Spaces:
Running
Running
test
Browse files- package.json +4 -0
- pnpm-lock.yaml +0 -0
- requirements.txt +3 -0
- src/App.svelte +244 -37
- src/app.css +1 -0
package.json
CHANGED
@@ -16,5 +16,9 @@
|
|
16 |
"svelte-check": "^4.1.6",
|
17 |
"typescript": "~5.8.3",
|
18 |
"vite": "^6.3.5"
|
|
|
|
|
|
|
|
|
19 |
}
|
20 |
}
|
|
|
16 |
"svelte-check": "^4.1.6",
|
17 |
"typescript": "~5.8.3",
|
18 |
"vite": "^6.3.5"
|
19 |
+
},
|
20 |
+
"dependencies": {
|
21 |
+
"@gradio/dataframe": "^0.18.8",
|
22 |
+
"@xenova/transformers": "^2.17.2"
|
23 |
}
|
24 |
}
|
pnpm-lock.yaml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
transformers
|
3 |
+
uvicorn
|
src/App.svelte
CHANGED
@@ -1,47 +1,254 @@
|
|
1 |
<script lang="ts">
|
2 |
-
import
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
</script>
|
6 |
|
7 |
-
<
|
8 |
-
<
|
9 |
-
<
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
<
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
<style>
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
}
|
41 |
-
|
42 |
-
|
43 |
}
|
44 |
-
.
|
45 |
-
|
|
|
46 |
}
|
47 |
</style>
|
|
|
1 |
<script lang="ts">
|
2 |
+
import Dataframe from '@gradio/dataframe';
|
3 |
+
|
4 |
+
let rawData = '';
|
5 |
+
let cleanedData = '';
|
6 |
+
let cleaningSteps: any[] = [];
|
7 |
+
let showSteps = false;
|
8 |
+
let fileInput: HTMLInputElement;
|
9 |
+
|
10 |
+
|
11 |
+
let inputValue: { data: string[][]; headers: string[] } = { data: [[]], headers: [] };
|
12 |
+
let cleanedValue: { data: string[][]; headers: string[] } = { data: [[]], headers: [] };
|
13 |
+
|
14 |
+
|
15 |
+
function parseCSVorTSV(text: string) {
|
16 |
+
if (!text) return { data: [[]], headers: [] };
|
17 |
+
const lines = text.trim().split(/\r?\n/);
|
18 |
+
if (lines.length === 0) return { data: [[]], headers: [] };
|
19 |
+
const sep = lines[0].includes('\t') ? '\t' : ',';
|
20 |
+
const headers = lines[0].split(sep).map(h => h.trim());
|
21 |
+
const data = lines.slice(1).map(line => line.split(sep).map(cell => cell.trim()));
|
22 |
+
return { data, headers };
|
23 |
+
}
|
24 |
+
|
25 |
+
function updateInputValueFromRaw() {
|
26 |
+
inputValue = parseCSVorTSV(rawData);
|
27 |
+
}
|
28 |
+
|
29 |
+
function updateRawFromInputValue() {
|
30 |
+
// Convert inputValue back to CSV string
|
31 |
+
if (!inputValue.headers.length) return;
|
32 |
+
const sep = ',';
|
33 |
+
const lines = [inputValue.headers.join(sep), ...inputValue.data.map(row => row.join(sep))];
|
34 |
+
rawData = lines.join('\n');
|
35 |
+
}
|
36 |
+
|
37 |
+
function handleFileUpload(event: Event) {
|
38 |
+
const files = (event.target as HTMLInputElement).files;
|
39 |
+
if (files && files.length > 0) {
|
40 |
+
const reader = new FileReader();
|
41 |
+
reader.onload = (e) => {
|
42 |
+
rawData = e.target?.result as string;
|
43 |
+
updateInputValueFromRaw();
|
44 |
+
};
|
45 |
+
reader.readAsText(files[0]);
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
function handleInputChange(e: CustomEvent) {
|
50 |
+
inputValue = e.detail;
|
51 |
+
updateRawFromInputValue();
|
52 |
+
}
|
53 |
+
|
54 |
+
// In-browser AI cleaning using transformers.js (DistilGPT2 as example)
|
55 |
+
import { pipeline } from '@xenova/transformers';
|
56 |
+
let generator: any = null;
|
57 |
+
let loadingModel = false;
|
58 |
+
|
59 |
+
async function analyzeAndClean() {
|
60 |
+
showSteps = false;
|
61 |
+
cleaningSteps = [];
|
62 |
+
cleanedValue = { data: [[]], headers: [] };
|
63 |
+
cleanedData = '';
|
64 |
+
loadingModel = true;
|
65 |
+
try {
|
66 |
+
if (!generator) {
|
67 |
+
generator = await pipeline('text-generation', 'Xenova/gpt2');
|
68 |
+
}
|
69 |
+
loadingModel = false;
|
70 |
+
// Prepare a prompt for the model
|
71 |
+
const tableString = [inputValue.headers, ...inputValue.data].map(row => row.join(',')).join('\n');
|
72 |
+
const prompt = `Clean this table and suggest steps. Table:\n${tableString}\nReturn JSON with keys steps (array of strings) and cleaned (array of arrays, first row is headers).`;
|
73 |
+
const output = await generator(prompt, { max_new_tokens: 128 });
|
74 |
+
let content = output?.[0]?.generated_text || '';
|
75 |
+
let parsed;
|
76 |
+
try {
|
77 |
+
parsed = JSON.parse(content.match(/\{[\s\S]*\}/)?.[0] || '');
|
78 |
+
} catch (e) {
|
79 |
+
alert('AI did not return valid cleaning suggestions.');
|
80 |
+
return;
|
81 |
+
}
|
82 |
+
if (parsed && parsed.cleaned && parsed.steps) {
|
83 |
+
cleaningSteps = parsed.steps.map((step: string) => ({ step, accepted: true }));
|
84 |
+
cleanedValue = {
|
85 |
+
headers: parsed.cleaned[0],
|
86 |
+
data: parsed.cleaned.slice(1),
|
87 |
+
};
|
88 |
+
cleanedData = cleanedValue.data.map(row => row.join(',')).join('\n');
|
89 |
+
showSteps = true;
|
90 |
+
} else {
|
91 |
+
alert('AI did not return valid cleaning suggestions.');
|
92 |
+
}
|
93 |
+
} catch (err) {
|
94 |
+
alert('Failed to load or run the model. Please check your internet connection and model support.');
|
95 |
+
loadingModel = false;
|
96 |
+
}
|
97 |
+
}
|
98 |
+
|
99 |
+
function toggleStep(idx: number) {
|
100 |
+
cleaningSteps[idx].accepted = !cleaningSteps[idx].accepted;
|
101 |
+
}
|
102 |
+
|
103 |
+
function exportCleaned() {
|
104 |
+
// Export cleanedValue as CSV
|
105 |
+
if (!cleanedValue.headers.length) return;
|
106 |
+
const sep = ',';
|
107 |
+
const lines = [cleanedValue.headers.join(sep), ...cleanedValue.data.map(row => row.join(sep))];
|
108 |
+
const csv = lines.join('\n');
|
109 |
+
const blob = new Blob([csv], { type: 'text/csv' });
|
110 |
+
const url = URL.createObjectURL(blob);
|
111 |
+
const a = document.createElement('a');
|
112 |
+
a.href = url;
|
113 |
+
a.download = 'cleaned_data.csv';
|
114 |
+
a.click();
|
115 |
+
URL.revokeObjectURL(url);
|
116 |
+
}
|
117 |
+
|
118 |
+
$: updateInputValueFromRaw();
|
119 |
</script>
|
120 |
|
121 |
+
<div class="df-theme">
|
122 |
+
<main>
|
123 |
+
<h1>AI Data Cleaning Playground</h1>
|
124 |
+
<section class="input-section">
|
125 |
+
<label for="data-input">Paste your tabular data (CSV/TSV):</label>
|
126 |
+
<textarea id="data-input" bind:value={rawData} rows="8" cols="60" placeholder="Paste CSV or TSV data here..." on:input={updateInputValueFromRaw}></textarea>
|
127 |
+
<div>
|
128 |
+
<input type="file" accept=".csv,.tsv,.txt" bind:this={fileInput} on:change={handleFileUpload} />
|
129 |
+
</div>
|
130 |
+
<div style="margin: 1rem 0; width: 100%;">
|
131 |
+
<Dataframe
|
132 |
+
bind:value={inputValue}
|
133 |
+
show_search="search"
|
134 |
+
show_row_numbers={true}
|
135 |
+
show_copy_button={true}
|
136 |
+
show_fullscreen_button={true}
|
137 |
+
editable={true}
|
138 |
+
on:change={handleInputChange}
|
139 |
+
/>
|
140 |
+
</div>
|
141 |
+
<button on:click={analyzeAndClean}>Analyze & Clean</button>
|
142 |
+
</section>
|
143 |
+
|
144 |
+
{#if showSteps}
|
145 |
+
<section class="steps-section">
|
146 |
+
<h2>AI-Suggested Cleaning Steps</h2>
|
147 |
+
<ul>
|
148 |
+
{#each cleaningSteps as step, idx}
|
149 |
+
<li>
|
150 |
+
<input type="checkbox" bind:checked={step.accepted} on:change={() => toggleStep(idx)} />
|
151 |
+
{step.step}
|
152 |
+
</li>
|
153 |
+
{/each}
|
154 |
+
</ul>
|
155 |
+
</section>
|
156 |
+
{/if}
|
157 |
+
|
158 |
+
<section class="dataframes-section">
|
159 |
+
<div class="dataframe original">
|
160 |
+
<h3>Original Data</h3>
|
161 |
+
<Dataframe
|
162 |
+
bind:value={inputValue}
|
163 |
+
show_search="search"
|
164 |
+
show_row_numbers={true}
|
165 |
+
show_copy_button={true}
|
166 |
+
show_fullscreen_button={true}
|
167 |
+
editable={true}
|
168 |
+
on:change={handleInputChange}
|
169 |
+
/>
|
170 |
+
</div>
|
171 |
+
<div class="dataframe cleaned">
|
172 |
+
<h3>Cleaned Data (Preview)</h3>
|
173 |
+
<Dataframe
|
174 |
+
bind:value={cleanedValue}
|
175 |
+
show_search="search"
|
176 |
+
show_row_numbers={true}
|
177 |
+
show_copy_button={true}
|
178 |
+
show_fullscreen_button={true}
|
179 |
+
editable={false}
|
180 |
+
/>
|
181 |
+
</div>
|
182 |
+
</section>
|
183 |
+
|
184 |
+
<button on:click={exportCleaned}>Export Cleaned Data</button>
|
185 |
+
</main>
|
186 |
+
</div>
|
187 |
|
188 |
<style>
|
189 |
+
main {
|
190 |
+
max-width: 900px;
|
191 |
+
margin: 2rem auto;
|
192 |
+
padding: 2rem;
|
193 |
+
background: #fff;
|
194 |
+
border-radius: 12px;
|
195 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.07);
|
196 |
+
}
|
197 |
+
h1 {
|
198 |
+
text-align: center;
|
199 |
+
margin-bottom: 2rem;
|
200 |
+
}
|
201 |
+
.input-section {
|
202 |
+
margin-bottom: 2rem;
|
203 |
+
display: flex;
|
204 |
+
flex-direction: column;
|
205 |
+
gap: 0.5rem;
|
206 |
+
align-items: flex-start;
|
207 |
+
}
|
208 |
+
.steps-section {
|
209 |
+
margin-bottom: 2rem;
|
210 |
+
background: #f8f9fa;
|
211 |
+
padding: 1rem;
|
212 |
+
border-radius: 8px;
|
213 |
+
}
|
214 |
+
.dataframes-section {
|
215 |
+
display: flex;
|
216 |
+
gap: 2rem;
|
217 |
+
justify-content: center;
|
218 |
+
margin-bottom: 2rem;
|
219 |
+
}
|
220 |
+
.dataframe {
|
221 |
+
flex: 1;
|
222 |
+
display: flex;
|
223 |
+
flex-direction: column;
|
224 |
+
align-items: center;
|
225 |
+
}
|
226 |
+
textarea {
|
227 |
+
width: 100%;
|
228 |
+
font-family: monospace;
|
229 |
+
font-size: 1rem;
|
230 |
+
border-radius: 6px;
|
231 |
+
border: 1px solid #ccc;
|
232 |
+
padding: 0.5rem;
|
233 |
+
margin-top: 0.5rem;
|
234 |
+
resize: vertical;
|
235 |
}
|
236 |
+
button {
|
237 |
+
margin-top: 1rem;
|
238 |
+
padding: 0.5rem 1.5rem;
|
239 |
+
font-size: 1rem;
|
240 |
+
border-radius: 6px;
|
241 |
+
border: none;
|
242 |
+
background: #3f51b5;
|
243 |
+
color: #fff;
|
244 |
+
cursor: pointer;
|
245 |
+
transition: background 0.2s;
|
246 |
}
|
247 |
+
button:hover {
|
248 |
+
background: #283593;
|
249 |
}
|
250 |
+
.df-theme {
|
251 |
+
--gr-df-table-text: #222 !important;
|
252 |
+
background: #fff;
|
253 |
}
|
254 |
</style>
|
src/app.css
CHANGED
@@ -11,6 +11,7 @@
|
|
11 |
text-rendering: optimizeLegibility;
|
12 |
-webkit-font-smoothing: antialiased;
|
13 |
-moz-osx-font-smoothing: grayscale;
|
|
|
14 |
}
|
15 |
|
16 |
a {
|
|
|
11 |
text-rendering: optimizeLegibility;
|
12 |
-webkit-font-smoothing: antialiased;
|
13 |
-moz-osx-font-smoothing: grayscale;
|
14 |
+
color: black;
|
15 |
}
|
16 |
|
17 |
a {
|