doinglean commited on
Commit
d2e2940
·
verified ·
1 Parent(s): 6c0ab8e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -7
app.py CHANGED
@@ -7,29 +7,35 @@ import torch
7
  model_path = hf_hub_download(repo_id="foduucom/stockmarket-pattern-detection-yolov8", filename="model.pt")
8
  model = YOLO(model_path)
9
 
10
- def analyze_image(image):
11
- # Führe Objekterkennung durch
 
12
  results = model.predict(source=image, save=False)
13
- # Extrahiere Ergebnisse
14
  detections = []
15
  for result in results:
16
  for box in result.boxes:
17
  label = result.names[int(box.cls)]
18
  confidence = float(box.conf)
 
 
19
  detections.append({
20
  "pattern": label,
21
  "confidence": confidence,
22
- "color": "green" if "Bullish" in label else "red"
 
23
  })
24
  return detections
25
 
26
- # Erstelle Gradio-Schnittstelle
27
  iface = gr.Interface(
28
  fn=analyze_image,
29
- inputs=gr.Image(type="pil"),
 
 
 
30
  outputs="json",
31
  title="Candlestick Pattern Detection",
32
- description="Upload a TradingView screenshot to detect candlestick patterns and colors."
33
  )
34
 
35
  # Starte die App
 
7
  model_path = hf_hub_download(repo_id="foduucom/stockmarket-pattern-detection-yolov8", filename="model.pt")
8
  model = YOLO(model_path)
9
 
10
+ def analyze_image(image, prompt):
11
+ # Verwende den Prompt (falls nötig, hier als Kontext für die Verarbeitung)
12
+ # YOLOv8 ignoriert den Prompt direkt, daher speichern wir ihn für die Logik
13
  results = model.predict(source=image, save=False)
 
14
  detections = []
15
  for result in results:
16
  for box in result.boxes:
17
  label = result.names[int(box.cls)]
18
  confidence = float(box.conf)
19
+ # Farben basierend auf Label oder Prompt (z. B. "bullish" für grün)
20
+ color = "green" if "bullish" in prompt.lower() or "Bullish" in label else "red"
21
  detections.append({
22
  "pattern": label,
23
  "confidence": confidence,
24
+ "color": color,
25
+ "prompt_used": prompt # Rückgabe des Prompts zur Überprüfung
26
  })
27
  return detections
28
 
29
+ # Erstelle Gradio-Schnittstelle mit Bild- und Text-Eingabe
30
  iface = gr.Interface(
31
  fn=analyze_image,
32
+ inputs=[
33
+ gr.Image(type="pil", label="Upload TradingView Screenshot"),
34
+ gr.Textbox(label="Prompt", placeholder="Enter your prompt, e.g., 'Detect candlestick patterns and colors'")
35
+ ],
36
  outputs="json",
37
  title="Candlestick Pattern Detection",
38
+ description="Upload a TradingView screenshot and provide a prompt to detect candlestick patterns and colors."
39
  )
40
 
41
  # Starte die App