Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
import re | |
import logging | |
from agent import initialize_agent # Import the agent initialization function | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
# --- Logging Configuration --- | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s: %(message)s") | |
logger = logging.getLogger(__name__) | |
# --- Global Agent Initialization --- | |
# The agent is initialized once when the Space starts up. | |
# This is critical for performance and to avoid reloading the model on every request. | |
logger.info("π Application starting up! Initializing the GAIA agent...") | |
AGENT = initialize_agent() | |
if AGENT is None: | |
logger.error("π₯ FATAL: Agent initialization failed. The application will not be able to process questions.") | |
else: | |
logger.info("β Agent initialized successfully.") | |
# --- Helper Functions --- | |
def _fetch_questions(api_url: str) -> list: | |
"""Fetches evaluation questions from the API.""" | |
questions_url = f"{api_url}/questions" | |
logger.info(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
raise ValueError("Fetched questions list is empty or invalid format.") | |
logger.info(f"Fetched {len(questions_data)} questions.") | |
return questions_data | |
except requests.exceptions.RequestException as e: | |
raise RuntimeError(f"Error fetching questions: {e}") from e | |
except requests.exceptions.JSONDecodeError as e: | |
raise RuntimeError(f"Error decoding JSON response from questions endpoint: {e}. Response: {response.text[:500]}") from e | |
except Exception as e: | |
raise RuntimeError(f"An unexpected error occurred fetching questions: {e}") from e | |
def _run_agent_on_questions(agent, questions_data: list) -> tuple[list, list]: | |
"""Runs the agent on each question and collects answers and logs.""" | |
results_log = [] | |
answers_payload = [] | |
logger.info(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
logger.warning(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
logger.info(f"Processing task {task_id}: {question_text[:100]}...") | |
# The agent wrapper returns the final, normalized answer directly. | |
submitted_answer = agent(question_text) | |
logger.info(f"Task {task_id} - Final answer from agent: {submitted_answer}") | |
answers_payload.append({ | |
"task_id": task_id, | |
"submitted_answer": submitted_answer | |
}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Final Answer": submitted_answer | |
}) | |
except Exception as e: | |
error_msg = f"AGENT ERROR: {e}" | |
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True) | |
answers_payload.append({ | |
"task_id": task_id, | |
"submitted_answer": error_msg | |
}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Final Answer": error_msg | |
}) | |
return answers_payload, results_log | |
def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict: | |
"""Submits the agent's answers to the evaluation API.""" | |
submit_url = f"{api_url}/submit" | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code_url, | |
"answers": answers_payload | |
} | |
logger.info(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
raise RuntimeError(f"Submission Failed: {error_detail}") from e | |
except requests.exceptions.Timeout: | |
raise RuntimeError("Submission Failed: The request timed out.") from e | |
except requests.exceptions.RequestException as e: | |
raise RuntimeError(f"Submission Failed: Network error - {e}") from e | |
except Exception as e: | |
raise RuntimeError(f"An unexpected error occurred during submission: {e}") from e | |
# --- Main Gradio Function --- | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Orchestrates the fetching of questions, running the agent, and submitting answers. | |
""" | |
if not profile: | |
logger.warning("Attempted to run evaluation without being logged in.") | |
return "Please Login to Hugging Face with the button above.", None | |
username = profile.username | |
logger.info(f"User '{username}' initiated evaluation.") | |
if AGENT is None: | |
return "β Error: The agent failed to initialize on startup. Please check the Space logs for details.", None | |
space_id = os.getenv("SPACE_ID") | |
if not space_id: | |
logger.error("SPACE_ID environment variable not found. Cannot determine agent_code URL.") | |
return "β Error: SPACE_ID not set. This is required for submission.", None | |
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
status_message = "" | |
results_df = pd.DataFrame() | |
results_log = [] | |
try: | |
# 1. Fetch Questions | |
questions_data = _fetch_questions(DEFAULT_API_URL) | |
# 2. Run Agent on Questions (using the pre-initialized global agent) | |
answers_payload, results_log = _run_agent_on_questions(AGENT, questions_data) | |
if not answers_payload: | |
status_message = "Agent did not produce any answers to submit." | |
return status_message, pd.DataFrame(results_log) | |
# 3. Submit Answers | |
submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload) | |
final_status = ( | |
f"π Submission Successful!\n" | |
f"π€ User: {submission_result.get('username')}\n" | |
f"π Overall Score: {submission_result.get('score', 'N/A')}% " | |
f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n" | |
f"π¬ Message: {submission_result.get('message', 'No message received.')}\n" | |
f"π Agent Code: {agent_code_url}" | |
) | |
status_message = final_status | |
results_df = pd.DataFrame(results_log) | |
except RuntimeError as e: | |
status_message = f"β Operation Failed: {e}" | |
logger.error(status_message) | |
results_df = pd.DataFrame(results_log) if results_log else pd.DataFrame([{"Status": "Error", "Details": str(e)}]) | |
except Exception as e: | |
status_message = f"π₯ Critical Error: {e}" | |
logger.error(status_message, exc_info=True) | |
results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}]) | |
return status_message, results_df | |
# --- Gradio Interface Definition --- | |
with gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π§ GAIA Benchmark Evaluation Agent | |
**An advanced agent designed to tackle the General AI Assistant (GAIA) benchmark.** | |
""") | |
gr.Markdown(""" | |
## π Instructions: | |
1. **Add Secrets**: If you have cloned this Space, go to the **Settings** tab and add your API keys as **Secrets**. | |
* `TOGETHER_API_KEY`: Your key from Together AI. | |
* `SERPAPI_API_KEY`: Your key from SerpApi for Google Search (optional but recommended). | |
2. **Login**: Use the button below to log in with your Hugging Face account. Your username is required for submission. | |
3. **Run**: Click 'Run Evaluation & Submit' to start the process. The agent will fetch all questions, solve them, and submit the answers automatically. | |
4. **Wait**: The process can take several minutes. You can monitor the progress in the status box and see detailed results in the table below. | |
--- | |
### π― GAIA Answer Formatting | |
The agent is designed to automatically format answers according to GAIA's strict requirements (e.g., no commas in numbers, no articles in strings). | |
""") | |
with gr.Row(): | |
gr.LoginButton(scale=1) | |
run_button = gr.Button("π Run Evaluation & Submit All Answers", variant="primary", scale=2) | |
status_output = gr.Textbox( | |
label="π Evaluation Status & Results", | |
lines=8, | |
interactive=False, | |
placeholder="Click 'Run Evaluation' to start the process..." | |
) | |
results_table = gr.DataFrame( | |
label="π Detailed Question Results", | |
wrap=True, | |
interactive=False, | |
column_widths=["10%", "60%", "30%"] | |
) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "="*70) | |
print("π GAIA BENCHMARK AGENT STARTING UP") | |
print("="*70) | |
# Check environment variables loaded from HF Secrets | |
space_id = os.getenv("SPACE_ID") | |
together_key = os.getenv("TOGETHER_API_KEY") | |
serpapi_key = os.getenv("SERPAPI_API_KEY") | |
if space_id: | |
print(f"β SPACE_ID: {space_id}") | |
print(f" - Submission URL will be: https://huggingface.co/spaces/{space_id}") | |
else: | |
print("β οΈ SPACE_ID not found - submissions will fail. This is normal for local dev.") | |
print(f"π API Keys Status (from Secrets):") | |
print(f" - Together AI: {'β Set' if together_key else 'β Missing - Agent will fail to initialize!'}") | |
print(f" - SerpAPI: {'β Set' if serpapi_key else 'β οΈ Missing - Google Search tool will be disabled.'}") | |
if not together_key: | |
print("\nβΌοΈ CRITICAL: TOGETHER_API_KEY is not set in the Space Secrets.") | |
print(" Please add it in the 'Settings' tab of your Space.") | |
print("="*70) | |
print("π― Launching Gradio Interface...") | |
print("="*70 + "\n") | |
demo.launch(debug=False, share=False) |