File size: 11,571 Bytes
27613d2
 
 
cca4a24
 
 
 
 
 
 
 
 
 
 
 
 
 
27613d2
 
 
cca4a24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27613d2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>๐Ÿค– AI-Powered Document Search & RAG Chat</title>
    <script type="module">
        // Import transformers.js 3.0.0 from CDN (new Hugging Face ownership)
        import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0';
        
        // Make available globally
        window.transformers = { pipeline, env };
        window.transformersLoaded = true;
        
        console.log('โœ… Transformers.js 3.0.0 loaded via ES modules (Hugging Face)');
    </script>
    <script src="https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0/dist/transformers.min.js"></script>
    <link rel="stylesheet" href="style.css" />
</head>
<body>
    <div class="container">
        <div class="header">
            <h1>๐Ÿค– AI-Powered Document Search & RAG Chat</h1>
            <p>Real transformer models running in your browser with Transformers.js</p>
        </div>
        
        <div class="status" id="status">
            ๐Ÿ“Š Documents: 3 | ๐Ÿค– AI Models: Not loaded | ๐Ÿง  Embedding Model: Not loaded
        </div>
        
        <div class="tabs">
            <button class="tab active" onclick="showTab('init')">๐Ÿš€ Initialize AI</button>
            <button class="tab" onclick="showTab('chat')">๐Ÿค– AI Chat (RAG)</button>
            <button class="tab" onclick="showTab('llm')">๐Ÿš€ LLM Chat</button>
            <button class="tab" onclick="showTab('search')">๐Ÿ” Semantic Search</button>
            <button class="tab" onclick="showTab('add')">๐Ÿ“ Add Documents</button>
            <button class="tab" onclick="showTab('test')">๐Ÿงช System Test</button>
        </div>
        
        <!-- Initialize AI Tab -->
        <div id="init" class="tab-content active">
            <div class="alert alert-info">
                <strong>๐Ÿš€ Real AI Models!</strong> This system uses actual transformer models via Transformers.js.
            </div>
            
            <div class="model-info">
                <h4>๐Ÿง  Models Being Loaded:</h4>
                <p><strong>Embedding Model:</strong> Xenova/all-MiniLM-L6-v2 (384-dimensional sentence embeddings)</p>
                <p><strong>Q&A Model:</strong> Xenova/distilbert-base-cased-distilled-squad (Question Answering)</p>
                <p><strong>LLM Model:</strong> Auto-selected GPT-2 or DistilGPT-2 (Transformers.js 3.0.0)</p>
                <p><strong>Size:</strong> ~100MB total (cached after first load)</p>
                <p><strong>Performance:</strong> CPU inference, ~2-8 seconds per operation</p>
                <p><strong>Status:</strong> <span id="transformersStatus">โณ Loading library...</span></p>
            </div>
            
            <div class="alert alert-warning">
                <strong>โš ๏ธ First Load:</strong> Model downloading may take 1-2 minutes depending on your internet connection. Models are cached for subsequent uses.
            </div>
            
            <button onclick="initializeModels()" id="initBtn" style="font-size: 18px; padding: 15px 30px;">
                ๐Ÿš€ Initialize Real AI Models
            </button>
            
            <div id="initProgress" style="display: none;">
                <div class="progress">
                    <div class="progress-bar" id="progressBar" style="width: 0%"></div>
                </div>
                <p id="progressText">Preparing to load models...</p>
            </div>
            
            <div id="initStatus" class="result" style="display: none;"></div>
        </div>
        
        <!-- AI Chat Tab -->
        <div id="chat" class="tab-content">
            <div class="alert alert-info">
                <strong>๐Ÿค– Real AI Chat!</strong> Ask questions and get answers from actual transformer models.
            </div>
            <div class="alert alert-success">
                <strong>๐Ÿ’ก Try asking:</strong><br>
                โ€ข "What is artificial intelligence?"<br>
                โ€ข "How does space exploration work?"<br>
                โ€ข "What are renewable energy sources?"<br>
                โ€ข "Explain machine learning in simple terms"
            </div>
            <div class="grid">
                <div>
                    <label for="chatQuestion">Your Question</label>
                    <textarea id="chatQuestion" rows="3" placeholder="Ask anything about the documents..."></textarea>
                </div>
                <div>
                    <label for="maxContext">Context Documents</label>
                    <div class="slider-container">
                        <input type="range" id="maxContext" class="slider" min="1" max="5" value="3" oninput="updateSliderValue('maxContext')">
                        <span id="maxContextValue" class="slider-value">3</span>
                    </div>
                </div>
            </div>
            <button onclick="chatWithRAG()" id="chatBtn">๐Ÿค– Ask AI</button>
            <div id="chatResponse" class="result" style="display: none;"></div>
        </div>
        
        <!-- LLM Chat Tab -->
        <div id="llm" class="tab-content">
            <div class="alert alert-info">
                <strong>๐Ÿš€ Pure LLM Chat!</strong> Chat with a language model (GPT-2 or Llama2.c) running in your browser.
            </div>
            <div class="alert alert-success">
                <strong>๐Ÿ’ก Try these prompts:</strong><br>
                โ€ข "Tell me a story about space exploration"<br>
                โ€ข "Explain machine learning in simple terms"<br>
                โ€ข "Write a poem about artificial intelligence"<br>
                โ€ข "What are the benefits of renewable energy?"
            </div>
            <div class="grid">
                <div>
                    <label for="llmPrompt">Your Prompt</label>
                    <textarea id="llmPrompt" rows="3" placeholder="Enter your prompt for the language model..."></textarea>
                </div>
                <div>
                    <label for="maxTokens">Max Tokens</label>
                    <div class="slider-container">
                        <input type="range" id="maxTokens" class="slider" min="20" max="200" value="100" oninput="updateSliderValue('maxTokens')">
                        <span id="maxTokensValue" class="slider-value">100</span>
                    </div>
                    <label for="temperature">Temperature</label>
                    <div class="slider-container">
                        <input type="range" id="temperature" class="slider" min="0.1" max="1.5" step="0.1" value="0.7" oninput="updateSliderValue('temperature')">
                        <span id="temperatureValue" class="slider-value">0.7</span>
                    </div>
                </div>
            </div>
            <div style="display: flex; gap: 10px;">
                <button onclick="chatWithLLM()" id="llmBtn">๐Ÿš€ Generate Text</button>
                <button class="btn-secondary" onclick="chatWithLLMRAG()" id="llmRagBtn">๐Ÿค– LLM + RAG</button>
            </div>
            <div id="llmResponse" class="result" style="display: none;"></div>
        </div>
        
        <!-- Semantic Search Tab -->
        <div id="search" class="tab-content">
            <div class="alert alert-info">
                <strong>๐Ÿ”ฎ Real semantic search!</strong> Using transformer embeddings to find documents by meaning.
            </div>
            <div class="grid">
                <div>
                    <label for="searchQuery">Search Query</label>
                    <input type="text" id="searchQuery" placeholder="Try: 'machine learning', 'Mars missions', 'solar power'">
                </div>
                <div>
                    <label for="maxResults">Max Results</label>
                    <div class="slider-container">
                        <input type="range" id="maxResults" class="slider" min="1" max="10" value="5" oninput="updateSliderValue('maxResults')">
                        <span id="maxResultsValue" class="slider-value">5</span>
                    </div>
                </div>
            </div>
            <div style="display: flex; gap: 10px;">
                <button onclick="searchDocumentsSemantic()" id="searchBtn">๐Ÿ”ฎ Semantic Search</button>
                <button class="btn-secondary" onclick="searchDocumentsKeyword()">๐Ÿ”ค Keyword Search</button>
            </div>
            <div id="searchResults" class="result" style="display: none;"></div>
        </div>
        
        <!-- Add Documents Tab -->
        <div id="add" class="tab-content">
            <div class="alert alert-info">
                <strong>๐Ÿ“š Expand your knowledge base!</strong> Upload files or paste text with real AI embeddings.
            </div>
            
            <!-- File Upload Section -->
            <div class="upload-section">
                <h4>๐Ÿ“ Upload Files</h4>
                <div class="upload-area" id="uploadArea">
                    <div class="upload-content">
                        <div class="upload-icon">๐Ÿ“„</div>
                        <div class="upload-text">
                            <strong>Drop files here or click to select</strong>
                            <br>Supports: .md, .txt, .json, .csv, .html, .js, .py, .xml
                        </div>
                    </div>
                    <input type="file" id="fileInput" accept=".md,.txt,.json,.csv,.html,.js,.py,.xml,.rst,.yaml,.yml" multiple style="display: none;">
                </div>
                <div id="uploadProgress" class="progress-container" style="display: none;">
                    <div class="progress-bar" id="uploadProgressBar"></div>
                    <div class="progress-text" id="uploadProgressText">Processing files...</div>
                </div>
                <div id="uploadStatus" class="result" style="display: none;"></div>
            </div>
            
            <div class="divider">OR</div>
            
            <!-- Manual Entry Section -->
            <div class="manual-entry">
                <h4>โœ๏ธ Manual Entry</h4>
                <div class="form-group">
                    <label for="docTitle">Document Title (optional)</label>
                    <input type="text" id="docTitle" placeholder="Enter document title...">
                </div>
                <div class="form-group">
                    <label for="docContent">Document Content</label>
                    <textarea id="docContent" rows="8" placeholder="Paste your document text here..."></textarea>
                </div>
                <button onclick="addDocumentManual()" id="addBtn">๐Ÿ“ Add Document</button>
                <div class="grid">
                    <div id="addStatus" class="result" style="display: none;"></div>
                    <div id="docPreview" class="result" style="display: none;"></div>
                </div>
            </div>
        </div>
        
        <!-- System Test Tab -->
        <div id="test" class="tab-content">
            <div class="alert alert-info">
                <strong>๐Ÿงช Test the system</strong> to verify AI models are working correctly.
            </div>
            <button onclick="testSystem()" id="testBtn">๐Ÿงช Run System Test</button>
            <div id="testOutput" class="result" style="display: none;"></div>
        </div>
    </div>

    <script src="index.js" type="module"></script>
</body>
</html>