Spaces:
Runtime error
Runtime error
Create train_model.py
Browse files- train_model.py +68 -0
train_model.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load dataset
|
7 |
+
dataset = load_dataset("imranraad/github-emotion-love")
|
8 |
+
|
9 |
+
# Multi-label setup
|
10 |
+
emotions = ["Anger", "Love", "Fear", "Joy", "Sadness", "Surprise"]
|
11 |
+
|
12 |
+
# Tokenizer
|
13 |
+
model_name = "distilbert-base-uncased"
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
+
def tokenize(batch):
|
17 |
+
return tokenizer(batch['modified_comment'], padding='max_length', truncation=True, max_length=128)
|
18 |
+
|
19 |
+
dataset = dataset.map(tokenize, batched=True)
|
20 |
+
|
21 |
+
# Convert labels to list of floats for multi-label
|
22 |
+
def format_labels(batch):
|
23 |
+
batch["labels"] = [[batch[emo][i] for emo in emotions] for i in range(len(batch[emotions[0]]))]
|
24 |
+
return batch
|
25 |
+
|
26 |
+
dataset = dataset.map(format_labels, batched=True)
|
27 |
+
|
28 |
+
# Load model
|
29 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
30 |
+
model_name,
|
31 |
+
num_labels=len(emotions),
|
32 |
+
problem_type="multi_label_classification"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Training arguments
|
36 |
+
training_args = TrainingArguments(
|
37 |
+
output_dir="./model",
|
38 |
+
evaluation_strategy="epoch",
|
39 |
+
learning_rate=2e-5,
|
40 |
+
per_device_train_batch_size=16,
|
41 |
+
per_device_eval_batch_size=16,
|
42 |
+
num_train_epochs=3,
|
43 |
+
weight_decay=0.01,
|
44 |
+
logging_dir="./logs",
|
45 |
+
save_strategy="epoch"
|
46 |
+
)
|
47 |
+
|
48 |
+
# Metrics
|
49 |
+
def compute_metrics(pred):
|
50 |
+
logits, labels = pred
|
51 |
+
sigmoid = torch.nn.Sigmoid()
|
52 |
+
probs = sigmoid(torch.tensor(logits))
|
53 |
+
preds = (probs > 0.5).float()
|
54 |
+
accuracy = (preds == torch.tensor(labels)).float().mean()
|
55 |
+
return {"accuracy": accuracy.item()}
|
56 |
+
|
57 |
+
# Trainer
|
58 |
+
trainer = Trainer(
|
59 |
+
model=model,
|
60 |
+
args=training_args,
|
61 |
+
train_dataset=dataset["train"],
|
62 |
+
eval_dataset=dataset["test"],
|
63 |
+
tokenizer=tokenizer,
|
64 |
+
compute_metrics=compute_metrics
|
65 |
+
)
|
66 |
+
|
67 |
+
trainer.train()
|
68 |
+
trainer.save_model("./model")
|