Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,36 @@
|
|
1 |
-
import gradio as gr #
|
2 |
-
import torch #
|
3 |
-
from transformers import BertTokenizer, BertForSequenceClassification #
|
4 |
-
import zipfile #
|
5 |
-
import os #
|
6 |
|
7 |
-
# check if model folder is already extracted
|
8 |
if not os.path.exists("fine_tuned_model"):
|
9 |
-
# if not, unzip it
|
10 |
with zipfile.ZipFile("fine_tuned_model.zip", 'r') as zip_ref:
|
11 |
zip_ref.extractall("fine_tuned_model")
|
12 |
|
13 |
-
#
|
14 |
model_path = "./fine_tuned_model"
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
tokenizer = BertTokenizer.from_pretrained(model_path) # tokenizer breaks text into model-friendly tokens
|
18 |
-
model = BertForSequenceClassification.from_pretrained(model_path) # load the actual fine-tuned BERT model
|
19 |
-
model.eval() # set it to eval mode so it doesn’t try to learn during predictions
|
20 |
-
|
21 |
-
# define labels just for reference (not used directly in decision now)
|
22 |
-
label_map = {
|
23 |
-
0: "Unbiased",
|
24 |
-
1: "Biased"
|
25 |
-
}
|
26 |
-
|
27 |
-
# the main function that runs when user submits text
|
28 |
def detect_bias(text):
|
29 |
-
# convert user input into tensors using the tokenizer
|
30 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
31 |
|
32 |
-
# disable gradient tracking — we’re only doing prediction, not training
|
33 |
with torch.no_grad():
|
34 |
-
outputs = model(**inputs)
|
35 |
-
logits = outputs.logits
|
36 |
-
probs = torch.softmax(logits, dim=1).squeeze()
|
37 |
-
pred_label = torch.argmax(probs).item()
|
38 |
-
confidence = round(probs[pred_label].item(), 2)
|
|
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
if pred_label == 1: #
|
42 |
if confidence > 0.75:
|
43 |
final_label = "Biased"
|
44 |
explanation = (
|
@@ -55,7 +47,7 @@ def detect_bias(text):
|
|
55 |
"😐 The model predicted 'biased' but with low confidence. The result may not be reliable."
|
56 |
)
|
57 |
|
58 |
-
elif pred_label == 0: #
|
59 |
if confidence > 0.75:
|
60 |
final_label = "Unbiased"
|
61 |
explanation = (
|
@@ -72,37 +64,35 @@ def detect_bias(text):
|
|
72 |
"😐 The model predicted 'unbiased' but with low confidence. The result is unclear."
|
73 |
)
|
74 |
|
75 |
-
# send the results back to the UI
|
76 |
return {
|
77 |
"Bias Classification": final_label,
|
78 |
"Confidence Score": confidence,
|
79 |
"Explanation": explanation
|
80 |
}
|
81 |
|
82 |
-
# build the Gradio
|
83 |
with gr.Blocks() as demo:
|
84 |
-
# title and description at the top
|
85 |
gr.Markdown("## Bias Bin – Fine-Tuned BERT Version by Aryan, Gowtham & Manoj")
|
86 |
-
gr.Markdown("
|
87 |
|
88 |
-
#
|
89 |
text_input = gr.Textbox(
|
90 |
label="Enter Narrative Text",
|
91 |
lines=4,
|
92 |
placeholder="E.g., 'The woman stayed at home while the man went to work.'"
|
93 |
)
|
94 |
|
95 |
-
# button to
|
96 |
submit_btn = gr.Button("Detect Bias")
|
97 |
|
98 |
-
#
|
99 |
output = gr.JSON(label="Prediction Output")
|
100 |
|
101 |
-
#
|
102 |
submit_btn.click(fn=detect_bias, inputs=text_input, outputs=output)
|
103 |
|
104 |
-
#
|
105 |
-
gr.Markdown("⚠️ **Disclaimer:** This model is trained on a small,
|
106 |
|
107 |
-
#
|
108 |
demo.launch()
|
|
|
1 |
+
import gradio as gr # used to build the web interface
|
2 |
+
import torch # used to run the model and handle predictions
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification # to load our trained model and tokenizer
|
4 |
+
import zipfile # for extracting the uploaded model
|
5 |
+
import os # to check if folder already exists
|
6 |
|
7 |
+
# check if the fine-tuned model folder is already extracted
|
8 |
if not os.path.exists("fine_tuned_model"):
|
|
|
9 |
with zipfile.ZipFile("fine_tuned_model.zip", 'r') as zip_ref:
|
10 |
zip_ref.extractall("fine_tuned_model")
|
11 |
|
12 |
+
# load tokenizer and model
|
13 |
model_path = "./fine_tuned_model"
|
14 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
15 |
+
model = BertForSequenceClassification.from_pretrained(model_path)
|
16 |
+
model.eval() # set model to evaluation mode (important for inference)
|
17 |
|
18 |
+
# this function will be triggered when user submits a sentence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def detect_bias(text):
|
|
|
20 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
21 |
|
|
|
22 |
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
+
logits = outputs.logits
|
25 |
+
probs = torch.softmax(logits, dim=1).squeeze()
|
26 |
+
pred_label = torch.argmax(probs).item()
|
27 |
+
confidence = round(probs[pred_label].item(), 2)
|
28 |
+
|
29 |
+
# flip label logic because model predictions seem inverted
|
30 |
+
pred_label = 1 - pred_label # flip 0<->1
|
31 |
|
32 |
+
# prediction and explanation logic based on flipped label and confidence
|
33 |
+
if pred_label == 1: # now 1 = biased
|
34 |
if confidence > 0.75:
|
35 |
final_label = "Biased"
|
36 |
explanation = (
|
|
|
47 |
"😐 The model predicted 'biased' but with low confidence. The result may not be reliable."
|
48 |
)
|
49 |
|
50 |
+
elif pred_label == 0: # now 0 = unbiased
|
51 |
if confidence > 0.75:
|
52 |
final_label = "Unbiased"
|
53 |
explanation = (
|
|
|
64 |
"😐 The model predicted 'unbiased' but with low confidence. The result is unclear."
|
65 |
)
|
66 |
|
|
|
67 |
return {
|
68 |
"Bias Classification": final_label,
|
69 |
"Confidence Score": confidence,
|
70 |
"Explanation": explanation
|
71 |
}
|
72 |
|
73 |
+
# build the Gradio UI
|
74 |
with gr.Blocks() as demo:
|
|
|
75 |
gr.Markdown("## Bias Bin – Fine-Tuned BERT Version by Aryan, Gowtham & Manoj")
|
76 |
+
gr.Markdown("Detect gender bias in text using a BERT model fine-tuned with counterfactual data.")
|
77 |
|
78 |
+
# input box for users
|
79 |
text_input = gr.Textbox(
|
80 |
label="Enter Narrative Text",
|
81 |
lines=4,
|
82 |
placeholder="E.g., 'The woman stayed at home while the man went to work.'"
|
83 |
)
|
84 |
|
85 |
+
# button to submit
|
86 |
submit_btn = gr.Button("Detect Bias")
|
87 |
|
88 |
+
# output area
|
89 |
output = gr.JSON(label="Prediction Output")
|
90 |
|
91 |
+
# connect button to function
|
92 |
submit_btn.click(fn=detect_bias, inputs=text_input, outputs=output)
|
93 |
|
94 |
+
# disclaimer at the bottom
|
95 |
+
gr.Markdown("⚠️ **Disclaimer:** This model is trained on a small, synthetic dataset and may not always be accurate. Results should be interpreted cautiously and reviewed by a human.")
|
96 |
|
97 |
+
# run the app
|
98 |
demo.launch()
|