Spaces:
Running
on
Zero
Running
on
Zero
import torch, copy | |
from models.utils import init_weights_on_device | |
def cast_to(weight, dtype, device): | |
r = torch.empty_like(weight, dtype=dtype, device=device) | |
r.copy_(weight) | |
return r | |
class AutoTorchModule(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def check_free_vram(self): | |
gpu_mem_state = torch.cuda.mem_get_info(self.computation_device) | |
used_memory = (gpu_mem_state[1] - gpu_mem_state[0]) / (1024**3) | |
return used_memory < self.vram_limit | |
def offload(self): | |
if self.state != 0: | |
self.to(dtype=self.offload_dtype, device=self.offload_device) | |
self.state = 0 | |
def onload(self): | |
if self.state != 1: | |
self.to(dtype=self.onload_dtype, device=self.onload_device) | |
self.state = 1 | |
def keep(self): | |
if self.state != 2: | |
self.to(dtype=self.computation_dtype, device=self.computation_device) | |
self.state = 2 | |
class AutoWrappedModule(AutoTorchModule): | |
def __init__( | |
self, | |
module: torch.nn.Module, | |
offload_dtype, | |
offload_device, | |
onload_dtype, | |
onload_device, | |
computation_dtype, | |
computation_device, | |
vram_limit, | |
**kwargs, | |
): | |
super().__init__() | |
self.module = module.to(dtype=offload_dtype, device=offload_device) | |
self.offload_dtype = offload_dtype | |
self.offload_device = offload_device | |
self.onload_dtype = onload_dtype | |
self.onload_device = onload_device | |
self.computation_dtype = computation_dtype | |
self.computation_device = computation_device | |
self.vram_limit = vram_limit | |
self.state = 0 | |
def forward(self, *args, **kwargs): | |
if self.state == 2: | |
module = self.module | |
else: | |
if ( | |
self.onload_dtype == self.computation_dtype | |
and self.onload_device == self.computation_device | |
): | |
module = self.module | |
elif self.vram_limit is not None and self.check_free_vram(): | |
self.keep() | |
module = self.module | |
else: | |
module = copy.deepcopy(self.module).to( | |
dtype=self.computation_dtype, device=self.computation_device | |
) | |
return module(*args, **kwargs) | |
class WanAutoCastLayerNorm(torch.nn.LayerNorm, AutoTorchModule): | |
def __init__( | |
self, | |
module: torch.nn.LayerNorm, | |
offload_dtype, | |
offload_device, | |
onload_dtype, | |
onload_device, | |
computation_dtype, | |
computation_device, | |
vram_limit, | |
**kwargs, | |
): | |
with init_weights_on_device(device=torch.device("meta")): | |
super().__init__( | |
module.normalized_shape, | |
eps=module.eps, | |
elementwise_affine=module.elementwise_affine, | |
bias=module.bias is not None, | |
dtype=offload_dtype, | |
device=offload_device, | |
) | |
self.weight = module.weight | |
self.bias = module.bias | |
self.offload_dtype = offload_dtype | |
self.offload_device = offload_device | |
self.onload_dtype = onload_dtype | |
self.onload_device = onload_device | |
self.computation_dtype = computation_dtype | |
self.computation_device = computation_device | |
self.vram_limit = vram_limit | |
self.state = 0 | |
def forward(self, x, *args, **kwargs): | |
if self.state == 2: | |
weight, bias = self.weight, self.bias | |
else: | |
if ( | |
self.onload_dtype == self.computation_dtype | |
and self.onload_device == self.computation_device | |
): | |
weight, bias = self.weight, self.bias | |
elif self.vram_limit is not None and self.check_free_vram(): | |
self.keep() | |
weight, bias = self.weight, self.bias | |
else: | |
weight = ( | |
None | |
if self.weight is None | |
else cast_to( | |
self.weight, self.computation_dtype, self.computation_device | |
) | |
) | |
bias = ( | |
None | |
if self.bias is None | |
else cast_to( | |
self.bias, self.computation_dtype, self.computation_device | |
) | |
) | |
with torch.amp.autocast(device_type=x.device.type): | |
x = torch.nn.functional.layer_norm( | |
x.float(), self.normalized_shape, weight, bias, self.eps | |
).type_as(x) | |
return x | |
class AutoWrappedLinear(torch.nn.Linear, AutoTorchModule): | |
def __init__( | |
self, | |
module: torch.nn.Linear, | |
offload_dtype, | |
offload_device, | |
onload_dtype, | |
onload_device, | |
computation_dtype, | |
computation_device, | |
vram_limit, | |
name="", | |
**kwargs, | |
): | |
with init_weights_on_device(device=torch.device("meta")): | |
super().__init__( | |
in_features=module.in_features, | |
out_features=module.out_features, | |
bias=module.bias is not None, | |
dtype=offload_dtype, | |
device=offload_device, | |
) | |
self.weight = module.weight | |
self.bias = module.bias | |
self.offload_dtype = offload_dtype | |
self.offload_device = offload_device | |
self.onload_dtype = onload_dtype | |
self.onload_device = onload_device | |
self.computation_dtype = computation_dtype | |
self.computation_device = computation_device | |
self.vram_limit = vram_limit | |
self.state = 0 | |
self.name = name | |
self.lora_A_weights = [] | |
self.lora_B_weights = [] | |
self.lora_merger = None | |
def forward(self, x, *args, **kwargs): | |
if self.state == 2: | |
weight, bias = self.weight, self.bias | |
else: | |
if ( | |
self.onload_dtype == self.computation_dtype | |
and self.onload_device == self.computation_device | |
): | |
weight, bias = self.weight, self.bias | |
elif self.vram_limit is not None and self.check_free_vram(): | |
self.keep() | |
weight, bias = self.weight, self.bias | |
else: | |
weight = cast_to( | |
self.weight, self.computation_dtype, self.computation_device | |
) | |
bias = ( | |
None | |
if self.bias is None | |
else cast_to( | |
self.bias, self.computation_dtype, self.computation_device | |
) | |
) | |
out = torch.nn.functional.linear(x, weight, bias) | |
if len(self.lora_A_weights) == 0: | |
# No LoRA | |
return out | |
elif self.lora_merger is None: | |
# Native LoRA inference | |
for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights): | |
out = out + x @ lora_A.T @ lora_B.T | |
else: | |
# LoRA fusion | |
lora_output = [] | |
for lora_A, lora_B in zip(self.lora_A_weights, self.lora_B_weights): | |
lora_output.append(x @ lora_A.T @ lora_B.T) | |
lora_output = torch.stack(lora_output) | |
out = self.lora_merger(out, lora_output) | |
return out | |
def enable_vram_management_recursively( | |
model: torch.nn.Module, | |
module_map: dict, | |
module_config: dict, | |
max_num_param=None, | |
overflow_module_config: dict = None, | |
total_num_param=0, | |
vram_limit=None, | |
name_prefix="", | |
): | |
for name, module in model.named_children(): | |
layer_name = name if name_prefix == "" else name_prefix + "." + name | |
for source_module, target_module in module_map.items(): | |
if isinstance(module, source_module): | |
num_param = sum(p.numel() for p in module.parameters()) | |
if ( | |
max_num_param is not None | |
and total_num_param + num_param > max_num_param | |
): | |
module_config_ = overflow_module_config | |
else: | |
module_config_ = module_config | |
module_ = target_module( | |
module, **module_config_, vram_limit=vram_limit, name=layer_name | |
) | |
setattr(model, name, module_) | |
total_num_param += num_param | |
break | |
else: | |
total_num_param = enable_vram_management_recursively( | |
module, | |
module_map, | |
module_config, | |
max_num_param, | |
overflow_module_config, | |
total_num_param, | |
vram_limit=vram_limit, | |
name_prefix=layer_name, | |
) | |
return total_num_param | |
def enable_vram_management( | |
model: torch.nn.Module, | |
module_map: dict, | |
module_config: dict, | |
max_num_param=None, | |
overflow_module_config: dict = None, | |
vram_limit=None, | |
): | |
enable_vram_management_recursively( | |
model, | |
module_map, | |
module_config, | |
max_num_param, | |
overflow_module_config, | |
total_num_param=0, | |
vram_limit=vram_limit, | |
) | |
model.vram_management_enabled = True | |