File size: 49,396 Bytes
7b974d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864d787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b974d5
 
864d787
 
 
 
 
 
 
 
7b974d5
864d787
 
 
 
 
 
 
 
 
 
 
 
 
7b974d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
from fastapi import FastAPI, Form, HTTPException, BackgroundTasks, APIRouter
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from uuid import UUID, uuid4
import numpy as np
import os
import yaml
from datetime import datetime, timedelta
import json
from pathlib import Path
from typing import Dict, List, Optional, Any
from contextlib import asynccontextmanager
import asyncio
from concurrent.futures import ThreadPoolExecutor
import aiofiles
from functools import lru_cache
import time
import re
import psycopg2
from psycopg2.extras import RealDictCursor
import bcrypt
from dotenv import load_dotenv
# for PDF generation
from typing import Dict, List, Optional, Any, Union
from fastapi.responses import StreamingResponse
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak, Image
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.lib.enums import TA_CENTER, TA_LEFT
from io import BytesIO
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')  # Use non-interactive backend

# Load environment variables
load_dotenv()

# Download required NLTK data
import nltk
try:
    nltk.data.find('tokenizers/punkt_tab')
except LookupError:
    nltk.download('punkt_tab')
    nltk.download('punkt')
    nltk.download('stopwords')

# Create thread pool for blocking operations
executor = ThreadPoolExecutor(max_workers=4)

# Cache for insights data
insights_cache = {
    "data": None,
    "timestamp": None,
    "ttl": 60  # Cache for 60 seconds
}

user_insights_cache = {}  # Cache per user

# Create data storage directories
DATA_DIR = Path("survey_data")
CHAT_SESSIONS_DIR = Path("chat_sessions")
DATA_DIR.mkdir(exist_ok=True, parents=True)
CHAT_SESSIONS_DIR.mkdir(exist_ok=True, parents=True)

# Global sentiment analyzer instance
sentiment_analyzer = None

# Initialize shared components at startup
@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup
    print("πŸš€ Starting FastAPI server...")
    
    try:
        # Import here to avoid circular imports (with fallback for missing dependencies)
        try:
            from Chat_sentiment_analysis import ChatSentimentAnalyzer
            sentiment_analyzer_available = True
        except ImportError as e:
            print(f"⚠️ Sentiment analyzer unavailable: {e}")
            sentiment_analyzer_available = False
            
        try:
            from agents.shared_rag import shared_rag_instance
            rag_available = True
        except ImportError as e:
            print(f"⚠️ RAG agent unavailable: {e}")
            rag_available = False
            
        # Initialize sentiment analyzer in background
        global sentiment_analyzer
        if sentiment_analyzer_available:
            print("🧠 Loading sentiment analyzer model...")
            sentiment_analyzer = ChatSentimentAnalyzer()
            print("βœ… Sentiment analyzer ready")
        else:
            sentiment_analyzer = None
            print("⚠️ Using basic sentiment analysis")
            
        # Get the shared RAG instance (this handles all initialization)
        if rag_available:
            print("πŸ“š Getting shared RAG instance...")
            rag = shared_rag_instance.get_rag()
            print("βœ… Shared RAG instance ready")
            
            # Store in app state
            app.state.rag = rag
            app.state.config = shared_rag_instance.config
        else:
            print("⚠️ Using basic response generation")
            app.state.rag = None
            app.state.config = None
            
        # Initialize response cache
        print("πŸ—„οΈ Initializing response cache...")
        app.state.response_cache = {}
        app.state.cache_timestamps = {}
        
        print("πŸŽ‰ FastAPI startup complete!")
        
    except Exception as e:
        print(f"❌ Critical error during startup: {e}")
        import traceback
        traceback.print_exc()
        
        # Create minimal fallback system
        app.state.rag = None
        app.state.response_cache = {}
        app.state.cache_timestamps = {}
        print("⚠️ Running with minimal fallback system")
    
    yield
    
    # Shutdown
    print("πŸ›‘ Shutting down...")
    if hasattr(app.state, 'executor'):
        app.state.executor.shutdown(wait=True)
    executor.shutdown(wait=True)

app = FastAPI(lifespan=lifespan)

# Allow CORS for local testing
allowed_origins = os.getenv('ALLOWED_ORIGINS', 'http://localhost:5000,http://127.0.0.1:5000').split(',')
app.add_middleware(
    CORSMiddleware,
    allow_origins=allowed_origins,
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Health check endpoint
@app.get("/health")
async def health_check():
    """Health check endpoint for monitoring"""
    return {
        "status": "healthy",
        "timestamp": datetime.now().isoformat(),
        "service": "mental-health-fastapi",
        "version": "1.0.0"
    }

@app.get("/fastapi-health")
async def fastapi_health():
    """FastAPI health check endpoint"""
    try:
        return {
            "status": "healthy",
            "service": "Mental Health Chatbot FastAPI Backend",
            "timestamp": datetime.utcnow().isoformat(),
            "rag_available": hasattr(app.state, 'rag') and app.state.rag is not None,
            "version": "1.0.0"
        }
    except Exception as e:
        return {
            "status": "unhealthy", 
            "error": str(e),
            "service": "Mental Health Chatbot FastAPI Backend",
            "timestamp": datetime.utcnow().isoformat()
        }

@app.get("/")
async def root():
    """Root endpoint"""
    return {"message": "Mental Health FastAPI Service", "status": "running"}

# Pydantic models
class ConversationSaveRequest(BaseModel):
    id: Optional[UUID] = None
    user_id: str
    message: str
    response: str
    timestamp: Optional[datetime] = None
    
class ChatMessage(BaseModel):
    role: str  
    content: str
    timestamp: datetime

class ConversationLoadResponse(BaseModel):
    messages: List[ChatMessage]

class UserProfileCreate(BaseModel):
    name: str = Field(..., min_length=1)
    age: Optional[int] = Field(None, gt=0, le=150)
    gender: Optional[str]
    city_region: Optional[str]
    profession: Optional[str]
    marital_status: Optional[str]
    previous_mental_diagnosis: Optional[str] = "NA"
    ethnicity: Optional[str]
    email: str  # Changed from EmailStr to str to avoid email-validator dependency
    password: str

class LoginRequest(BaseModel):
    email: str  # Changed from EmailStr to str
    password: str

class UserResponse(BaseModel):
    id: UUID
    name: str
    age: Optional[int]
    gender: Optional[str]
    city_region: Optional[str]
    profession: Optional[str]
    marital_status: Optional[str]
    previous_mental_diagnosis: Optional[str]
    ethnicity: Optional[str]
    email: str  # Changed from EmailStr to str

    class Config:
        from_attributes = True

class MessageRequest(BaseModel):
    message: str
    user_context: Dict[str, Any] = {}
    session_id: Optional[str] = None



class MessageResponse(BaseModel):
    response: str
    agent: str
    confidence: float
    method: str
    timestamp: str
    sources: Optional[List[Union[str, Dict[str, Any]]]] = []  # βœ… Allow both strings and dicts
    condition: Optional[str] = "general"
    is_crisis: Optional[bool] = False
    sources_used: Optional[int] = 0

class ChatMessageRequest(BaseModel):
    message: str
    user_context: Dict[str, Any]
    session_id: Optional[str] = None

class ChatSessionData(BaseModel):
    session_id: str
    user_name: str
    messages: List[Dict]
    metadata: Optional[Dict] = None

# Database utility functions (keep existing ones)
def get_db_connection():
    db_uri = os.getenv("SUPABASE_DB_URI") or os.getenv("DATABASE_URL")
    if not db_uri:
        db_uri = (
            f"postgresql://{os.getenv('DATABASE_USER')}:{os.getenv('DATABASE_PASSWORD')}"
            f"@{os.getenv('DATABASE_HOST')}:{os.getenv('DATABASE_PORT')}/{os.getenv('DATABASE_NAME')}"
        )
    return psycopg2.connect(db_uri)

def save_conversation_util(id: UUID, user_id: str, message: str, response: str, timestamp: Optional[datetime] = None) -> bool:
    conn = cursor = None
    try:
        conn = get_db_connection()
        cursor = conn.cursor()

        if not timestamp:
            timestamp = datetime.now()

        insert_query = """

            INSERT INTO conversation_history (id, user_id, message, response, timestamp)

            VALUES (%s, %s, %s, %s, %s)

        """
        cursor.execute(insert_query, (str(id), user_id, message, response, timestamp))
        conn.commit()
        return True
    except psycopg2.Error as e:
        print(f"[DB ERROR] {e}")
        return False
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

def load_conversation_util(user_id: str) -> List[Dict]:
    conn = cursor = None
    try:
        conn = get_db_connection()
        cursor = conn.cursor()

        select_query = """

            SELECT message, response, timestamp

            FROM conversation_history

            WHERE user_id = %s

            ORDER BY timestamp ASC

        """
        cursor.execute(select_query, (user_id,))
        rows = cursor.fetchall()

        history = []
        for message, response, timestamp in rows:
            history.append({
                "role": "user",
                "content": message,
                "timestamp": timestamp
            })
            history.append({
                "role": "assistant",
                "content": response,
                "timestamp": timestamp
            })

        return history

    except psycopg2.Error as e:
        print(f"[DB ERROR] Exception: {e}")
        return []
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

def delete_conversations_by_user_util(user_id: str) -> bool:
    conn = cursor = None
    try:
        conn = get_db_connection()
        cursor = conn.cursor()
        cursor.execute("DELETE FROM conversation_history WHERE user_id = %s", (user_id,))
        conn.commit()
        return True
    except Exception as e:
        print(f"Error deleting user chats: {e}")
        return False
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

def register_user_util(user_data: dict) -> Optional[dict]:
    conn = cursor = None
    try:
        conn = get_db_connection()
        cursor = conn.cursor()
        
        # Check if user already exists
        cursor.execute("SELECT id FROM user_profiles WHERE email = %s", (user_data['email'],))
        if cursor.fetchone():
            return None
        
        # Hash password
        password_hash = bcrypt.hashpw(user_data['password'].encode('utf-8'), bcrypt.gensalt()).decode('utf-8')
        
        # Insert new user
        user_id = uuid4()
        insert_query = """

            INSERT INTO user_profiles (id, name, age, gender, city_region, profession, 

                                     marital_status, previous_mental_diagnosis, ethnicity, 

                                     email, password_hash)

            VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)

            RETURNING *

        """
        cursor.execute(insert_query, (
            str(user_id), user_data['name'], user_data.get('age'), 
            user_data.get('gender'), user_data.get('city_region'),
            user_data.get('profession'), user_data.get('marital_status'),
            user_data.get('previous_mental_diagnosis', 'NA'),
            user_data.get('ethnicity'), user_data['email'], password_hash
        ))
        
        user_row = cursor.fetchone()
        conn.commit()
        
        if user_row:
            return {
                'id': user_row[0],
                'name': user_row[1],
                'age': user_row[2],
                'gender': user_row[3],
                'city_region': user_row[4],
                'profession': user_row[5],
                'marital_status': user_row[6],
                'previous_mental_diagnosis': user_row[7],
                'ethnicity': user_row[8],
                'email': user_row[10]
            }
        return None
        
    except Exception as e:
        print(f"Error registering user: {e}")
        return None
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

def login_user_util(email: str, password: str) -> Optional[dict]:
    conn = cursor = None
    try:
        conn = get_db_connection()
        cursor = conn.cursor()
        
        cursor.execute("SELECT * FROM user_profiles WHERE email = %s", (email,))
        user_row = cursor.fetchone()
        
        if user_row and bcrypt.checkpw(password.encode('utf-8'), user_row[11].encode('utf-8')):
            return {
                'id': user_row[0],
                'name': user_row[1],
                'age': user_row[2],
                'gender': user_row[3],
                'city_region': user_row[4],
                'profession': user_row[5],
                'marital_status': user_row[6],
                'previous_mental_diagnosis': user_row[7],
                'ethnicity': user_row[8],
                'email': user_row[10]
            }
        return None
        
    except Exception as e:
        print(f"Error logging in user: {e}")
        return None
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

def delete_user_util(user_id: str) -> bool:
    conn = cursor = None
    try:
        conn = get_db_connection()
        cursor = conn.cursor()
        
        # Delete conversations first (foreign key constraint)
        cursor.execute("DELETE FROM conversation_history WHERE user_id = %s", (user_id,))
        # Delete user
        cursor.execute("DELETE FROM user_profiles WHERE id = %s", (user_id,))
        
        conn.commit()
        return True
        
    except Exception as e:
        print(f"Error deleting user: {e}")
        return False
    finally:
        if cursor:
            cursor.close()
        if conn:
            conn.close()

# Create API router
router = APIRouter(prefix="/api/v1", tags=["database"])

def create_tables():
    try:
        db_uri = os.getenv("SUPABASE_DB_URI") or os.getenv("DATABASE_URL")
        print(f"Creating tables using URI: {db_uri[:50]}...")
        
        conn = psycopg2.connect(db_uri, cursor_factory=RealDictCursor)
        cursor = conn.cursor()
        
        # Check if user_profiles table exists and needs to be updated
        cursor.execute("""

            SELECT column_name 

            FROM information_schema.columns 

            WHERE table_name = 'user_profiles' AND column_name IN ('email', 'password_hash')

        """)
        existing_columns = [row[0] for row in cursor.fetchall()]
        
        # Add missing columns if needed
        if 'email' not in existing_columns:
            print("Adding email column to user_profiles table...")
            cursor.execute("ALTER TABLE user_profiles ADD COLUMN IF NOT EXISTS email VARCHAR(120) UNIQUE;")
        
        if 'password_hash' not in existing_columns:
            print("Adding password_hash column to user_profiles table...")
            cursor.execute("ALTER TABLE user_profiles ADD COLUMN IF NOT EXISTS password_hash VARCHAR(255);")
        
        # Create user_profiles table if it doesn't exist
        print("Creating user_profiles table if not exists...")
        cursor.execute("""

            CREATE TABLE IF NOT EXISTS user_profiles (

                id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

                name VARCHAR(100) NOT NULL,

                age INTEGER CHECK (age > 0 AND age <= 150),

                gender VARCHAR(20),

                city_region VARCHAR(100),

                profession VARCHAR(100),

                marital_status VARCHAR(30),

                previous_mental_diagnosis TEXT DEFAULT 'NA',

                ethnicity VARCHAR(50),

                email VARCHAR(120) UNIQUE,

                password_hash VARCHAR(255),

                email_id TEXT,

                user_password TEXT,

                created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),

                updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()

            );

        """)
        
        # Create conversation_history table
        print("Creating conversation_history table...")
        cursor.execute("""

            CREATE TABLE IF NOT EXISTS conversation_history (

                id UUID PRIMARY KEY DEFAULT gen_random_uuid(),

                user_id UUID REFERENCES user_profiles(id) ON DELETE CASCADE NOT NULL,

                message TEXT NOT NULL,

                response TEXT NOT NULL,

                timestamp TIMESTAMP WITH TIME ZONE DEFAULT NOW()

            );

        """)
        
        # Create indexes safely
        print("Creating indexes...")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_conversation_user_id ON conversation_history(user_id);")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_conversation_timestamp ON conversation_history(timestamp);")
        
        # Try to create email index
        try:
            cursor.execute("CREATE INDEX IF NOT EXISTS idx_user_email ON user_profiles(email);")
        except:
            try:
                cursor.execute("CREATE INDEX IF NOT EXISTS idx_user_email_id ON user_profiles(email_id);")
            except:
                print("Could not create email index")
        
        conn.commit()
        print("βœ… Database tables created/updated successfully!")
        
        cursor.close()
        conn.close()
        
    except Exception as e:
        print(f"❌ Error creating tables: {e}")

@app.get("/api/v1/setup-db")
async def setup_database():
    """Setup database tables and verify connection"""
    try:
        create_tables()
        return {
            "status": "success",
            "message": "Database tables created/verified successfully",
            "tables": ["user_profiles", "conversation_history"]
        }
    except Exception as e:
        return {
            "status": "error", 
            "message": f"Database setup failed: {str(e)}"
        }

@router.post("/chat/save")
async def save_conversation_endpoint(data: ConversationSaveRequest):
    conversation_id = data.id or uuid4()
    success = save_conversation_util(
        id=conversation_id,
        user_id=data.user_id,
        message=data.message,
        response=data.response,
        timestamp=data.timestamp
    )
    if not success:
        raise HTTPException(status_code=500, detail="Failed to save conversation")
    return {"status": "success", "conversation_id": str(conversation_id)}

@router.get("/chat/load/{user_id}", response_model=ConversationLoadResponse)
async def load_conversation_endpoint(user_id: str):
    messages = load_conversation_util(user_id)
    if not messages:
        return {"messages": []}
    return {"messages": [ChatMessage(**msg) for msg in messages]}

@router.delete("/chat/delete-all/{user_id}")
async def delete_all_conversations(user_id: str):
    success = delete_conversations_by_user_util(user_id)
    if not success:
        raise HTTPException(status_code=500, detail="Failed to delete user conversations")
    return {"status": "all deleted"}

@router.post("/login", response_model=UserResponse)
def login_user_endpoint(data: LoginRequest):
    user = login_user_util(data.email, data.password)
    if not user:
        raise HTTPException(status_code=401, detail="Invalid credentials")
    return user

@router.post("/register", response_model=UserResponse)
def register_user_endpoint(data: UserProfileCreate):
    user = register_user_util(data.dict())
    if not user:
        raise HTTPException(status_code=400, detail="Registration failed - user may already exist")
    return user
# Add this route after your existing API routes:

@router.delete("/delete/{user_id}")
def delete_user_and_data(user_id: str):
    """Completely delete a user and all associated data"""
    try:
        print(f"πŸ—‘οΈ FastAPI: Deleting user {user_id} and all data...")
        
        # Delete conversation history
        conversations_deleted = delete_conversations_by_user_util(user_id)
        
        # Delete user profile
        user_deleted = delete_user_util(user_id)
        
        if user_deleted:
            print(f"βœ… FastAPI: Successfully deleted user {user_id}")
            return {
                "status": "success",
                "message": f"User {user_id} and all associated data deleted",
                "conversations_deleted": conversations_deleted
            }
        else:
            print(f"❌ FastAPI: Failed to delete user {user_id}")
            raise HTTPException(status_code=500, detail="Failed to delete user")
            
    except Exception as e:
        print(f"❌ FastAPI deletion error: {e}")
        raise HTTPException(status_code=500, detail=f"Deletion failed: {str(e)}")

# ==============================================================================
# SINGLE UNIFIED CHAT ENDPOINT - USING SHARED RAG ONLY
# ==============================================================================
@app.post("/process_message", response_model=MessageResponse)
async def process_message(request: MessageRequest):
    """

    Unified chat processing endpoint using shared RAG system.

    This handles all chat requests - fast, full, and CrewAI modes.

    """
    start_time = time.time()
    
    try:
        print(f"πŸ’¬ Processing message: {request.message[:50]}...")
        print(f"πŸ‘€ User context: {request.user_context}")
        
        # Check if RAG system is available
        if not hasattr(app.state, 'rag') or app.state.rag is None:
            print("⚠️ RAG system not available, using fallback")
            return _generate_fallback_response(request, "system_unavailable")
        
        rag = app.state.rag
        
        # Try CrewAI integration first if available
        if hasattr(rag, 'process_query_with_crewai') and rag.crewai_enabled:
            print("πŸ€– Using CrewAI enhanced processing...")
            try:
                result = await asyncio.get_event_loop().run_in_executor(
                    executor,
                    rag.process_query_with_crewai,
                    request.message,
                    request.user_context
                )
                
                processing_time = time.time() - start_time
                print(f"βœ… CrewAI response generated in {processing_time:.2f}s")
                
                return MessageResponse(
                    response=result.get("response", "I'm here to help you."),
                    agent=result.get("agent", "CrewAI Enhanced System"),
                    confidence=result.get("confidence", 0.85),
                    method="crewai_integrated",
                    timestamp=datetime.now().isoformat(),
                    sources=result.get("sources", [])[:3],  # Limit sources
                    condition=result.get("condition", "general"),
                    is_crisis=result.get("is_crisis", False),
                    sources_used=len(result.get("sources", []))
                )
                
            except Exception as crewai_error:
                print(f"⚠️ CrewAI processing failed: {crewai_error}")
                # Continue to regular RAG processing
        
        # βœ… FIX: Move this block to the correct indentation level
        print("πŸ“š Using RAG processing...")
        try:
            result = await asyncio.get_event_loop().run_in_executor(
                executor,
                rag.process_query,
                request.message,
                request.user_context.get('emotion', 'neutral'),
                request.user_context.get('mental_health_status', 'Unknown'),
                request.user_context
            )
            
            processing_time = time.time() - start_time
            print(f"βœ… RAG response generated in {processing_time:.2f}s")
            print(f"πŸ“Š Confidence: {result.get('confidence', 0.0):.2f}")
            
            # βœ… FIX: Process sources properly
            raw_sources = result.get("sources", [])
            processed_sources = []
            
            for source in raw_sources[:3]:  # Limit to 3 sources
                if isinstance(source, dict):
                    # Extract just the source filename or create a simple string
                    source_text = source.get('source', 'Unknown source')
                    if 'knowledge/' in source_text:
                        source_text = source_text.split('knowledge/')[-1]  # Get just filename
                    processed_sources.append(source_text)
                elif isinstance(source, str):
                    processed_sources.append(source)
                else:
                    processed_sources.append(str(source))
            
            return MessageResponse(
                response=result.get("response", "I'm here to help you with your mental health concerns."),
                agent="Mental Health RAG Assistant",
                confidence=result.get("confidence", 0.7),
                method="rag_standard",
                timestamp=datetime.now().isoformat(),
                sources=processed_sources,  # βœ… Now properly formatted
                condition="general",
                is_crisis=False,
                sources_used=len(raw_sources)
            )
            
        except Exception as rag_error:
            print(f"❌ RAG processing failed: {rag_error}")
            return _generate_fallback_response(request, "rag_error")
            
    except Exception as e:
        print(f"❌ Critical error in process_message: {e}")
        import traceback
        traceback.print_exc()
        return _generate_fallback_response(request, "critical_error")

def _generate_fallback_response(request: MessageRequest, error_type: str) -> MessageResponse:
    """Generate intelligent fallback response based on message content"""
    try:
        message_lower = request.message.lower()
        user_name = request.user_context.get('name', 'there')
        
        # Crisis detection
        crisis_keywords = ['suicide', 'kill myself', 'want to die', 'hurt myself', 'end it all']
        if any(keyword in message_lower for keyword in crisis_keywords):
            response = f"πŸ†˜ I'm very concerned about what you've shared, {user_name}. Please reach out for immediate help. In Bhutan: Emergency Services (112), National Mental Health Program (1717). Your life has value and help is available."
            condition = 'crisis'
            is_crisis = True
        
        # Emotional categories
        elif any(word in message_lower for word in ['sad', 'depressed', 'depression', 'down', 'hopeless']):
            response = f"I understand you're feeling sad, {user_name}. These feelings are valid and you're not alone. Depression can feel overwhelming, but there are effective ways to manage it. Would you like to explore some coping strategies?"
            condition = 'depression'
            is_crisis = False
            
        elif any(word in message_lower for word in ['anxious', 'anxiety', 'worried', 'panic', 'nervous']):
            response = f"I hear that you're experiencing anxiety, {user_name}. These feelings can be very challenging, but there are proven techniques that can help. Would you like to try some breathing exercises?"
            condition = 'anxiety'
            is_crisis = False
            
        elif any(word in message_lower for word in ['angry', 'frustrated', 'mad', 'rage']):
            response = f"I understand you're feeling angry or frustrated, {user_name}. Anger is a normal emotion, and learning healthy ways to express it is important for your wellbeing. What's been contributing to these feelings?"
            condition = 'anger'
            is_crisis = False
            
        elif any(word in message_lower for word in ['lonely', 'alone', 'isolated']):
            response = f"I hear that you're feeling lonely, {user_name}. Loneliness can be very difficult to experience. You're reaching out here, which shows strength. Would you like to talk about ways to connect with others?"
            condition = 'loneliness'
            is_crisis = False
            
        else:
            response = f"Thank you for sharing with me, {user_name}. I'm here to support you with your mental health concerns. While I'm experiencing some technical difficulties, I want you to know that your feelings matter and help is available."
            condition = 'general'
            is_crisis = False
        
        # Add technical note for non-crisis situations
        if not is_crisis:
            if error_type == "system_unavailable":
                response += "\n\nI'm currently running in limited mode, but I'm still here to listen and provide support."
            elif error_type == "rag_error":
                response += "\n\nI'm having some difficulty accessing my knowledge base, but I can still offer emotional support and general guidance."
        
        return MessageResponse(
            response=response,
            agent="Mental Health Support Assistant",
            confidence=0.7,
            method=f"intelligent_fallback_{error_type}",
            timestamp=datetime.now().isoformat(),
            sources=[],
            condition=condition,
            is_crisis=is_crisis,
            sources_used=0
        )
        
    except Exception as e:
        print(f"Error generating fallback response: {e}")
        return MessageResponse(
            response="I'm experiencing technical difficulties, but I want you to know that I'm here to support you. For immediate mental health support in Bhutan, please contact the National Mental Health Program at 1717 (24/7).",
            agent="Emergency Support",
            confidence=0.5,
            method="emergency_fallback",
            timestamp=datetime.now().isoformat(),
            sources=[],
            condition="emergency",
            is_crisis=False,
            sources_used=0
        )

# Legacy endpoints for backward compatibility
@app.post("/process_message_fast", response_model=MessageResponse)
async def process_message_fast(request: MessageRequest):
    """Legacy fast endpoint - redirects to main processor"""
    print("πŸ“ Legacy fast endpoint called, redirecting to main processor...")
    return await process_message(request)

@app.post("/process_message_with_crew", response_model=MessageResponse)
async def process_message_with_crew(request: MessageRequest):
    """Legacy CrewAI endpoint - redirects to main processor"""
    print("πŸ“ Legacy CrewAI endpoint called, redirecting to main processor...")
    return await process_message(request)

# ==============================================================================
# UTILITY AND DEBUGGING ENDPOINTS
# ==============================================================================

@app.get("/debug_systems")
async def debug_systems():
    """Debug endpoint to check system status"""
    try:
        status = {
            "timestamp": datetime.now().isoformat(),
            "rag_available": hasattr(app.state, 'rag') and app.state.rag is not None,
            "sentiment_analyzer_available": sentiment_analyzer is not None
        }
        
        if hasattr(app.state, 'rag') and app.state.rag is not None:
            rag = app.state.rag
            status.update({
                "rag_type": str(type(rag)),
                "crewai_enabled": getattr(rag, 'crewai_enabled', False),
                "rag_methods": [method for method in dir(rag) if not method.startswith('_')]
            })
            
            # Test knowledge base
            try:
                collection_info = rag.retriever.get_collection_info()
                status["knowledge_status"] = {
                    "documents_count": collection_info.get('points_count', 0),
                    "collection_name": collection_info.get('name', 'unknown')
                }
            except Exception as e:
                status["knowledge_status"] = {"error": str(e)}
        
        return status
        
    except Exception as e:
        return {"error": str(e), "timestamp": datetime.now().isoformat()}

@app.get("/reingest_knowledge")
async def reingest_knowledge():
    """Force reingest knowledge base"""
    try:
        if not hasattr(app.state, 'rag') or app.state.rag is None:
            return {"error": "RAG system not available"}
        
        print("πŸ”„ Force reingesting knowledge...")
        result = await asyncio.get_event_loop().run_in_executor(
            executor,
            app.state.rag.ingest_knowledge_folder,
            "knowledge"
        )
        
        return {
            "status": "success",
            "message": "Knowledge reingestion completed",
            "result": result,
            "timestamp": datetime.now().isoformat()
        }
        
    except Exception as e:
        return {
            "status": "error",
            "message": str(e),
            "timestamp": datetime.now().isoformat()
        }

# ==============================================================================
# KEEP EXISTING SURVEY AND SESSION ENDPOINTS
# ==============================================================================

def sanitize_filename(name: str) -> str:
    """Sanitize user name for use in filename"""
    sanitized = re.sub(r'[^\w\s-]', '', name)
    sanitized = re.sub(r'[-\s]+', '_', sanitized)
    return sanitized

@app.post("/save_chat_session")
async def save_chat_session(session_data: ChatSessionData):
    """Save chat session to disk"""
    # Don't save chat sessions for guest users (case-insensitive)
    if session_data.user_name.lower() in ['guest', 'guest user', '']:
        return {"status": "success", "message": "Guest chat sessions are not saved"}
    
    try:
        filename = f"chat_{session_data.user_name}_{session_data.session_id}.json"
        filepath = CHAT_SESSIONS_DIR / filename
        
        async with aiofiles.open(filepath, 'w') as f:
            await f.write(json.dumps(session_data.dict(), indent=2))
        
        return {"status": "success", "message": "Chat session saved"}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/get_chat_session/{session_id}")
async def get_chat_session(session_id: str):
    """Retrieve chat session by ID"""
    try:
        # Check if the session file exists
        filename = f"chat_*_{session_id}.json"
        filepath = CHAT_SESSIONS_DIR / filename
        if not filepath.exists():
            raise HTTPException(status_code=404, detail="Chat session not found")

        async with aiofiles.open(filepath, 'r') as f:
            session_data = await f.read()
            return {"status": "success", "data": json.loads(session_data)}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

# Keep the professional assessment and other existing endpoints...
# (Professional assessment code remains the same as it's working)

# Professional assessment models and functions
class ProfessionalAssessmentRequest(BaseModel):
    """Request model for professional questionnaire assessment"""
    Name: str
    Age: int
    Sex: str
    Location: str
    days_indoors: int
    Emotion: str
    history_of_mental_illness: str
    treatment: str
    
    # PHQ-9 Depression Screening (0-3 scale)
    PHQ9_1: int
    PHQ9_2: int
    PHQ9_3: int
    PHQ9_4: int
    PHQ9_5: int
    PHQ9_6: int
    PHQ9_7: int
    PHQ9_8: int
    PHQ9_9: int
    
    # GAD-7 Anxiety Screening (0-3 scale)
    GAD7_1: int
    GAD7_2: int
    GAD7_3: int
    GAD7_4: int
    GAD7_5: int
    GAD7_6: int
    GAD7_7: int
    
    # DAST-10 Substance Use (Yes/No -> 1/0)
    DAST_1: str
    DAST_2: str
    DAST_3: str
    DAST_4: str
    DAST_5: str
    DAST_6: str
    DAST_7: str
    DAST_8: str
    DAST_9: str
    DAST_10: str
    
    # AUDIT Alcohol Use (string responses)
    AUDIT_1: str
    AUDIT_2: str
    AUDIT_3: str
    AUDIT_4: str
    AUDIT_5: str
    AUDIT_6: str
    AUDIT_7: str
    AUDIT_8: str
    AUDIT_9: str
    AUDIT_10: str
    
    # Bipolar Screening (Yes/No -> 1/0)
    BIPOLAR_1: str
    BIPOLAR_2: str
    BIPOLAR_3: str
    BIPOLAR_4: str
    BIPOLAR_5: str
    BIPOLAR_6: str
    BIPOLAR_7: str
    BIPOLAR_8: str
    BIPOLAR_9: str
    BIPOLAR_10: str
    BIPOLAR_11: str

class SurveyData(BaseModel):
    timestamp: str
    name: str
    age: int
    sex: str
    location: str
    emotion: str
    prediction: str
    score: float
    averages: Dict[str, float]
    raw_responses: Dict[str, List[float]]

@app.post("/store_survey")
async def store_survey(survey_data: SurveyData, background_tasks: BackgroundTasks):
    """Store survey data for insights and analytics"""
    
    # Don't store data for guest users
    if survey_data.name.lower() in ['guest', 'guest user', '']:
        return {"status": "success", "message": "Guest data not stored"}
    
    # Sanitize the name for filename
    safe_name = sanitize_filename(survey_data.name)
    filename = f"survey_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{safe_name}.json"
    filepath = DATA_DIR / filename
    
    # Write asynchronously
    async with aiofiles.open(filepath, 'w') as f:
        await f.write(json.dumps(survey_data.dict(), indent=2))
    
    return {"status": "success", "message": "Survey data stored successfully"}

@app.post("/predict_professional")
def predict_professional(data: ProfessionalAssessmentRequest):
    """Professional mental health assessment using validated questionnaires"""
    
    # Score PHQ-9 Depression
    phq9_answers = {
        f"Q{i}": getattr(data, f"PHQ9_{i}") for i in range(1, 10)
    }
    phq9_score = sum(phq9_answers.values())
    phq9_interpretation = interpret_score("PHQ-9", phq9_score)
    
    # Score GAD-7 Anxiety
    gad7_answers = {
        f"Q{i}": getattr(data, f"GAD7_{i}") for i in range(1, 8)
    }
    gad7_score = sum(gad7_answers.values())
    gad7_interpretation = interpret_score("GAD-7", gad7_score)
    
    # Score DAST-10 Substance Use
    dast_answers = {}
    for i in range(1, 11):
        answer = getattr(data, f"DAST_{i}")
        # Handle reverse scoring for DAST-3 (able to stop)
        if i == 3:
            dast_answers[f"Q{i}"] = 1 if answer.lower() == "no" else 0
        else:
            dast_answers[f"Q{i}"] = 1 if answer.lower() == "yes" else 0
    
    dast_score = sum(dast_answers.values())
    dast_interpretation = interpret_score("DAST-10", dast_score)
    
    # Score AUDIT Alcohol Use
    audit_answers = {}
    for i in range(1, 11):
        audit_answers[f"Q{i}"] = getattr(data, f"AUDIT_{i}")
    
    audit_score = score_questionnaire("AUDIT", audit_answers)
    audit_interpretation = interpret_score("AUDIT", audit_score)
    
    # Score Bipolar Screening
    bipolar_answers = {}
    for i in range(1, 12):
        answer = getattr(data, f"BIPOLAR_{i}")
        bipolar_answers[f"Q{i}"] = 1 if answer.lower() == "yes" else 0
    
    bipolar_score = sum(bipolar_answers.values())
    bipolar_interpretation = interpret_score("Bipolar", bipolar_score)
    
    # Calculate overall risk level based on professional scores
    risk_factors = []
    
    # Depression risk
    if phq9_score >= 15:
        risk_factors.append("severe_depression")
    elif phq9_score >= 10:
        risk_factors.append("moderate_depression")
    elif phq9_score >= 5:
        risk_factors.append("mild_depression")
    
    # Anxiety risk
    if gad7_score >= 15:
        risk_factors.append("severe_anxiety")
    elif gad7_score >= 10:
        risk_factors.append("moderate_anxiety")
    elif gad7_score >= 5:
        risk_factors.append("mild_anxiety")
    
    # Substance use risk
    if dast_score >= 6:
        risk_factors.append("substance_concern")
    
    # Alcohol use risk
    if audit_score >= 15:
        risk_factors.append("alcohol_concern")
    
    # Bipolar risk
    if bipolar_score >= 7:
        risk_factors.append("bipolar_concern")
    
    # Determine overall prediction
    if any(factor.startswith("severe") for factor in risk_factors) or len(risk_factors) >= 3:
        overall_prediction = "Severe"
        overall_score = 4.0
    elif any(factor.startswith("moderate") for factor in risk_factors) or len(risk_factors) >= 2:
        overall_prediction = "Moderate"
        overall_score = 3.0
    elif len(risk_factors) >= 1:
        overall_prediction = "Mild"
        overall_score = 2.0
    else:
        overall_prediction = "Healthy"
        overall_score = 1.0
    
    # Generate professional recommendations
    recommendations = []
    if phq9_score >= 10:
        recommendations.append("Consider consulting a mental health professional for depression screening.")
    if gad7_score >= 10:
        recommendations.append("Consider discussing anxiety symptoms with a healthcare provider.")
    if dast_score >= 3:
        recommendations.append("Consider discussing substance use with a healthcare provider.")
    if audit_score >= 8:
        recommendations.append("Consider discussing alcohol use patterns with a healthcare provider.")
    if bipolar_score >= 7:
        recommendations.append("Consider discussing mood episodes with a mental health professional.")
    
    if not recommendations:
        recommendations.append("Continue maintaining good mental health practices and regular self-care.")
    
    # Emergency contact info for Bhutan
    emergency_info = None
    if phq9_score >= 15 or any(factor == "severe_depression" for factor in risk_factors):
        emergency_info = {
            "message": "If you're having thoughts of self-harm, please reach out for help immediately.",
            "emergency_contacts": [
                "Bhutan Emergency: 112",
                "Jigme Dorji Wangchuck National Referral Hospital: +975-2-322496",
                "Thimphu Police: +975-2-322222"
            ]
        }
    
    return {
        "prediction": overall_prediction,
        "score": overall_score,
        "detailed_scores": {
            "phq9": {"score": phq9_score, "interpretation": phq9_interpretation},
            "gad7": {"score": gad7_score, "interpretation": gad7_interpretation},
            "dast10": {"score": dast_score, "interpretation": dast_interpretation},
            "audit": {"score": audit_score, "interpretation": audit_interpretation},
            "bipolar": {"score": bipolar_score, "interpretation": bipolar_interpretation}
        },
        "risk_factors": risk_factors,
        "recommendations": recommendations,
        "emergency_info": emergency_info
    }

# Additional utility functions for scoring (keep existing)
def score_questionnaire(condition: str, answers: dict) -> int:
    """Score PHQ-9, GAD-7, DAST-10, Bipolar and AUDIT answers."""
    score = 0
    if condition in ["PHQ-9", "GAD-7"]:
        scale = {
            "0": 0, "not at all": 0,
            "1": 1, "several days": 1,
            "2": 2, "more than half the days": 2,
            "3": 3, "nearly every day": 3
        }
        for ans in answers.values():
            cleaned = str(ans).strip().lower()
            if '-' in cleaned:
                cleaned = cleaned.split("-", 1)[-1].strip()
            score += scale.get(cleaned, 0)
            
    elif condition == "DAST-10":
        for ans in answers.values():
            score += 1 if str(ans).lower() in ["yes", "y", "true", "1"] else 0

    elif condition == "AUDIT":
        scale_0_to_4 = {
            "never": 0,
            "monthly or less": 1,
            "less than monthly": 1,
            "2 to 4 times a month": 2,
            "5 or 6": 2,
            "monthly": 2,
            "2 to 3 times a week": 3,
            "7, 8, or 9": 3,
            "weekly": 3,
            "4 or more times a week": 4,
            "10 or more": 4,
            "daily or almost daily": 4,
            "1 or 2": 0,
            "3 or 4": 1  
        }

        scale_0_2_4 = {
            "no": 0,
            "yes, but not in the last year": 2,
            "yes, during the last year": 4
        }

        # Q1 logic (skip if "never")
        ans1 = answers.get("Q1", "").strip().lower()
        skip_to_end = ans1 == "never"
        
        if skip_to_end:
            score += 0
            # Score Q9 and Q10 only
            for qkey in ["Q9", "Q10"]:
                ans = answers.get(qkey, "").strip().lower()
                for key in scale_0_2_4:
                    if key in ans:
                        score += scale_0_2_4[key]
                        break
            return score
        else:
            for key in scale_0_to_4:
                if key in ans1:
                    score += scale_0_to_4[key]
                    break

        # Continue with Q2–Q8
        for qkey in [f"Q{i}" for i in range(2, 9)]:
            ans = answers.get(qkey, "").strip().lower()
            for key in scale_0_to_4:
                if key in ans:
                    score += scale_0_to_4[key]
                    break

        # Score Q9, Q10
        for qkey in ["Q9", "Q10"]:
            ans = answers.get(qkey, "").strip().lower()
            for key in scale_0_2_4:
                if key in ans:
                    score += scale_0_2_4[key]
                    break

    elif condition == "Bipolar":
        for ans in answers.values():
            score += 1 if str(ans).strip().lower() in ["yes", "y", "true", "1"] else 0

    return score

def interpret_score(condition: str, score: int) -> str:
    """Interpret the score based on condition."""
    if condition == "PHQ-9":
        if score <= 4: return "Minimal depression"
        elif score <= 9: return "Mild depression"
        elif score <= 14: return "Moderate depression"
        elif score <= 19: return "Moderately severe depression"
        return "Severe depression"

    if condition == "GAD-7":
        if score <= 4: return "Minimal anxiety"
        elif score <= 9: return "Mild anxiety"
        elif score <= 14: return "Moderate anxiety"
        return "Severe anxiety"

    if condition == "DAST-10":
        if score == 0: return "No problems reported"
        elif score <= 2: return "Low level of problems"
        elif score <= 5: return "Moderate problems"
        elif score <= 8: return "Substantial problems"
        return "Severe problems"
    
    if condition == "AUDIT":
        if score <= 7: return "Lower risk, usually no action needed."
        elif score >= 8 and score <= 14: return "Hazardous or harmful alcohol use. Brief advice or counseling may be appropriate."
        elif score >= 15 and score <= 19: return "Harmful alcohol use. Brief counseling and continued monitoring recommended."
        elif score >= 20: return "Likely alcohol dependence. Referral for specialist assessment and treatment is recommended."
        else:
            return "Score out of typical AUDIT range."

    if condition == "Bipolar":
        if score >= 7: return "Likely signs of bipolar disorder"
        return "Unlikely bipolar symptoms"

    return "Score interpreted"

if __name__ == "__main__":
    import uvicorn
    import os
    
    # Production settings
    debug_mode = os.getenv('DEBUG', 'False').lower() == 'true'
    host = os.getenv('HOST', '0.0.0.0')
    port = int(os.getenv('FASTAPI_PORT', 8000))
    
    uvicorn.run(
        app, 
        host=host, 
        port=port,
        reload=debug_mode,
        log_level="info" if not debug_mode else "debug"
    )