jesusgj
Modified files
b9ee2ea
import os
import gradio as gr
import requests
import pandas as pd
import re
import logging
from agent import initialize_agent # Import the agent initialization function
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s: %(message)s")
logger = logging.getLogger(__name__)
# --- Global Agent Initialization ---
# The agent is initialized once when the Space starts up.
# This is critical for performance and to avoid reloading the model on every request.
logger.info("πŸš€ Application starting up! Initializing the GAIA agent...")
AGENT = initialize_agent()
if AGENT is None:
logger.error("πŸ’₯ FATAL: Agent initialization failed. The application will not be able to process questions.")
else:
logger.info("βœ… Agent initialized successfully.")
# --- Helper Functions ---
def _fetch_questions(api_url: str) -> list:
"""Fetches evaluation questions from the API."""
questions_url = f"{api_url}/questions"
logger.info(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
raise ValueError("Fetched questions list is empty or invalid format.")
logger.info(f"Fetched {len(questions_data)} questions.")
return questions_data
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Error fetching questions: {e}") from e
except requests.exceptions.JSONDecodeError as e:
raise RuntimeError(f"Error decoding JSON response from questions endpoint: {e}. Response: {response.text[:500]}") from e
except Exception as e:
raise RuntimeError(f"An unexpected error occurred fetching questions: {e}") from e
def _run_agent_on_questions(agent, questions_data: list) -> tuple[list, list]:
"""Runs the agent on each question and collects answers and logs."""
results_log = []
answers_payload = []
logger.info(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
logger.warning(f"Skipping item with missing task_id or question: {item}")
continue
try:
logger.info(f"Processing task {task_id}: {question_text[:100]}...")
# The agent wrapper returns the final, normalized answer directly.
submitted_answer = agent(question_text)
logger.info(f"Task {task_id} - Final answer from agent: {submitted_answer}")
answers_payload.append({
"task_id": task_id,
"submitted_answer": submitted_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Final Answer": submitted_answer
})
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
answers_payload.append({
"task_id": task_id,
"submitted_answer": error_msg
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Final Answer": error_msg
})
return answers_payload, results_log
def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict:
"""Submits the agent's answers to the evaluation API."""
submit_url = f"{api_url}/submit"
submission_data = {
"username": username.strip(),
"agent_code": agent_code_url,
"answers": answers_payload
}
logger.info(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
raise RuntimeError(f"Submission Failed: {error_detail}") from e
except requests.exceptions.Timeout:
raise RuntimeError("Submission Failed: The request timed out.") from e
except requests.exceptions.RequestException as e:
raise RuntimeError(f"Submission Failed: Network error - {e}") from e
except Exception as e:
raise RuntimeError(f"An unexpected error occurred during submission: {e}") from e
# --- Main Gradio Function ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Orchestrates the fetching of questions, running the agent, and submitting answers.
"""
if not profile:
logger.warning("Attempted to run evaluation without being logged in.")
return "Please Login to Hugging Face with the button above.", None
username = profile.username
logger.info(f"User '{username}' initiated evaluation.")
if AGENT is None:
return "❌ Error: The agent failed to initialize on startup. Please check the Space logs for details.", None
space_id = os.getenv("SPACE_ID")
if not space_id:
logger.error("SPACE_ID environment variable not found. Cannot determine agent_code URL.")
return "❌ Error: SPACE_ID not set. This is required for submission.", None
agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
status_message = ""
results_df = pd.DataFrame()
results_log = []
try:
# 1. Fetch Questions
questions_data = _fetch_questions(DEFAULT_API_URL)
# 2. Run Agent on Questions (using the pre-initialized global agent)
answers_payload, results_log = _run_agent_on_questions(AGENT, questions_data)
if not answers_payload:
status_message = "Agent did not produce any answers to submit."
return status_message, pd.DataFrame(results_log)
# 3. Submit Answers
submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload)
final_status = (
f"πŸŽ‰ Submission Successful!\n"
f"πŸ‘€ User: {submission_result.get('username')}\n"
f"πŸ“Š Overall Score: {submission_result.get('score', 'N/A')}% "
f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n"
f"πŸ’¬ Message: {submission_result.get('message', 'No message received.')}\n"
f"πŸ”— Agent Code: {agent_code_url}"
)
status_message = final_status
results_df = pd.DataFrame(results_log)
except RuntimeError as e:
status_message = f"❌ Operation Failed: {e}"
logger.error(status_message)
results_df = pd.DataFrame(results_log) if results_log else pd.DataFrame([{"Status": "Error", "Details": str(e)}])
except Exception as e:
status_message = f"πŸ’₯ Critical Error: {e}"
logger.error(status_message, exc_info=True)
results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}])
return status_message, results_df
# --- Gradio Interface Definition ---
with gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🧠 GAIA Benchmark Evaluation Agent
**An advanced agent designed to tackle the General AI Assistant (GAIA) benchmark.**
""")
gr.Markdown("""
## πŸ“‹ Instructions:
1. **Add Secrets**: If you have cloned this Space, go to the **Settings** tab and add your API keys as **Secrets**.
* `TOGETHER_API_KEY`: Your key from Together AI.
* `SERPAPI_API_KEY`: Your key from SerpApi for Google Search (optional but recommended).
2. **Login**: Use the button below to log in with your Hugging Face account. Your username is required for submission.
3. **Run**: Click 'Run Evaluation & Submit' to start the process. The agent will fetch all questions, solve them, and submit the answers automatically.
4. **Wait**: The process can take several minutes. You can monitor the progress in the status box and see detailed results in the table below.
---
### 🎯 GAIA Answer Formatting
The agent is designed to automatically format answers according to GAIA's strict requirements (e.g., no commas in numbers, no articles in strings).
""")
with gr.Row():
gr.LoginButton(scale=1)
run_button = gr.Button("πŸš€ Run Evaluation & Submit All Answers", variant="primary", scale=2)
status_output = gr.Textbox(
label="πŸ“Š Evaluation Status & Results",
lines=8,
interactive=False,
placeholder="Click 'Run Evaluation' to start the process..."
)
results_table = gr.DataFrame(
label="πŸ“ Detailed Question Results",
wrap=True,
interactive=False,
column_widths=["10%", "60%", "30%"]
)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "="*70)
print("πŸš€ GAIA BENCHMARK AGENT STARTING UP")
print("="*70)
# Check environment variables loaded from HF Secrets
space_id = os.getenv("SPACE_ID")
together_key = os.getenv("TOGETHER_API_KEY")
serpapi_key = os.getenv("SERPAPI_API_KEY")
if space_id:
print(f"βœ… SPACE_ID: {space_id}")
print(f" - Submission URL will be: https://huggingface.co/spaces/{space_id}")
else:
print("⚠️ SPACE_ID not found - submissions will fail. This is normal for local dev.")
print(f"πŸ”‘ API Keys Status (from Secrets):")
print(f" - Together AI: {'βœ… Set' if together_key else '❌ Missing - Agent will fail to initialize!'}")
print(f" - SerpAPI: {'βœ… Set' if serpapi_key else '⚠️ Missing - Google Search tool will be disabled.'}")
if not together_key:
print("\n‼️ CRITICAL: TOGETHER_API_KEY is not set in the Space Secrets.")
print(" Please add it in the 'Settings' tab of your Space.")
print("="*70)
print("🎯 Launching Gradio Interface...")
print("="*70 + "\n")
demo.launch(debug=False, share=False)