ginipick's picture
Update app.py
a3c8137 verified
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import base64, os
from huggingface_hub import snapshot_download
import traceback
import warnings
import sys
# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*_supports_sdpa.*")
# Simple monkey patch for transformers - avoid recursion
def simple_patch_transformers():
"""Simple patch to fix _supports_sdpa issue"""
try:
import transformers.modeling_utils as modeling_utils
# Store original method
original_check = modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation
def patched_check(self, *args, **kwargs):
# Simply set the attribute if it doesn't exist
if not hasattr(self, '_supports_sdpa'):
object.__setattr__(self, '_supports_sdpa', False)
try:
return original_check(self, *args, **kwargs)
except AttributeError as e:
if '_supports_sdpa' in str(e):
# Return default attention implementation
return "eager"
raise
modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation = patched_check
print("Applied simple transformers patch")
except Exception as e:
print(f"Warning: Could not patch transformers: {e}")
# Apply the patch BEFORE importing utils
simple_patch_transformers()
# Now import the utils
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img
# Download repository
repo_id = "microsoft/OmniParser-v2.0"
local_dir = "weights"
if not os.path.exists(local_dir):
snapshot_download(repo_id=repo_id, local_dir=local_dir)
print(f"Repository downloaded to: {local_dir}")
else:
print(f"Weights already exist at: {local_dir}")
# Custom function to load caption model
def load_caption_model_safe(model_name="florence2", model_name_or_path="weights/icon_caption"):
"""Safely load caption model"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Method 1: Try original function
try:
return get_caption_model_processor(model_name, model_name_or_path)
except Exception as e:
print(f"Original loading failed: {e}, trying alternative...")
# Method 2: Load with specific configs
try:
from transformers import AutoProcessor, AutoModelForCausalLM
print(f"Loading caption model from {model_name_or_path}...")
processor = AutoProcessor.from_pretrained(
model_name_or_path,
trust_remote_code=True
)
# Load model with safer config
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True,
attn_implementation="eager", # Use eager attention
low_cpu_mem_usage=True
)
# Ensure attribute exists (using object.__setattr__ to avoid recursion)
if not hasattr(model, '_supports_sdpa'):
object.__setattr__(model, '_supports_sdpa', False)
if device.type == 'cuda':
model = model.to(device)
print("Model loaded successfully with alternative method")
return {'model': model, 'processor': processor}
except Exception as e:
print(f"Alternative loading also failed: {e}")
# Method 3: Manual loading as last resort
try:
print("Attempting manual model loading...")
# Import required modules
from transformers import AutoProcessor, AutoConfig
import importlib.util
# Load processor
processor = AutoProcessor.from_pretrained(
model_name_or_path,
trust_remote_code=True
)
# Load config
config = AutoConfig.from_pretrained(
model_name_or_path,
trust_remote_code=True
)
# Manually import and instantiate model
model_file = os.path.join(model_name_or_path, "modeling_florence2.py")
if os.path.exists(model_file):
spec = importlib.util.spec_from_file_location("modeling_florence2_custom", model_file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
# Get model class
if hasattr(module, 'Florence2ForConditionalGeneration'):
model_class = module.Florence2ForConditionalGeneration
# Create model instance
model = model_class(config)
# Set the attribute before loading weights
object.__setattr__(model, '_supports_sdpa', False)
# Load weights
weight_file = os.path.join(model_name_or_path, "model.safetensors")
if os.path.exists(weight_file):
from safetensors.torch import load_file
state_dict = load_file(weight_file)
model.load_state_dict(state_dict, strict=False)
if device.type == 'cuda':
model = model.to(device)
model = model.half() # Use half precision
print("Model loaded successfully with manual method")
return {'model': model, 'processor': processor}
except Exception as e:
print(f"Manual loading failed: {e}")
raise RuntimeError(f"Could not load model with any method: {e}")
# Load models
try:
print("Loading YOLO model...")
yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
print("YOLO model loaded successfully")
print("Loading caption model...")
caption_model_processor = load_caption_model_safe()
print("Caption model loaded successfully")
except Exception as e:
print(f"Critical error loading models: {e}")
print(traceback.format_exc())
caption_model_processor = None
yolo_model = None
# UI Configuration
MARKDOWN = """
# OmniParser V2 Pro🔥
<div style="background-color: #f0f8ff; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
<p style="margin: 0;">🎯 <strong>AI-powered screen understanding tool</strong> that detects UI elements and extracts text with high accuracy.</p>
<p style="margin: 5px 0 0 0;">📝 Supports both PaddleOCR and EasyOCR for flexible text extraction.</p>
</div>
"""
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {DEVICE}")
custom_css = """
body { background-color: #f0f2f5; }
.gradio-container { font-family: 'Segoe UI', sans-serif; max-width: 1400px; margin: auto; }
h1, h2, h3, h4 { color: #283E51; }
button { border-radius: 6px; transition: all 0.3s ease; }
button:hover { transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.15); }
.output-image { border: 2px solid #e1e4e8; border-radius: 8px; }
#input_image { border: 2px dashed #4a90e2; border-radius: 8px; }
#input_image:hover { border-color: #2c5aa0; }
"""
@spaces.GPU
@torch.inference_mode()
def process(
image_input,
box_threshold,
iou_threshold,
use_paddleocr,
imgsz
) -> tuple:
"""Process image with error handling"""
if image_input is None:
return None, "⚠️ Please upload an image for processing."
if caption_model_processor is None or yolo_model is None:
return None, "⚠️ Models not loaded properly. Please restart the application."
try:
print(f"Processing: box_threshold={box_threshold}, iou_threshold={iou_threshold}, "
f"use_paddleocr={use_paddleocr}, imgsz={imgsz}")
# Calculate overlay ratio
image_width = image_input.size[0]
box_overlay_ratio = max(0.5, min(2.0, image_width / 3200))
draw_bbox_config = {
'text_scale': 0.8 * box_overlay_ratio,
'text_thickness': max(int(2 * box_overlay_ratio), 1),
'text_padding': max(int(3 * box_overlay_ratio), 1),
'thickness': max(int(3 * box_overlay_ratio), 1),
}
# OCR processing
try:
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
image_input,
display_img=False,
output_bb_format='xyxy',
goal_filtering=None,
easyocr_args={'paragraph': False, 'text_threshold': 0.9},
use_paddleocr=use_paddleocr
)
if ocr_bbox_rslt is None:
text, ocr_bbox = [], []
else:
text, ocr_bbox = ocr_bbox_rslt
text = text if text is not None else []
ocr_bbox = ocr_bbox if ocr_bbox is not None else []
print(f"OCR found {len(text)} text regions")
except Exception as e:
print(f"OCR error: {e}")
text, ocr_bbox = [], []
# Object detection and captioning
try:
# Ensure model has _supports_sdpa attribute
if isinstance(caption_model_processor, dict) and 'model' in caption_model_processor:
model = caption_model_processor['model']
if not hasattr(model, '_supports_sdpa'):
object.__setattr__(model, '_supports_sdpa', False)
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
image_input,
yolo_model,
BOX_TRESHOLD=box_threshold,
output_coord_in_ratio=True,
ocr_bbox=ocr_bbox,
draw_bbox_config=draw_bbox_config,
caption_model_processor=caption_model_processor,
ocr_text=text,
iou_threshold=iou_threshold,
imgsz=imgsz
)
if dino_labled_img is None:
raise ValueError("Failed to generate labeled image")
except Exception as e:
print(f"Detection error: {e}")
return image_input, f"⚠️ Error during detection: {str(e)}"
# Decode image
try:
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
except Exception as e:
print(f"Image decode error: {e}")
return image_input, f"⚠️ Error decoding image: {str(e)}"
# Format results
if parsed_content_list and len(parsed_content_list) > 0:
parsed_text = "🎯 **Detected Elements:**\n\n"
for i, v in enumerate(parsed_content_list):
if v:
parsed_text += f"**Element {i}:** {v}\n"
else:
parsed_text = "ℹ️ No UI elements detected. Try adjusting the thresholds."
print(f'Processing complete. Found {len(parsed_content_list)} elements.')
return image, parsed_text
except Exception as e:
print(f"Processing error: {e}")
print(traceback.format_exc())
return None, f"⚠️ Error: {str(e)}"
# Build UI
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.Markdown(MARKDOWN)
if caption_model_processor is None or yolo_model is None:
gr.Markdown("### ⚠️ Warning: Models failed to load. Please check logs.")
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("📤 Upload & Settings", open=True):
image_input_component = gr.Image(
type='pil',
label='Upload Screenshot',
elem_id="input_image"
)
gr.Markdown("### 🎛️ Detection Settings")
box_threshold_component = gr.Slider(
label='Box Threshold',
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.05,
info="Lower = more detections"
)
iou_threshold_component = gr.Slider(
label='IOU Threshold',
minimum=0.01,
maximum=1.0,
step=0.01,
value=0.1,
info="Overlap filtering"
)
use_paddleocr_component = gr.Checkbox(
label='Use PaddleOCR',
value=True
)
imgsz_component = gr.Slider(
label='Image Size',
minimum=640,
maximum=1920,
step=32,
value=640
)
submit_button_component = gr.Button(
value='🚀 Process',
variant='primary'
)
with gr.Column(scale=2):
with gr.Tabs():
with gr.Tab("🖼️ Result"):
image_output_component = gr.Image(
type='pil',
label='Annotated Image'
)
with gr.Tab("📝 Elements"):
text_output_component = gr.Markdown(
value="*Results will appear here...*"
)
submit_button_component.click(
fn=process,
inputs=[
image_input_component,
box_threshold_component,
iou_threshold_component,
use_paddleocr_component,
imgsz_component
],
outputs=[image_output_component, text_output_component],
show_progress=True
)
# Launch
if __name__ == "__main__":
try:
demo.queue(max_size=10)
demo.launch(
share=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860
)
except Exception as e:
print(f"Launch failed: {e}")