functions
        async function initializeModels() {
            const statusDiv = document.getElementById('initStatus');
            const progressDiv = document.getElementById('initProgress');
            const initBtn = document.getElementById('initBtn');
            
            statusDiv.style.display = 'block';
            progressDiv.style.display = 'block';
            initBtn.disabled = true;
            
            try {
                // Check if transformers.js is ready
                if (!transformersReady || !pipeline) {
                    updateProgress(5, "Waiting for Transformers.js to initialize...");
                    statusDiv.innerHTML = '🔄 Initializing Transformers.js library...';
                    
                    // Wait for transformers.js to be ready
                    let attempts = 0;
                    while (!transformersReady && attempts < 30) {
                        await new Promise(resolve => setTimeout(resolve, 1000));
                        attempts++;
                    }
                    
                    if (!transformersReady) {
                        throw new Error('Transformers.js failed to initialize. Please refresh the page.');
                    }
                }
                
                updateProgress(10, "Loading embedding model...");
                statusDiv.innerHTML = '🔄 Loading embedding model (Xenova/all-MiniLM-L6-v2)...';
                
                // Load embedding model with progress tracking
                embeddingModel = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2', {
                    progress_callback: (progress) => {
                        if (progress.status === 'downloading') {
                            const percent = progress.loaded && progress.total ? 
                                Math.round((progress.loaded / progress.total) * 100) : 0;
                            statusDiv.innerHTML = `🔄 Downloading embedding model: ${percent}%`;
                        }
                    }
                });
                
                updateProgress(40, "Loading question-answering model...");
                statusDiv.innerHTML = '🔄 Loading QA model (Xenova/distilbert-base-cased-distilled-squad)...';
                
                // Load QA model with progress tracking
                qaModel = await pipeline('question-answering', 'Xenova/distilbert-base-cased-distilled-squad', {
                    progress_callback: (progress) => {
                        if (progress.status === 'downloading') {
                            const percent = progress.loaded && progress.total ? 
                                Math.round((progress.loaded / progress.total) * 100) : 0;
                            statusDiv.innerHTML = `🔄 Downloading QA model: ${percent}%`;
                        }
                    }
                });
                
                updateProgress(70, "Loading language model...");
                statusDiv.innerHTML = '🔄 Loading LLM (trying SmolLM models)...';
                
                // Load LLM model - Stable Transformers.js 3.0.0 configuration
                const modelsToTry = [
                    {
                        name: 'Xenova/gpt2',
                        options: {}
                    },
                    {
                        name: 'Xenova/distilgpt2', 
                        options: {}
                    }
                ];
                
                let modelLoaded = false;
                for (const model of modelsToTry) {
                    try {
                        console.log(`Trying to load ${model.name}...`);
                        statusDiv.innerHTML = `🔄 Loading LLM (${model.name})...`;
                        
                        // Load LLM with progress tracking
                        llmModel = await pipeline('text-generation', model.name, {
                            progress_callback: (progress) => {
                                if (progress.status === 'downloading') {
                                    const percent = progress.loaded && progress.total ? 
                                        Math.round((progress.loaded / progress.total) * 100) : 0;
                                    statusDiv.innerHTML = `🔄 Downloading ${model.name}: ${percent}%`;
                                }
                            }
                        });
                        
                        console.log(`✅ Successfully loaded ${model.name}`);
                        loadedModelName = model.name;
                        modelLoaded = true;
                        break;
                    } catch (error) {
                        console.warn(`${model.name} failed:`, error);
                    }
                }
                
                if (!modelLoaded) {
                    throw new Error('Failed to load any LLM model');
                }
                
                updateProgress(85, "Generating embeddings for documents...");
                statusDiv.innerHTML = '🔄 Generating embeddings for existing documents...';
                
                // Generate embeddings for all existing documents
                for (let i = 0; i < documents.length; i++) {
                    const doc = documents[i];
                    updateProgress(85 + (i / documents.length) * 10, `Processing document ${i + 1}/${documents.length}...`);
                    doc.embedding = await generateEmbedding(doc.content);
                }
                
                updateProgress(100, "Initialization complete!");
                modelsInitialized = true;
                
                statusDiv.innerHTML = `✅ AI Models initialized successfully!
🧠 Embedding Model: Xenova/all-MiniLM-L6-v2 (384 dimensions)
🤖 QA Model: Xenova/distilbert-base-cased-distilled-squad
🚀 LLM Model: ${loadedModelName} (Language model for text generation)
📚 Documents processed: ${documents.length}
🔮 Ready for semantic search, Q&A, and LLM chat!

📊 Model Info:
• Embedding model size: ~23MB
• QA model size: ~28MB
• LLM model size: ~15-50MB (depending on model loaded)
• Total memory usage: ~70-100MB
• Inference speed: ~2-8 seconds per operation`;
                
                updateStatus();
                
            } catch (error) {
                console.error('Error initializing models:', error);
                statusDiv.innerHTML = `❌ Error initializing models: ${error.message}
                
Please check your internet connection and try again.`;
                updateProgress(0, "Initialization failed");
            } finally {
                initBtn.disabled = false;
                setTimeout(() => {
                    progressDiv.style.display = 'none';
                }, 2000);
            }
        }

        async function generateEmbedding(text) {
            if (!transformersReady || !pipeline) {
                throw new Error('Transformers.js not initialized');
            }
            
            if (!embeddingModel) {
                throw new Error('Embedding model not loaded');
            }
            
            try {
                const output = await embeddingModel(text, { pooling: 'mean', normalize: true });
                return Array.from(output.data);
            } catch (error) {
                console.error('Error generating embedding:', error);
                throw error;
            }
        }

        async function searchDocumentsSemantic() {
            const query = document.getElementById('searchQuery').value;
            const maxResults = parseInt(document.getElementById('maxResults').value);
            const resultsDiv = document.getElementById('searchResults');
            const searchBtn = document.getElementById('searchBtn');
            
            if (!query.trim()) {
                resultsDiv.style.display = 'block';
                resultsDiv.textContent = '❌ Please enter a search query';
                return;
            }
            
            if (!transformersReady || !modelsInitialized || !embeddingModel) {
                resultsDiv.style.display = 'block';
                resultsDiv.textContent = '❌ Please initialize AI models first!';
                return;
            }
            
            resultsDiv.style.display = 'block';
            resultsDiv.innerHTML = '<div class="loading"></div> Generating query embedding and searching...';
            searchBtn.disabled = true;
            
            try {
                // Generate embedding for query
                const queryEmbedding = await generateEmbedding(query);
                
                // Calculate similarities
                const results = [];
                documents.forEach(doc => {
                    if (doc.embedding) {
                        const similarity = cosineSimilarity(queryEmbedding, doc.embedding);
                        results.push({ doc, similarity });
                    }
                });
                
                // Sort by similarity
                results.sort((a, b) => b.similarity - a.similarity);
                
                if (results.length === 0) {
                    resultsDiv.textContent = `❌ No documents with embeddings found for '${query}'`;
                    return;
                }
                
                let output = `🔍 Semantic search results for '${query}':\n\n`;
                results.slice(0, maxResults).forEach((result, i) => {
                    const doc = result.doc;
                    const similarity = result.similarity;
                    const excerpt = doc.content.length > 200 ? doc.content.substring(0, 200) + '...' : doc.content;
                    output += `**Result ${i + 1}** (similarity: ${similarity.toFixed(3)})\n📄 Title: ${doc.title}\n📝 Content: ${excerpt}\n\n`;
                });
                
                resultsDiv.textContent = output;
                
            } catch (error) {
                console.error('Search error:', error);
                resultsDiv.textContent = `❌ Error during search: ${error.message}`;
            } finally {
                searchBtn.disabled = false;
            }
        }

        function searchDocumentsKeyword() {
            const query = document.getElementById('searchQuery').value;
            const maxResults = parseInt(document.getElementById('maxResults').value);
            const resultsDiv = document.getElementById('searchResults');
            
            if (!query.trim()) {
                resultsDiv.style.display = 'block';
                resultsDiv.textContent = '❌ Please enter a search query';
                return;
            }
            
            resultsDiv.style.display = 'block';
            resultsDiv.innerHTML = '<div class="loading"></div> Searching keywords...';
            
            setTimeout(() => {
                const results = [];
                const queryWords = query.toLowerCase().split(/\s+/);
                
                documents.forEach(doc => {
                    const contentLower = doc.content.toLowerCase();
                    const titleLower = doc.title.toLowerCase();
                    
                    let matches = 0;
                    queryWords.forEach(word => {
                        matches += (contentLower.match(new RegExp(word, 'g')) || []).length;
                        matches += (titleLower.match(new RegExp(word, 'g')) || []).length * 2;
                    });
                    
                    if (matches > 0) {
                        results.push({ doc, score: matches });
                    }
                });
                
                results.sort((a, b) => b.score - a.score);
                
                if (results.length === 0) {
                    resultsDiv.textContent = `❌ No documents found containing '${query}'`;
                    return;
                }
                
                let output = `🔍 Keyword search results for '${query}':\n\n`;
                results.slice(0, maxResults).forEach((result, i) => {
                    const doc = result.doc;
                    const excerpt = doc.content.length > 200 ? doc.content.substring(0, 200) + '...' : doc.content;
                    output += `**Result ${i + 1}**\n📄 Title: ${doc.title}\n📝 Content: ${excerpt}\n\n`;
                });
                
                resultsDiv.textContent = output;
            }, 500);
        }

        async function chatWithRAG() {
            const question = document.getElementById('chatQuestion').value;
            const maxContext = parseInt(document.getElementById('maxContext').value);
            const responseDiv = document.getElementById('chatResponse');
            const chatBtn = document.getElementById('chatBtn');
            
            if (!question.trim()) {
                responseDiv.style.display = 'block';
                responseDiv.textContent = '❌ Please enter a question';
                return;
            }
            
            if (!transformersReady || !modelsInitialized || !embeddingModel || !qaModel) {
                responseDiv.style.display = 'block';
                responseDiv.textContent = '❌ AI models not loaded yet. Please initialize them first!';
                return;
            }
            
            responseDiv.style.display = 'block';
            responseDiv.innerHTML = '<div class="loading"></div> Generating answer with real AI...';
            chatBtn.disabled = true;
            
            try {
                // Generate embedding for the question
                const questionEmbedding = await generateEmbedding(question);
                
                // Find relevant documents using semantic similarity
                const relevantDocs = [];
                documents.forEach(doc => {
                    if (doc.embedding) {
                        const similarity = cosineSimilarity(questionEmbedding, doc.embedding);
                        if (similarity > 0.1) {
                            relevantDocs.push({ doc, similarity });
                        }
                    }
                });
                
                relevantDocs.sort((a, b) => b.similarity - a.similarity);
                relevantDocs.splice(maxContext);
                
                if (relevantDocs.length === 0) {
                    responseDiv.textContent = '❌ No relevant context found in the documents for your question.';
                    return;
                }
                
                // Combine context from top documents
                const context = relevantDocs.map(item => item.doc.content).join(' ').substring(0, 2000);
                
                // Use the QA model to generate an answer
                const qaResult = await qaModel(question, context);
                
                let response = `🤖 AI Answer:\n${qaResult.answer}\n\n`;
                response += `📊 Confidence: ${(qaResult.score * 100).toFixed(1)}%\n\n`;
                response += `📚 Sources: ${relevantDocs.length} documents\n`;
                response += `🔍 Best match: "${relevantDocs[0].doc.title}" (similarity: ${relevantDocs[0].similarity.toFixed(3)})\n\n`;
                response += `📝 Context used:\n${context.substring(0, 300)}...`;
                
                responseDiv.textContent = response;
                
            } catch (error) {
                console.error('Chat error:', error);
                responseDiv.textContent = `❌ Error generating response: ${error.message}`;
            } finally {
                chatBtn.disabled = false;
            }
        }

        async function chatWithLLM() {
            const prompt = document.getElementById('llmPrompt').value;
            const maxTokens = parseInt(document.getElementById('maxTokens').value);
            const temperature = parseFloat(document.getElementById('temperature').value);
            const responseDiv = document.getElementById('llmResponse');
            const llmBtn = document.getElementById('llmBtn');
            
            if (!prompt.trim()) {
                responseDiv.style.display = 'block';
                responseDiv.textContent = '❌ Please enter a prompt';
                return;
            }
            
            if (!transformersReady || !modelsInitialized || !llmModel) {
                responseDiv.style.display = 'block';
                responseDiv.textContent = '❌ LLM model not loaded yet. Please initialize models first!';
                return;
            }
            
            responseDiv.style.display = 'block';
            responseDiv.innerHTML = '<div class="loading"></div> Generating text with LLM...';
            llmBtn.disabled = true;
            
            try {
                // Generate text with the LLM
                const result = await llmModel(prompt, {
                    max_new_tokens: maxTokens,
                    temperature: temperature,
                    do_sample: true,
                    return_full_text: false
                });
                
                let generatedText = result[0].generated_text;
                
                let response = `🚀 LLM Generated Text:\n\n"${generatedText}"\n\n`;
                response += `📊 Settings: ${maxTokens} tokens, temperature ${temperature}\n`;
                response += `🤖 Model: ${loadedModelName ? loadedModelName.split('/')[1] : 'Language Model'}\n`;
                response += `⏱️ Generated in real-time by your browser!`;
                
                responseDiv.textContent = response;
                
            } catch (error) {
                console.error('LLM error:', error);
                responseDiv.textContent = `❌ Error generating text: ${error.message}`;
            } finally {
                llmBtn.disabled = false;
            }
        }

        async function chatWithLLMRAG() {
            const prompt = document.getElementById('llmPrompt').value;
            const maxTokens = parseInt(document.getElementById('maxTokens').value);
            const temperature = parseFloat(document.getElementById('temperature').value);
            const responseDiv = document.getElementById('llmResponse');
            const llmRagBtn = document.getElementById('llmRagBtn');
            
            if (!prompt.trim()) {
                responseDiv.style.display = 'block';
                responseDiv.textContent = '❌ Please enter a prompt';
                return;
            }
            
            if (!transformersReady || !modelsInitialized || !llmModel || !embeddingModel) {
                responseDiv.style.display = 'block';
                responseDiv.textContent = '❌ Models not loaded yet. Please initialize all models first!';
                return;
            }
            
            responseDiv.style.display = 'block';
            responseDiv.innerHTML = '<div class="loading"></div> Finding relevant context and generating with LLM...';
            llmRagBtn.disabled = true;
            
            try {
                // Find relevant documents using semantic search
                const queryEmbedding = await generateEmbedding(prompt);
                const relevantDocs = [];
                
                documents.forEach(doc => {
                    if (doc.embedding) {
                        const similarity = cosineSimilarity(queryEmbedding, doc.embedding);
                        if (similarity > 0.1) {
                            relevantDocs.push({ doc, similarity });
                        }
                    }
                });
                
                relevantDocs.sort((a, b) => b.similarity - a.similarity);
                relevantDocs.splice(3); // Limit to top 3 documents
                
                // Create enhanced prompt with context
                let enhancedPrompt = prompt;
                if (relevantDocs.length > 0) {
                    const context = relevantDocs.map(item => item.doc.content.substring(0, 300)).join(' ');
                    enhancedPrompt = `Context: ${context}\n\nQuestion: ${prompt}\n\nAnswer:`;
                }
                
                // Generate text with the LLM using enhanced prompt
                const result = await llmModel(enhancedPrompt, {
                    max_new_tokens: maxTokens,
                    temperature: temperature,
                    do_sample: true,
                    return_full_text: false
                });
                
                let generatedText = result[0].generated_text;
                
                let response = `🤖 LLM + RAG Generated Response:\n\n"${generatedText}"\n\n`;
                response += `📚 Context: ${relevantDocs.length} relevant documents used\n`;
                if (relevantDocs.length > 0) {
                    response += `🔍 Best match: "${relevantDocs[0].doc.title}" (similarity: ${relevantDocs[0].similarity.toFixed(3)})\n`;
                }
                response += `📊 Settings: ${maxTokens} tokens, temperature ${temperature}\n`;
                response += `🚀 Model: ${loadedModelName ? loadedModelName.split('/')[1] : 'LLM'} enhanced with document retrieval`;
                
                responseDiv.textContent = response;
                
            } catch (error) {
                console.error('LLM+RAG error:', error);
                responseDiv.textContent = `❌ Error generating response: ${error.message}`;
            } finally {
                llmRagBtn.disabled = false;
            }
        }

        async function addDocument() {
            const title = document.getElementById('docTitle').value || `User Document ${documents.length - 2}`;
            const content = document.getElementById('docContent').value;
            const statusDiv = document.getElementById('addStatus');
            const previewDiv = document.getElementById('docPreview');
            const addBtn = document.getElementById('addBtn');
            
            if (!content.trim()) {
                statusDiv.style.display = 'block';
                statusDiv.textContent = '❌ Please enter document content';
                previewDiv.style.display = 'none';
                return;
            }
            
            statusDiv.style.display = 'block';
            statusDiv.innerHTML = '<div class="loading"></div> Adding document...';
            addBtn.disabled = true;
            
            try {
                const docId = documents.length;
                const newDocument = {
                    id: docId,
                    title: title,
                    content: content.trim(),
                    embedding: null
                };
                
                // Generate embedding if models are initialized
                if (transformersReady && modelsInitialized && embeddingModel) {
                    statusDiv.innerHTML = '<div class="loading"></div> Generating AI embedding...';
                    newDocument.embedding = await generateEmbedding(content);
                }
                
                documents.push(newDocument);
                
                const preview = content.length > 300 ? content.substring(0, 300) + '...' : content;
                const status = `✅ Document added successfully!
📄 Title: ${title}
📊 Size: ${content.length.toLocaleString()} characters
📚 Total documents: ${documents.length}${(transformersReady && modelsInitialized) ? '\n🧠 AI embedding generated automatically' : '\n⚠️ AI embedding will be generated when models are loaded'}`;
                
                statusDiv.textContent = status;
                previewDiv.style.display = 'block';
                previewDiv.textContent = `📖 Preview:\n${preview}`;
                
                // Clear form
                document.getElementById('docTitle').value = '';
                document.getElementById('docContent').value = '';
                
                updateStatus();
                
            } catch (error) {
                console.error('Error adding document:', error);
                statusDiv.textContent = `❌ Error adding document: ${error.message}`;
            } finally {
                addBtn.disabled = false;
            }
        }

        // File upload functionality
        function initFileUpload() {
            const uploadArea = document.getElementById('uploadArea');
            const fileInput = document.getElementById('fileInput');
            
            if (!uploadArea || !fileInput) return;
            
            // Click to select files
            uploadArea.addEventListener('click', () => {
                fileInput.click();
            });
            
            // Drag and drop functionality
            uploadArea.addEventListener('dragover', (e) => {
                e.preventDefault();
                uploadArea.classList.add('dragover');
            });
            
            uploadArea.addEventListener('dragleave', (e) => {
                e.preventDefault();
                uploadArea.classList.remove('dragover');
            });
            
            uploadArea.addEventListener('drop', (e) => {
                e.preventDefault();
                uploadArea.classList.remove('dragover');
                const files = e.dataTransfer.files;
                handleFiles(files);
            });
            
            // File input change
            fileInput.addEventListener('change', (e) => {
                handleFiles(e.target.files);
            });
        }

        async function handleFiles(files) {
            const uploadStatus = document.getElementById('uploadStatus');
            const uploadProgress = document.getElementById('uploadProgress');
            const uploadProgressBar = document.getElementById('uploadProgressBar');
            const uploadProgressText = document.getElementById('uploadProgressText');
            
            if (files.length === 0) return;
            
            uploadStatus.style.display = 'block';
            uploadProgress.style.display = 'block';
            uploadStatus.textContent = '';
            
            let successCount = 0;
            let errorCount = 0;
            
            for (let i = 0; i < files.length; i++) {
                const file = files[i];
                const progress = ((i + 1) / files.length) * 100;
                
                uploadProgressBar.style.width = progress + '%';
                if (file.size > 10000) {
                    uploadProgressText.textContent = `Processing large file: ${file.name} (${i + 1}/${files.length}) - chunking for better search...`;
                } else {
                    uploadProgressText.textContent = `Processing ${file.name} (${i + 1}/${files.length})...`;
                }
                
                try {
                    await processFile(file);
                    successCount++;
                } catch (error) {
                    console.error(`Error processing ${file.name}:`, error);
                    errorCount++;
                }
            }
            
            uploadProgress.style.display = 'none';
            
            let statusText = `✅ Upload complete!\n📁 ${successCount} files processed successfully`;
            if (errorCount > 0) {
                statusText += `\n❌ ${errorCount} files failed to process`;
            }
            statusText += `\n📊 Total documents: ${documents.length}`;
            statusText += `\n🧩 Large files automatically chunked for better search`;
            
            uploadStatus.textContent = statusText;
            updateStatus();
            
            // Clear file input
            document.getElementById('fileInput').value = '';
        }

        // Document chunking function for large files
        function chunkDocument(content, maxChunkSize = 1000) {
            const sentences = content.split(/[.!?]+/).filter(s => s.trim().length > 0);
            const chunks = [];
            let currentChunk = '';
            
            for (let sentence of sentences) {
                sentence = sentence.trim();
                if (currentChunk.length + sentence.length > maxChunkSize && currentChunk.length > 0) {
                    chunks.push(currentChunk.trim());
                    currentChunk = sentence;
                } else {
                    currentChunk += (currentChunk ? '. ' : '') + sentence;
                }
            }
            
            if (currentChunk.trim()) {
                chunks.push(currentChunk.trim());
            }
            
            return chunks.length > 0 ? chunks : [content];
        }

        async function processFile(file) {
            return new Promise((resolve, reject) => {
                const reader = new FileReader();
                
                reader.onload = async function(e) {
                    try {
                        const content = e.target.result.trim();
                        const baseTitle = file.name.replace(/\.[^/.]+$/, ""); // Remove file extension
                        
                        // Check if document is large and needs chunking
                        if (content.length > 2000) {
                            // Chunk large documents
                            const chunks = chunkDocument(content, 1500);
                            console.log(`📄 Chunking large file: ${chunks.length} chunks created from ${content.length} characters`);
                            
                            for (let i = 0; i < chunks.length; i++) {
                                const chunkTitle = chunks.length > 1 ? `${baseTitle} (Part ${i + 1}/${chunks.length})` : baseTitle;
                                const newDocument = {
                                    id: documents.length,
                                    title: chunkTitle,
                                    content: chunks[i],
                                    embedding: null
                                };
                                
                                // Generate embedding if models are loaded
                                if (transformersReady && modelsInitialized && embeddingModel) {
                                    newDocument.embedding = await generateEmbedding(chunks[i]);
                                }
                                
                                documents.push(newDocument);
                            }
                        } else {
                            // Small document - process as single document
                            const newDocument = {
                                id: documents.length,
                                title: baseTitle,
                                content: content,
                                embedding: null
                            };
                            
                            // Generate embedding if models are loaded
                            if (transformersReady && modelsInitialized && embeddingModel) {
                                newDocument.embedding = await generateEmbedding(content);
                            }
                            
                            documents.push(newDocument);
                        }
                        
                        resolve();
                        
                    } catch (error) {
                        reject(error);
                    }
                };
                
                reader.onerror = function() {
                    reject(new Error(`Failed to read file: ${file.name}`));
                };
                
                // Read file as text
                reader.readAsText(file);
            });
        }

        async function testSystem() {
            const outputDiv = document.getElementById('testOutput');
            const testBtn = document.getElementById('testBtn');
            
            outputDiv.style.display = 'block';
            outputDiv.innerHTML = '<div class="loading"></div> Running system tests...';
            testBtn.disabled = true;
            
            try {
                let output = `🧪 System Test Results:\n\n`;
                output += `📊 Documents: ${documents.length} loaded\n`;
                output += `🔧 Transformers.js: ${transformersReady ? '✅ Ready' : '❌ Not ready'}\n`;
                output += `🧠 Embedding Model: ${embeddingModel ? '✅ Loaded' : '❌ Not loaded'}\n`;
                output += `🤖 QA Model: ${qaModel ? '✅ Loaded' : '❌ Not loaded'}\n`;
                output += `🚀 LLM Model: ${llmModel ? '✅ Loaded' : '❌ Not loaded'}\n\n`;
                
                if (transformersReady && modelsInitialized && embeddingModel) {
                    output += `🔍 Testing embedding generation...\n`;
                    const testEmbedding = await generateEmbedding("test sentence");
                    output += `✅ Embedding test: Generated ${testEmbedding.length}D vector\n\n`;
                    
                    output += `🔍 Testing semantic search...\n`;
                    const testQuery = "artificial intelligence";
                    const queryEmbedding = await generateEmbedding(testQuery);
                    
                    let testResults = [];
                    documents.forEach(doc => {
                        if (doc.embedding) {
                            const similarity = cosineSimilarity(queryEmbedding, doc.embedding);
                            testResults.push({ doc, similarity });
                        }
                    });
                    testResults.sort((a, b) => b.similarity - a.similarity);
                    
                    if (testResults.length > 0) {
                        output += `✅ Search test: Found ${testResults.length} results\n`;
                        output += `📄 Top result: "${testResults[0].doc.title}" (similarity: ${testResults[0].similarity.toFixed(3)})\n\n`;
                    }
                    
                    if (qaModel) {
                        output += `🤖 Testing QA model...\n`;
                        const context = documents[0].content.substring(0, 500);
                        const testQuestion = "What is artificial intelligence?";
                        const qaResult = await qaModel(testQuestion, context);
                        output += `✅ QA test: Generated answer with ${(qaResult.score * 100).toFixed(1)}% confidence\n`;
                        output += `💬 Answer: ${qaResult.answer.substring(0, 100)}...\n\n`;
                    }
                    
                    if (llmModel) {
                        output += `🚀 Testing LLM model...\n`;
                        const testPrompt = "Explain artificial intelligence:";
                        const llmResult = await llmModel(testPrompt, { max_new_tokens: 30, temperature: 0.7, do_sample: true, return_full_text: false });
                        output += `✅ LLM test: Generated text completion\n`;
                        output += `💬 Generated: "${llmResult[0].generated_text.substring(0, 100)}..."\n\n`;
                    }
                    
                    output += `🎉 All tests passed! System is fully operational.`;
                } else {
                    output += `⚠️ Models not initialized. Click "Initialize AI Models" first.`;
                }
                
                outputDiv.textContent = output;
                
            } catch (error) {
                console.error('Test error:', error);
                outputDiv.textContent = `❌ Test failed: ${error.message}`;
            } finally {
                testBtn.disabled = false;
            }
        }

        // Initialize UI
        updateStatus();
        
        // Show version info in console
        console.log('🤖 AI-Powered RAG System with Transformers.js');
        console.log('Models: Xenova/all-MiniLM-L6-v2, Xenova/distilbert-base-cased-distilled-squad');
    </script>
</body>
</html>