cavargas10's picture
Update app.py
7b6d995 verified
import gradio as gr
import spaces
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_MULTIIMG - %(levelname)s - %(message)s')
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"START SESSION: Creando directorio para la sesi贸n {session_hash} en {user_dir}")
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
session_hash = str(req.session_hash)
user_dir = os.path.join(TMP_DIR, session_hash)
logging.info(f"END SESSION: Intentando eliminar el directorio de la sesi贸n {session_hash} en {user_dir}")
if os.path.exists(user_dir):
try:
shutil.rmtree(user_dir)
logging.info(f"Directorio de la sesi贸n {session_hash} eliminado correctamente.")
except Exception as e:
logging.error(f"Error al eliminar el directorio de la sesi贸n {session_hash}: {e}")
else:
logging.warning(f"El directorio de la sesi贸n {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.")
def preprocess_images(images: List[Tuple[Image.Image, str]], req: gr.Request) -> List[Image.Image]:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Preprocesando {len(images)} im谩genes.")
images = [image[0] for image in images]
processed_images = [pipeline.preprocess_image(image) for image in images]
logging.info(f"[{session_hash}] Preprocesamiento completado.")
return processed_images
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed
logging.info(f"Usando seed: {new_seed}")
return new_seed
@spaces.GPU
def image_to_3d(
multiimages: List[Tuple[Image.Image, str]],
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
multiimage_algo: Literal["multidiffusion", "stochastic"],
req: gr.Request,
) -> Tuple[dict, str]:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Iniciando image_to_3d con {len(multiimages)} im谩genes.")
user_dir = os.path.join(TMP_DIR, session_hash)
outputs = pipeline.run_multi_image(
[image[0] for image in multiimages],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode=multiimage_algo,
)
logging.info(f"[{session_hash}] Generaci贸n del modelo completada. Renderizando video...")
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = video
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}")
return state, video_path
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
session_hash = str(req.session_hash)
logging.info(f"[{session_hash}] Iniciando extract_glb...")
user_dir = os.path.join(TMP_DIR, session_hash)
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
logging.info(f"[{session_hash}] GLB extra铆do. Devolviendo: {glb_path}")
return glb_path, glb_path
with gr.Blocks(delete_cache=(600, 600)) as demo:
gr.Markdown("""
# UTPL - Conversi贸n de Multiples Im谩genes a objetos 3D usando IA
### Tesis: *"Objetos tridimensionales creados por IA: Innovaci贸n en entornos virtuales"*
**Autor:** Carlos Vargas
**Base t茅cnica:** Adaptaci贸n de [TRELLIS](https://trellis3d.github.io/) (herramienta de c贸digo abierto para generaci贸n 3D)
**Prop贸sito educativo:** Demostraciones acad茅micas e Investigaci贸n en modelado 3D autom谩tico
""")
with gr.Row():
with gr.Column():
with gr.Tabs() as input_tabs:
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
generate_btn = gr.Button("Generate")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = gr.Model3D(label="Extracted GLB", height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
output_buf = gr.State()
demo.load(start_session, inputs=None, outputs=None, api_name="start_session")
demo.unload(end_session)
multiimage_prompt.upload(
preprocess_images,
inputs=[multiimage_prompt],
outputs=[multiimage_prompt],
api_name="preprocess_images"
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
api_name="get_seed"
).then(
image_to_3d,
inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
outputs=[output_buf, video_output],
api_name="image_to_3d"
).then(
lambda: gr.Button(interactive=True),
outputs=[extract_glb_btn],
)
video_output.clear(
lambda: gr.Button(interactive=False),
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
api_name="extract_glb"
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
# Lanzar la aplicaci贸n Gradio
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Precargar rembg
except:
pass
demo.launch(show_error=True)