Spaces:
Sleeping
Sleeping
chibuikeeugene
commited on
Commit
·
c056e7c
1
Parent(s):
2512471
completed the agent workflow
Browse files- .gitignore +4 -1
- agent.py +11 -1
- app.py +31 -16
- requirements.txt +4 -2
- tools.py +47 -2
.gitignore
CHANGED
@@ -1 +1,4 @@
|
|
1 |
-
*.env
|
|
|
|
|
|
|
|
1 |
+
*.env
|
2 |
+
/gaia_env
|
3 |
+
*.bin
|
4 |
+
*.pyc
|
agent.py
CHANGED
@@ -1 +1,11 @@
|
|
1 |
-
# use a multimodal llm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# use a multimodal llm
|
2 |
+
from llama_index.core.agent.workflow import AgentWorkflow
|
3 |
+
|
4 |
+
|
5 |
+
def basic_agent(tool, llm_model):
|
6 |
+
"""a basic agent with the ability to take decisions, act by calling the right tools and provide answer to the input prompt query string"""
|
7 |
+
agent = AgentWorkflow.from_tools_or_functions(
|
8 |
+
tools_or_functions=tool,
|
9 |
+
llm=llm_model
|
10 |
+
)
|
11 |
+
return agent
|
app.py
CHANGED
@@ -1,23 +1,37 @@
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# --- Basic Agent Definition ---
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
-
class BasicAgent:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
23 |
"""
|
@@ -39,11 +53,12 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
-
try:
|
43 |
-
|
44 |
-
except Exception as e:
|
45 |
-
|
46 |
-
|
|
|
47 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
@@ -80,7 +95,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
80 |
print(f"Skipping item with missing task_id or question: {item}")
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
|
|
1 |
+
from json import tool
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import inspect
|
6 |
import pandas as pd
|
7 |
+
from agent import basic_agent
|
8 |
+
from tools import search_tool, image_tool, video_tool
|
9 |
+
from llama_index.llms.ollama import Ollama
|
10 |
+
from llama_index.core.workflow import Context
|
11 |
+
|
12 |
+
|
13 |
|
14 |
# (Keep Constants as is)
|
15 |
# --- Constants ---
|
16 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
17 |
|
18 |
+
# # --- Basic Agent Definition ---
|
19 |
+
# # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
20 |
+
# class BasicAgent:
|
21 |
+
# def __init__(self):
|
22 |
+
# print("BasicAgent initialized.")
|
23 |
+
# def __call__(self, question: str) -> str:
|
24 |
+
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
25 |
+
# fixed_answer = "This is a default answer."
|
26 |
+
# print(f"Agent returning fixed answer: {fixed_answer}")
|
27 |
+
# return fixed_answer
|
28 |
+
tools = [search_tool, image_tool, video_tool]
|
29 |
+
|
30 |
+
llm = Ollama(model="llama3.1", request_timeout=120.0)
|
31 |
+
|
32 |
+
agent = basic_agent(tool=tools, llm_model=llm)
|
33 |
+
|
34 |
+
ctx = Context(agent)
|
35 |
|
36 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
37 |
"""
|
|
|
53 |
submit_url = f"{api_url}/submit"
|
54 |
|
55 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
56 |
+
# try:
|
57 |
+
# agent = BasicAgent()
|
58 |
+
# except Exception as e:
|
59 |
+
# print(f"Error instantiating agent: {e}")
|
60 |
+
# return f"Error initializing agent: {e}", None
|
61 |
+
|
62 |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
63 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
64 |
print(agent_code)
|
|
|
95 |
print(f"Skipping item with missing task_id or question: {item}")
|
96 |
continue
|
97 |
try:
|
98 |
+
submitted_answer = agent.run(question_text, ctx=ctx)
|
99 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
100 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
101 |
except Exception as e:
|
requirements.txt
CHANGED
@@ -1,7 +1,9 @@
|
|
1 |
-
gradio
|
2 |
requests
|
3 |
llama-index-tools-brave-search
|
4 |
huggingface_hub
|
5 |
python-dotenv
|
6 |
llama-index
|
7 |
-
llama-index-llms-ollama
|
|
|
|
|
|
1 |
+
# gradio
|
2 |
requests
|
3 |
llama-index-tools-brave-search
|
4 |
huggingface_hub
|
5 |
python-dotenv
|
6 |
llama-index
|
7 |
+
llama-index-llms-ollama
|
8 |
+
llama-index-multi-modal-llms-ollama
|
9 |
+
opencv-python
|
tools.py
CHANGED
@@ -1,8 +1,53 @@
|
|
1 |
# Define tools such as: Web search tool, image processing tool, language translation tool, video processing tool
|
2 |
from llama_index.tools.brave_search import BraveSearchToolSpec
|
3 |
from llama_index.core.tools import FunctionTool
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
5 |
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Define tools such as: Web search tool, image processing tool, language translation tool, video processing tool
|
2 |
from llama_index.tools.brave_search import BraveSearchToolSpec
|
3 |
from llama_index.core.tools import FunctionTool
|
4 |
+
import os
|
5 |
+
from llama_index.multi_modal_llms.ollama import OllamaMultiModal
|
6 |
+
from llama_index.core.schema import ImageNode
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
from dotenv import load_dotenv
|
10 |
|
11 |
+
load_dotenv()
|
12 |
|
13 |
+
brave_api_key = os.getenv('BRAVE_API_KEY', 'No key')
|
14 |
|
15 |
+
mm_model = OllamaMultiModal(
|
16 |
+
model='llava',
|
17 |
+
temperature=0.7,
|
18 |
+
)
|
19 |
+
|
20 |
+
search_tool_spec = BraveSearchToolSpec(api_key=brave_api_key)
|
21 |
+
|
22 |
+
search_tool = search_tool_spec.to_tool_list()[0]
|
23 |
+
|
24 |
+
# creating an image handling tool
|
25 |
+
def image_handling_tool(input_data:str) -> str:
|
26 |
+
"""this tool takes an image file processes it based on the user or system prompt and generates a response in a string format"""
|
27 |
+
image = ImageNode(image_url = input_data)
|
28 |
+
|
29 |
+
result = mm_model.complete(
|
30 |
+
prompt='Use the context prompt generated by the agent\'s reasoning to answer the question asked on the image',
|
31 |
+
image_documents=[image]
|
32 |
+
)
|
33 |
+
return str(result)
|
34 |
+
|
35 |
+
|
36 |
+
# creating a video handling tool
|
37 |
+
def video_handling_tool(input:str):
|
38 |
+
"""this tool takes a video url link, processes it based on the agent's prompt and or context and generates a response in astring format"""
|
39 |
+
# Load video
|
40 |
+
cap = cv2.VideoCapture(input)
|
41 |
+
|
42 |
+
# Read a frame at 5-second mark
|
43 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, 5000)
|
44 |
+
success, frame = cap.read()
|
45 |
+
|
46 |
+
if success:
|
47 |
+
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
48 |
+
prompt = "What is happening in this frame of the video?"
|
49 |
+
response = mm_model.complete(prompt=prompt, image=image)
|
50 |
+
return str(response)
|
51 |
+
|
52 |
+
image_tool = FunctionTool.from_defaults(fn=image_handling_tool)
|
53 |
+
video_tool = FunctionTool.from_defaults(fn=video_handling_tool)
|