Upload 6 files
Browse files- Dockerfile +10 -0
- agent_memory.py +181 -0
- agent_reasoning.py +223 -0
- agent_tasks.py +244 -0
- app.py +742 -0
- requirements.txt +12 -0
Dockerfile
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
COPY requirements.txt .
|
6 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
7 |
+
|
8 |
+
COPY . .
|
9 |
+
|
10 |
+
CMD ["python", "app.py"]
|
agent_memory.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from typing import Dict, List, Any, Optional, Union
|
3 |
+
|
4 |
+
class MemoryManager:
|
5 |
+
"""Memory management for the autonomous AI agent
|
6 |
+
|
7 |
+
This module provides capabilities for:
|
8 |
+
1. Storing and retrieving conversation history
|
9 |
+
2. Managing context windows
|
10 |
+
3. Implementing forgetting mechanisms
|
11 |
+
4. Prioritizing important information
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, max_history_length: int = 20):
|
15 |
+
"""Initialize the memory manager
|
16 |
+
|
17 |
+
Args:
|
18 |
+
max_history_length: Maximum number of conversation turns to store
|
19 |
+
"""
|
20 |
+
self.conversation_history = []
|
21 |
+
self.max_history_length = max_history_length
|
22 |
+
self.important_facts = []
|
23 |
+
self.max_facts = 50
|
24 |
+
self.session_data = {}
|
25 |
+
|
26 |
+
def add_message(self, role: str, content: str) -> None:
|
27 |
+
"""Add a message to the conversation history
|
28 |
+
|
29 |
+
Args:
|
30 |
+
role: The role of the message sender (user or assistant)
|
31 |
+
content: The content of the message
|
32 |
+
"""
|
33 |
+
self.conversation_history.append({
|
34 |
+
"role": role,
|
35 |
+
"content": content,
|
36 |
+
"timestamp": time.time()
|
37 |
+
})
|
38 |
+
|
39 |
+
# Trim history if it gets too long
|
40 |
+
if len(self.conversation_history) > self.max_history_length * 2:
|
41 |
+
self.conversation_history = self.conversation_history[-self.max_history_length*2:]
|
42 |
+
|
43 |
+
def get_conversation_history(self, max_turns: Optional[int] = None) -> List[Dict[str, Any]]:
|
44 |
+
"""Get the conversation history
|
45 |
+
|
46 |
+
Args:
|
47 |
+
max_turns: Maximum number of turns to retrieve (None for all)
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
List of conversation messages
|
51 |
+
"""
|
52 |
+
if max_turns is None:
|
53 |
+
return self.conversation_history
|
54 |
+
else:
|
55 |
+
# Calculate the number of messages (2 messages per turn)
|
56 |
+
max_messages = max_turns * 2
|
57 |
+
return self.conversation_history[-max_messages:]
|
58 |
+
|
59 |
+
def format_conversation_for_prompt(self, max_turns: Optional[int] = None) -> str:
|
60 |
+
"""Format the conversation history for inclusion in a prompt
|
61 |
+
|
62 |
+
Args:
|
63 |
+
max_turns: Maximum number of turns to include
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
Formatted conversation string
|
67 |
+
"""
|
68 |
+
history = self.get_conversation_history(max_turns)
|
69 |
+
formatted = ""
|
70 |
+
|
71 |
+
for msg in history:
|
72 |
+
formatted += f"{msg['role']}: {msg['content']}\n"
|
73 |
+
|
74 |
+
return formatted
|
75 |
+
|
76 |
+
def add_important_fact(self, fact: str, source: str) -> None:
|
77 |
+
"""Add an important fact to memory
|
78 |
+
|
79 |
+
Args:
|
80 |
+
fact: The important fact to remember
|
81 |
+
source: The source of the fact (e.g., user, inference)
|
82 |
+
"""
|
83 |
+
self.important_facts.append({
|
84 |
+
"fact": fact,
|
85 |
+
"source": source,
|
86 |
+
"timestamp": time.time()
|
87 |
+
})
|
88 |
+
|
89 |
+
# Trim facts if they get too numerous
|
90 |
+
if len(self.important_facts) > self.max_facts:
|
91 |
+
self.important_facts = self.important_facts[-self.max_facts:]
|
92 |
+
|
93 |
+
def get_important_facts(self) -> List[Dict[str, Any]]:
|
94 |
+
"""Get the list of important facts
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
List of important facts
|
98 |
+
"""
|
99 |
+
return self.important_facts
|
100 |
+
|
101 |
+
def format_facts_for_prompt(self) -> str:
|
102 |
+
"""Format important facts for inclusion in a prompt
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
Formatted facts string
|
106 |
+
"""
|
107 |
+
if not self.important_facts:
|
108 |
+
return ""
|
109 |
+
|
110 |
+
formatted = "Important information I know about the user and context:\n"
|
111 |
+
|
112 |
+
# Sort facts by timestamp (newest first)
|
113 |
+
sorted_facts = sorted(self.important_facts, key=lambda x: x.get('timestamp', 0), reverse=True)
|
114 |
+
|
115 |
+
# Group facts by source
|
116 |
+
user_facts = [fact for fact in sorted_facts if fact.get('source') == 'user']
|
117 |
+
inference_facts = [fact for fact in sorted_facts if fact.get('source') == 'inference']
|
118 |
+
|
119 |
+
# Add user facts first (they're more reliable)
|
120 |
+
for i, fact in enumerate(user_facts):
|
121 |
+
formatted += f"{i+1}. {fact['fact']} (from user)\n"
|
122 |
+
|
123 |
+
# Then add inference facts
|
124 |
+
start_idx = len(user_facts) + 1
|
125 |
+
for i, fact in enumerate(inference_facts):
|
126 |
+
formatted += f"{start_idx + i}. {fact['fact']} (inferred)\n"
|
127 |
+
|
128 |
+
return formatted
|
129 |
+
|
130 |
+
def store_session_data(self, key: str, value: Any) -> None:
|
131 |
+
"""Store data for the current session
|
132 |
+
|
133 |
+
Args:
|
134 |
+
key: The key to store the data under
|
135 |
+
value: The data to store
|
136 |
+
"""
|
137 |
+
self.session_data[key] = {
|
138 |
+
"value": value,
|
139 |
+
"timestamp": time.time()
|
140 |
+
}
|
141 |
+
|
142 |
+
def get_session_data(self, key: str) -> Optional[Any]:
|
143 |
+
"""Retrieve data from the current session
|
144 |
+
|
145 |
+
Args:
|
146 |
+
key: The key to retrieve data for
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
The stored data, or None if not found
|
150 |
+
"""
|
151 |
+
if key in self.session_data:
|
152 |
+
return self.session_data[key]["value"]
|
153 |
+
else:
|
154 |
+
return None
|
155 |
+
|
156 |
+
def clear_conversation_history(self) -> None:
|
157 |
+
"""Clear the conversation history"""
|
158 |
+
self.conversation_history = []
|
159 |
+
|
160 |
+
def clear_all_memory(self) -> None:
|
161 |
+
"""Clear all memory (conversation history, facts, and session data)"""
|
162 |
+
self.conversation_history = []
|
163 |
+
self.important_facts = []
|
164 |
+
self.session_data = {}
|
165 |
+
|
166 |
+
def get_memory_stats(self) -> Dict[str, Any]:
|
167 |
+
"""Get statistics about the agent's memory usage
|
168 |
+
|
169 |
+
Returns:
|
170 |
+
Dictionary containing memory statistics
|
171 |
+
"""
|
172 |
+
return {
|
173 |
+
"conversation_turns": len(self.conversation_history) // 2,
|
174 |
+
"important_facts": len(self.important_facts),
|
175 |
+
"session_data_keys": list(self.session_data.keys()),
|
176 |
+
"memory_usage": {
|
177 |
+
"conversation": len(str(self.conversation_history)),
|
178 |
+
"facts": len(str(self.important_facts)),
|
179 |
+
"session": len(str(self.session_data))
|
180 |
+
}
|
181 |
+
}
|
agent_reasoning.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from typing import Dict, List, Any, Optional, Union
|
3 |
+
|
4 |
+
class ReasoningEngine:
|
5 |
+
"""Reasoning engine for the autonomous AI agent
|
6 |
+
|
7 |
+
This module provides advanced reasoning capabilities including:
|
8 |
+
1. Chain-of-thought reasoning
|
9 |
+
2. Task decomposition
|
10 |
+
3. Self-reflection
|
11 |
+
4. Decision making
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, model, tokenizer, device="cpu"):
|
15 |
+
"""Initialize the reasoning engine
|
16 |
+
|
17 |
+
Args:
|
18 |
+
model: The language model to use for reasoning
|
19 |
+
tokenizer: The tokenizer for the language model
|
20 |
+
device: The device to run the model on (cpu or cuda)
|
21 |
+
"""
|
22 |
+
self.model = model
|
23 |
+
self.tokenizer = tokenizer
|
24 |
+
self.device = device
|
25 |
+
|
26 |
+
def generate_text(self, prompt: str, max_length: int = 512, temperature: float = 0.7) -> str:
|
27 |
+
"""Generate text using the language model
|
28 |
+
|
29 |
+
Args:
|
30 |
+
prompt: The input prompt for the model
|
31 |
+
max_length: Maximum length of the generated text
|
32 |
+
temperature: Temperature for sampling (higher = more random)
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
Generated text response
|
36 |
+
"""
|
37 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
38 |
+
|
39 |
+
# Generate response
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = self.model.generate(
|
42 |
+
inputs["input_ids"],
|
43 |
+
max_length=max_length,
|
44 |
+
num_return_sequences=1,
|
45 |
+
temperature=temperature,
|
46 |
+
top_p=0.9,
|
47 |
+
do_sample=True
|
48 |
+
)
|
49 |
+
|
50 |
+
# Decode and return the response
|
51 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
52 |
+
return response
|
53 |
+
|
54 |
+
def chain_of_thought(self, query: str) -> Dict[str, str]:
|
55 |
+
"""Implement chain-of-thought reasoning
|
56 |
+
|
57 |
+
Args:
|
58 |
+
query: User query to reason about
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
Dictionary containing reasoning steps and final answer
|
62 |
+
"""
|
63 |
+
# Construct a prompt that encourages step-by-step reasoning
|
64 |
+
reasoning_prompt = f"""I am an autonomous AI agent called ResuRank. I need to think through this step by step to provide the best response.
|
65 |
+
|
66 |
+
Query: {query}
|
67 |
+
|
68 |
+
Let me reason through this carefully:
|
69 |
+
1. First, I'll identify the key parts of this query.
|
70 |
+
2. Then, I'll consider what information I need to answer it.
|
71 |
+
3. Next, I'll analyze the implications and context.
|
72 |
+
4. Finally, I'll formulate a comprehensive response.
|
73 |
+
|
74 |
+
Step-by-step reasoning:
|
75 |
+
1. """
|
76 |
+
|
77 |
+
# Generate the reasoning steps
|
78 |
+
reasoning = self.generate_text(reasoning_prompt, max_length=1024)
|
79 |
+
|
80 |
+
# Analyze the reasoning for completeness
|
81 |
+
if len(reasoning.split('\n')) < 3 or len(reasoning) < 100:
|
82 |
+
# If reasoning is too short, try to expand it
|
83 |
+
expansion_prompt = f"""My current reasoning is:
|
84 |
+
{reasoning}
|
85 |
+
|
86 |
+
Let me expand on this with more detailed analysis:
|
87 |
+
"""
|
88 |
+
additional_reasoning = self.generate_text(expansion_prompt, max_length=512)
|
89 |
+
reasoning = f"{reasoning}\n\n{additional_reasoning}"
|
90 |
+
|
91 |
+
# Extract the final answer after reasoning
|
92 |
+
answer_prompt = f"""Based on my detailed reasoning:
|
93 |
+
{reasoning}
|
94 |
+
|
95 |
+
I will now provide a clear, helpful, and comprehensive response to the query: {query}
|
96 |
+
|
97 |
+
My final answer is:"""
|
98 |
+
|
99 |
+
final_answer = self.generate_text(answer_prompt, max_length=768)
|
100 |
+
|
101 |
+
# Check if the answer addresses the query adequately
|
102 |
+
if len(final_answer) < 50:
|
103 |
+
# If answer is too short, try to improve it
|
104 |
+
improvement_prompt = f"""My current answer is:
|
105 |
+
{final_answer}
|
106 |
+
|
107 |
+
This answer is too brief. Let me provide a more comprehensive response to the query: {query}
|
108 |
+
|
109 |
+
Improved answer:"""
|
110 |
+
final_answer = self.generate_text(improvement_prompt, max_length=768)
|
111 |
+
|
112 |
+
return {
|
113 |
+
"reasoning": reasoning,
|
114 |
+
"answer": final_answer
|
115 |
+
}
|
116 |
+
|
117 |
+
def decompose_task(self, task_description: str) -> List[str]:
|
118 |
+
"""Decompose a complex task into smaller subtasks
|
119 |
+
|
120 |
+
Args:
|
121 |
+
task_description: Description of the task to decompose
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
List of subtask descriptions
|
125 |
+
"""
|
126 |
+
decomposition_prompt = f"""I need to break down this complex task into smaller, manageable subtasks:
|
127 |
+
|
128 |
+
Task: {task_description}
|
129 |
+
|
130 |
+
Subtasks:
|
131 |
+
1. """
|
132 |
+
|
133 |
+
decomposition = self.generate_text(decomposition_prompt, max_length=1024)
|
134 |
+
|
135 |
+
# Parse the decomposition into a list of subtasks
|
136 |
+
subtasks = []
|
137 |
+
for line in decomposition.split('\n'):
|
138 |
+
line = line.strip()
|
139 |
+
if line and (line[0].isdigit() or line.startswith('- ')):
|
140 |
+
# Remove numbering or bullet points
|
141 |
+
cleaned_line = re.sub(r'^\d+\.\s*|^-\s*', '', line).strip()
|
142 |
+
if cleaned_line:
|
143 |
+
subtasks.append(cleaned_line)
|
144 |
+
|
145 |
+
return subtasks
|
146 |
+
|
147 |
+
def self_reflect(self, action: str, outcome: str) -> Dict[str, str]:
|
148 |
+
"""Perform self-reflection on an action and its outcome
|
149 |
+
|
150 |
+
Args:
|
151 |
+
action: The action that was taken
|
152 |
+
outcome: The outcome of the action
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
Dictionary containing reflection and improvement suggestions
|
156 |
+
"""
|
157 |
+
reflection_prompt = f"""I need to reflect on this action and its outcome:
|
158 |
+
|
159 |
+
Action: {action}
|
160 |
+
Outcome: {outcome}
|
161 |
+
|
162 |
+
Reflection:
|
163 |
+
"""
|
164 |
+
|
165 |
+
reflection = self.generate_text(reflection_prompt, max_length=512)
|
166 |
+
|
167 |
+
improvement_prompt = f"""Based on my reflection:
|
168 |
+
{reflection}
|
169 |
+
|
170 |
+
How I can improve next time:
|
171 |
+
"""
|
172 |
+
|
173 |
+
improvement = self.generate_text(improvement_prompt, max_length=512)
|
174 |
+
|
175 |
+
return {
|
176 |
+
"reflection": reflection,
|
177 |
+
"improvement": improvement
|
178 |
+
}
|
179 |
+
|
180 |
+
def make_decision(self, options: List[str], context: str) -> Dict[str, Any]:
|
181 |
+
"""Make a decision among multiple options
|
182 |
+
|
183 |
+
Args:
|
184 |
+
options: List of options to choose from
|
185 |
+
context: Context information for the decision
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
Dictionary containing the chosen option and reasoning
|
189 |
+
"""
|
190 |
+
options_text = "\n".join([f"{i+1}. {option}" for i, option in enumerate(options)])
|
191 |
+
|
192 |
+
decision_prompt = f"""I need to make a decision based on the following context and options:
|
193 |
+
|
194 |
+
Context: {context}
|
195 |
+
|
196 |
+
Options:
|
197 |
+
{options_text}
|
198 |
+
|
199 |
+
Let me analyze each option:
|
200 |
+
"""
|
201 |
+
|
202 |
+
analysis = self.generate_text(decision_prompt, max_length=1024)
|
203 |
+
|
204 |
+
conclusion_prompt = f"""Based on my analysis:
|
205 |
+
{analysis}
|
206 |
+
|
207 |
+
The best option is number:"""
|
208 |
+
|
209 |
+
conclusion = self.generate_text(conclusion_prompt, max_length=128)
|
210 |
+
|
211 |
+
# Try to extract the chosen option number
|
212 |
+
try:
|
213 |
+
option_num = int(re.search(r'\d+', conclusion).group()) - 1
|
214 |
+
chosen_option = options[option_num] if 0 <= option_num < len(options) else options[0]
|
215 |
+
except (AttributeError, ValueError, IndexError):
|
216 |
+
# Default to first option if parsing fails
|
217 |
+
chosen_option = options[0]
|
218 |
+
|
219 |
+
return {
|
220 |
+
"chosen_option": chosen_option,
|
221 |
+
"analysis": analysis,
|
222 |
+
"conclusion": conclusion
|
223 |
+
}
|
agent_tasks.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import time
|
4 |
+
import json
|
5 |
+
from typing import Dict, List, Any, Optional, Union
|
6 |
+
|
7 |
+
class TaskExecutor:
|
8 |
+
"""Task execution engine for the autonomous AI agent
|
9 |
+
|
10 |
+
This module provides capabilities for executing various tasks including:
|
11 |
+
1. Task planning and execution
|
12 |
+
2. Progress tracking
|
13 |
+
3. Result formatting
|
14 |
+
4. Error handling
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self, reasoning_engine):
|
18 |
+
"""Initialize the task executor
|
19 |
+
|
20 |
+
Args:
|
21 |
+
reasoning_engine: The reasoning engine to use for task planning
|
22 |
+
"""
|
23 |
+
self.reasoning_engine = reasoning_engine
|
24 |
+
self.current_task = None
|
25 |
+
self.task_status = "idle"
|
26 |
+
self.task_history = []
|
27 |
+
self.max_history_length = 10
|
28 |
+
|
29 |
+
def execute_task(self, task_description: str) -> Dict[str, Any]:
|
30 |
+
"""Execute a task based on the description
|
31 |
+
|
32 |
+
Args:
|
33 |
+
task_description: Description of the task to execute
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
Dictionary containing task results and status
|
37 |
+
"""
|
38 |
+
self.current_task = task_description
|
39 |
+
self.task_status = "in_progress"
|
40 |
+
start_time = time.time()
|
41 |
+
|
42 |
+
try:
|
43 |
+
# First, analyze the task to understand its requirements and constraints
|
44 |
+
analysis_prompt = f"""I need to analyze this task to understand its requirements and constraints:
|
45 |
+
|
46 |
+
Task: {task_description}
|
47 |
+
|
48 |
+
Task Analysis:
|
49 |
+
1. What is the main objective of this task?
|
50 |
+
2. What are the key requirements?
|
51 |
+
3. What constraints or limitations should I be aware of?
|
52 |
+
4. What resources or information do I need to complete this task?
|
53 |
+
|
54 |
+
Analysis:"""
|
55 |
+
|
56 |
+
task_analysis = self.reasoning_engine.generate_text(analysis_prompt, max_length=768)
|
57 |
+
|
58 |
+
# Decompose the task into subtasks with the analysis in mind
|
59 |
+
decomposition_prompt = f"""Based on my analysis of the task:
|
60 |
+
{task_analysis}
|
61 |
+
|
62 |
+
I need to break down this task into smaller, manageable subtasks:
|
63 |
+
|
64 |
+
Task: {task_description}
|
65 |
+
|
66 |
+
Subtasks:
|
67 |
+
1. """
|
68 |
+
|
69 |
+
decomposition = self.reasoning_engine.generate_text(decomposition_prompt, max_length=1024)
|
70 |
+
|
71 |
+
# Parse the decomposition into a list of subtasks
|
72 |
+
subtasks = []
|
73 |
+
for line in decomposition.split('\n'):
|
74 |
+
line = line.strip()
|
75 |
+
if line and (line[0].isdigit() or line.startswith('- ')):
|
76 |
+
# Remove numbering or bullet points
|
77 |
+
cleaned_line = re.sub(r'^\d+\.\s*|^-\s*', '', line).strip()
|
78 |
+
if cleaned_line:
|
79 |
+
subtasks.append(cleaned_line)
|
80 |
+
|
81 |
+
# If parsing failed, use the reasoning engine's decompose_task method as fallback
|
82 |
+
if not subtasks:
|
83 |
+
subtasks = self.reasoning_engine.decompose_task(task_description)
|
84 |
+
|
85 |
+
# Generate a detailed plan for executing the task
|
86 |
+
planning_prompt = f"""I need to create a detailed plan to execute this task:
|
87 |
+
{task_description}
|
88 |
+
|
89 |
+
Task Analysis:
|
90 |
+
{task_analysis}
|
91 |
+
|
92 |
+
The task has been broken down into these subtasks:
|
93 |
+
{json.dumps(subtasks, indent=2)}
|
94 |
+
|
95 |
+
Detailed step-by-step plan (including how to handle potential issues):
|
96 |
+
1. """
|
97 |
+
|
98 |
+
plan = self.reasoning_engine.generate_text(planning_prompt, max_length=1024)
|
99 |
+
|
100 |
+
# Track progress of each subtask with more detailed execution
|
101 |
+
subtask_results = []
|
102 |
+
for i, subtask in enumerate(subtasks):
|
103 |
+
# Update status
|
104 |
+
self.task_status = f"in_progress ({i+1}/{len(subtasks)})"
|
105 |
+
|
106 |
+
# Execute the subtask with more context
|
107 |
+
subtask_prompt = f"""I am executing this subtask as part of the larger task:
|
108 |
+
|
109 |
+
Main Task: {task_description}
|
110 |
+
|
111 |
+
Current Subtask ({i+1}/{len(subtasks)}): {subtask}
|
112 |
+
|
113 |
+
Previous Results: {json.dumps([r['result'] for r in subtask_results], indent=2) if subtask_results else 'None yet'}
|
114 |
+
|
115 |
+
I will now execute this subtask carefully and report the detailed results:"""
|
116 |
+
|
117 |
+
result = self.reasoning_engine.generate_text(subtask_prompt, max_length=768)
|
118 |
+
|
119 |
+
# Evaluate the quality of the result
|
120 |
+
evaluation_prompt = f"""I need to evaluate the quality of my execution of this subtask:
|
121 |
+
|
122 |
+
Subtask: {subtask}
|
123 |
+
|
124 |
+
Execution Result: {result}
|
125 |
+
|
126 |
+
Evaluation (rate from 1-10 and explain):"""
|
127 |
+
|
128 |
+
evaluation = self.reasoning_engine.generate_text(evaluation_prompt, max_length=256)
|
129 |
+
|
130 |
+
subtask_results.append({
|
131 |
+
"subtask": subtask,
|
132 |
+
"result": result,
|
133 |
+
"evaluation": evaluation
|
134 |
+
})
|
135 |
+
|
136 |
+
# Compile the final results with synthesis
|
137 |
+
compilation_prompt = f"""I have executed all subtasks for the main task:
|
138 |
+
{task_description}
|
139 |
+
|
140 |
+
Here are the results of each subtask:
|
141 |
+
{json.dumps(subtask_results, indent=2)}
|
142 |
+
|
143 |
+
I need to synthesize these results into a coherent final result that addresses the original task completely.
|
144 |
+
|
145 |
+
Final synthesized result:"""
|
146 |
+
|
147 |
+
final_result = self.reasoning_engine.generate_text(compilation_prompt, max_length=1024)
|
148 |
+
|
149 |
+
# Self-reflection on the task execution
|
150 |
+
reflection_prompt = f"""I need to reflect on my execution of this task:
|
151 |
+
|
152 |
+
Task: {task_description}
|
153 |
+
|
154 |
+
My approach: {plan}
|
155 |
+
|
156 |
+
Final result: {final_result}
|
157 |
+
|
158 |
+
Reflection on what went well and what could be improved:"""
|
159 |
+
|
160 |
+
reflection = self.reasoning_engine.generate_text(reflection_prompt, max_length=512)
|
161 |
+
|
162 |
+
self.task_status = "completed"
|
163 |
+
execution_time = time.time() - start_time
|
164 |
+
|
165 |
+
# Add to task history
|
166 |
+
task_record = {
|
167 |
+
"task": task_description,
|
168 |
+
"plan": plan,
|
169 |
+
"subtasks": subtask_results,
|
170 |
+
"result": final_result,
|
171 |
+
"reflection": reflection,
|
172 |
+
"status": self.task_status,
|
173 |
+
"execution_time": execution_time,
|
174 |
+
"timestamp": time.time()
|
175 |
+
}
|
176 |
+
|
177 |
+
self.task_history.append(task_record)
|
178 |
+
|
179 |
+
# Trim history if it gets too long
|
180 |
+
if len(self.task_history) > self.max_history_length:
|
181 |
+
self.task_history = self.task_history[-self.max_history_length:]
|
182 |
+
|
183 |
+
return task_record
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
self.task_status = "failed"
|
187 |
+
error_message = str(e)
|
188 |
+
|
189 |
+
# Add failed task to history
|
190 |
+
task_record = {
|
191 |
+
"task": task_description,
|
192 |
+
"status": self.task_status,
|
193 |
+
"error": error_message,
|
194 |
+
"timestamp": time.time()
|
195 |
+
}
|
196 |
+
|
197 |
+
self.task_history.append(task_record)
|
198 |
+
|
199 |
+
return task_record
|
200 |
+
|
201 |
+
def get_task_status(self) -> Dict[str, Any]:
|
202 |
+
"""Get the current status of task execution
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
Dictionary containing task status information
|
206 |
+
"""
|
207 |
+
return {
|
208 |
+
"current_task": self.current_task,
|
209 |
+
"status": self.task_status,
|
210 |
+
"history_length": len(self.task_history)
|
211 |
+
}
|
212 |
+
|
213 |
+
def get_task_history(self) -> List[Dict[str, Any]]:
|
214 |
+
"""Get the history of executed tasks
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
List of task records
|
218 |
+
"""
|
219 |
+
return self.task_history
|
220 |
+
|
221 |
+
def cancel_task(self) -> Dict[str, Any]:
|
222 |
+
"""Cancel the currently executing task
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
Dictionary containing cancellation status
|
226 |
+
"""
|
227 |
+
if self.task_status == "in_progress":
|
228 |
+
self.task_status = "cancelled"
|
229 |
+
|
230 |
+
# Update the last task record in history
|
231 |
+
if self.task_history:
|
232 |
+
self.task_history[-1]["status"] = "cancelled"
|
233 |
+
|
234 |
+
return {
|
235 |
+
"task": self.current_task,
|
236 |
+
"status": self.task_status,
|
237 |
+
"message": "Task cancelled successfully"
|
238 |
+
}
|
239 |
+
else:
|
240 |
+
return {
|
241 |
+
"task": self.current_task,
|
242 |
+
"status": self.task_status,
|
243 |
+
"message": "No task in progress to cancel"
|
244 |
+
}
|
app.py
ADDED
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
8 |
+
import json
|
9 |
+
from typing import Dict, List, Any, Optional, Union
|
10 |
+
|
11 |
+
# Import agent modules
|
12 |
+
from agent_reasoning import ReasoningEngine
|
13 |
+
from agent_tasks import TaskExecutor
|
14 |
+
from agent_memory import MemoryManager
|
15 |
+
|
16 |
+
class ResuRankAgent:
|
17 |
+
"""Autonomous AI Agent similar to Manus AI
|
18 |
+
|
19 |
+
This agent can:
|
20 |
+
1. Process user queries and generate responses
|
21 |
+
2. Perform reasoning through chain-of-thought
|
22 |
+
3. Execute tasks based on user instructions
|
23 |
+
4. Maintain conversation context
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, model_id="google/flan-t5-large", use_cache=True):
|
27 |
+
"""Initialize the ResuRank Agent
|
28 |
+
|
29 |
+
Args:
|
30 |
+
model_id: Hugging Face model ID to use for the agent
|
31 |
+
use_cache: Whether to use cached models from Hugging Face Hub
|
32 |
+
"""
|
33 |
+
self.model_id = model_id
|
34 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
print(f"Using device: {self.device}")
|
36 |
+
|
37 |
+
# Load model and tokenizer from Hugging Face Hub
|
38 |
+
print(f"Loading model {model_id} from Hugging Face Hub...")
|
39 |
+
try:
|
40 |
+
# Use cached models if available
|
41 |
+
if use_cache:
|
42 |
+
print("Using cached models if available...")
|
43 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="./.cache")
|
44 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_id,
|
46 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
47 |
+
low_cpu_mem_usage=True,
|
48 |
+
device_map="auto",
|
49 |
+
cache_dir="./.cache"
|
50 |
+
)
|
51 |
+
else:
|
52 |
+
# Download models directly from Hugging Face Hub
|
53 |
+
print("Downloading models from Hugging Face Hub...")
|
54 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
55 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
model_id,
|
57 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
58 |
+
low_cpu_mem_usage=True,
|
59 |
+
device_map="auto"
|
60 |
+
)
|
61 |
+
|
62 |
+
print(f"Successfully loaded model {model_id}")
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error loading model: {str(e)}")
|
65 |
+
print("Falling back to smaller model...")
|
66 |
+
fallback_model = "google/flan-t5-base"
|
67 |
+
self.model_id = fallback_model
|
68 |
+
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model, cache_dir="./.cache")
|
69 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
70 |
+
fallback_model,
|
71 |
+
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
72 |
+
low_cpu_mem_usage=True,
|
73 |
+
device_map="auto",
|
74 |
+
cache_dir="./.cache"
|
75 |
+
)
|
76 |
+
|
77 |
+
# Initialize agent components
|
78 |
+
self.reasoning_engine = ReasoningEngine(self.model, self.tokenizer, self.device)
|
79 |
+
self.memory_manager = MemoryManager(max_history_length=20)
|
80 |
+
self.task_executor = TaskExecutor(self.reasoning_engine)
|
81 |
+
|
82 |
+
def process_query(self, query: str, use_reasoning: bool = True) -> Dict[str, Any]:
|
83 |
+
"""Process a user query and generate a response
|
84 |
+
|
85 |
+
Args:
|
86 |
+
query: User query text
|
87 |
+
use_reasoning: Whether to use chain-of-thought reasoning
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
Dictionary containing response and metadata
|
91 |
+
"""
|
92 |
+
# Add query to conversation history
|
93 |
+
self.memory_manager.add_message("user", query)
|
94 |
+
|
95 |
+
start_time = time.time()
|
96 |
+
|
97 |
+
# Check if this is a task execution request
|
98 |
+
is_task_request = self._is_task_request(query)
|
99 |
+
|
100 |
+
# Process the query with appropriate method
|
101 |
+
if is_task_request:
|
102 |
+
# Handle as a task execution request
|
103 |
+
task_result = self.execute_task(query)
|
104 |
+
response = f"I've executed your task. {task_result.get('result', '')}\n\nStatus: {task_result.get('status', 'unknown')}"
|
105 |
+
reasoning = task_result.get('plan', '')
|
106 |
+
elif use_reasoning:
|
107 |
+
# Use chain-of-thought reasoning
|
108 |
+
# Enhance with context from memory
|
109 |
+
facts = self.memory_manager.format_facts_for_prompt()
|
110 |
+
context = self.memory_manager.format_conversation_for_prompt(max_turns=5)
|
111 |
+
|
112 |
+
# Create an enhanced query with context
|
113 |
+
enhanced_query = f"{facts}\n\nRecent conversation:\n{context}\n\nCurrent query: {query}"
|
114 |
+
|
115 |
+
result = self.reasoning_engine.chain_of_thought(enhanced_query)
|
116 |
+
response = result["answer"]
|
117 |
+
reasoning = result["reasoning"]
|
118 |
+
else:
|
119 |
+
# Simple response generation without reasoning
|
120 |
+
conversation_prompt = self.memory_manager.format_conversation_for_prompt(max_turns=10)
|
121 |
+
facts_prompt = self.memory_manager.format_facts_for_prompt()
|
122 |
+
|
123 |
+
prompt = f"{facts_prompt}\n\n{conversation_prompt}\nassistant: "
|
124 |
+
|
125 |
+
response = self.reasoning_engine.generate_text(prompt)
|
126 |
+
reasoning = None
|
127 |
+
|
128 |
+
# Add response to conversation history
|
129 |
+
self.memory_manager.add_message("assistant", response)
|
130 |
+
|
131 |
+
# Extract any important facts from the conversation
|
132 |
+
self._extract_facts(query, response)
|
133 |
+
|
134 |
+
processing_time = time.time() - start_time
|
135 |
+
|
136 |
+
return {
|
137 |
+
"response": response,
|
138 |
+
"reasoning": reasoning,
|
139 |
+
"processing_time": processing_time,
|
140 |
+
"timestamp": time.time()
|
141 |
+
}
|
142 |
+
|
143 |
+
def _is_task_request(self, query: str) -> bool:
|
144 |
+
"""Determine if a query is a task execution request
|
145 |
+
|
146 |
+
Args:
|
147 |
+
query: The user query
|
148 |
+
|
149 |
+
Returns:
|
150 |
+
True if the query appears to be a task request, False otherwise
|
151 |
+
"""
|
152 |
+
# Keywords that suggest a task execution request
|
153 |
+
task_keywords = [
|
154 |
+
"execute", "perform", "run", "do", "complete", "finish",
|
155 |
+
"task", "job", "work", "action", "operation", "function",
|
156 |
+
"can you", "please", "help me", "i need", "i want"
|
157 |
+
]
|
158 |
+
|
159 |
+
# Check if query contains task-related keywords
|
160 |
+
query_lower = query.lower()
|
161 |
+
for keyword in task_keywords:
|
162 |
+
if keyword in query_lower:
|
163 |
+
return True
|
164 |
+
|
165 |
+
return False
|
166 |
+
|
167 |
+
def _extract_facts(self, query: str, response: str) -> None:
|
168 |
+
"""Extract important facts from the conversation
|
169 |
+
|
170 |
+
Args:
|
171 |
+
query: User query
|
172 |
+
response: Agent response
|
173 |
+
"""
|
174 |
+
# Extract personal information
|
175 |
+
self._extract_personal_info(query)
|
176 |
+
|
177 |
+
# Extract preferences
|
178 |
+
self._extract_preferences(query)
|
179 |
+
|
180 |
+
# Extract task-related information
|
181 |
+
self._extract_task_info(query)
|
182 |
+
|
183 |
+
# Use the reasoning engine to identify important facts
|
184 |
+
self._extract_with_reasoning(query, response)
|
185 |
+
|
186 |
+
def _extract_personal_info(self, text: str) -> None:
|
187 |
+
"""Extract personal information from text
|
188 |
+
|
189 |
+
Args:
|
190 |
+
text: Text to extract information from
|
191 |
+
"""
|
192 |
+
text_lower = text.lower()
|
193 |
+
|
194 |
+
# Extract name
|
195 |
+
if "my name is" in text_lower or "i am called" in text_lower or "i'm called" in text_lower:
|
196 |
+
name_patterns = [
|
197 |
+
r"my name is ([\w\s]+)[.\,]?",
|
198 |
+
r"i am called ([\w\s]+)[.\,]?",
|
199 |
+
r"i'm called ([\w\s]+)[.\,]?"
|
200 |
+
]
|
201 |
+
|
202 |
+
for pattern in name_patterns:
|
203 |
+
name_match = re.search(pattern, text_lower)
|
204 |
+
if name_match:
|
205 |
+
name = name_match.group(1).strip()
|
206 |
+
self.memory_manager.add_important_fact(f"User's name is {name}", "user")
|
207 |
+
break
|
208 |
+
|
209 |
+
# Extract location
|
210 |
+
if "i am from" in text_lower or "i'm from" in text_lower or "i live in" in text_lower:
|
211 |
+
location_patterns = [
|
212 |
+
r"i am from ([\w\s]+)[.\,]?",
|
213 |
+
r"i'm from ([\w\s]+)[.\,]?",
|
214 |
+
r"i live in ([\w\s]+)[.\,]?"
|
215 |
+
]
|
216 |
+
|
217 |
+
for pattern in location_patterns:
|
218 |
+
location_match = re.search(pattern, text_lower)
|
219 |
+
if location_match:
|
220 |
+
location = location_match.group(1).strip()
|
221 |
+
self.memory_manager.add_important_fact(f"User is from {location}", "user")
|
222 |
+
break
|
223 |
+
|
224 |
+
# Extract profession/occupation
|
225 |
+
if "i work as" in text_lower or "i am a" in text_lower or "i'm a" in text_lower:
|
226 |
+
profession_patterns = [
|
227 |
+
r"i work as a[n]? ([\w\s]+)[.\,]?",
|
228 |
+
r"i am a[n]? ([\w\s]+)[.\,]?",
|
229 |
+
r"i'm a[n]? ([\w\s]+)[.\,]?"
|
230 |
+
]
|
231 |
+
|
232 |
+
for pattern in profession_patterns:
|
233 |
+
profession_match = re.search(pattern, text_lower)
|
234 |
+
if profession_match:
|
235 |
+
profession = profession_match.group(1).strip()
|
236 |
+
self.memory_manager.add_important_fact(f"User works as a {profession}", "user")
|
237 |
+
break
|
238 |
+
|
239 |
+
def _extract_preferences(self, text: str) -> None:
|
240 |
+
"""Extract user preferences from text
|
241 |
+
|
242 |
+
Args:
|
243 |
+
text: Text to extract information from
|
244 |
+
"""
|
245 |
+
text_lower = text.lower()
|
246 |
+
|
247 |
+
# Extract likes
|
248 |
+
if "i like" in text_lower or "i love" in text_lower or "i enjoy" in text_lower:
|
249 |
+
like_patterns = [
|
250 |
+
r"i like ([\w\s]+)[.\,]?",
|
251 |
+
r"i love ([\w\s]+)[.\,]?",
|
252 |
+
r"i enjoy ([\w\s]+)[.\,]?"
|
253 |
+
]
|
254 |
+
|
255 |
+
for pattern in like_patterns:
|
256 |
+
like_match = re.search(pattern, text_lower)
|
257 |
+
if like_match:
|
258 |
+
like = like_match.group(1).strip()
|
259 |
+
self.memory_manager.add_important_fact(f"User likes {like}", "user")
|
260 |
+
break
|
261 |
+
|
262 |
+
# Extract dislikes
|
263 |
+
if "i don't like" in text_lower or "i hate" in text_lower or "i dislike" in text_lower:
|
264 |
+
dislike_patterns = [
|
265 |
+
r"i don't like ([\w\s]+)[.\,]?",
|
266 |
+
r"i hate ([\w\s]+)[.\,]?",
|
267 |
+
r"i dislike ([\w\s]+)[.\,]?"
|
268 |
+
]
|
269 |
+
|
270 |
+
for pattern in dislike_patterns:
|
271 |
+
dislike_match = re.search(pattern, text_lower)
|
272 |
+
if dislike_match:
|
273 |
+
dislike = dislike_match.group(1).strip()
|
274 |
+
self.memory_manager.add_important_fact(f"User dislikes {dislike}", "user")
|
275 |
+
break
|
276 |
+
|
277 |
+
def _extract_task_info(self, text: str) -> None:
|
278 |
+
"""Extract task-related information from text
|
279 |
+
|
280 |
+
Args:
|
281 |
+
text: Text to extract information from
|
282 |
+
"""
|
283 |
+
text_lower = text.lower()
|
284 |
+
|
285 |
+
# Extract goals
|
286 |
+
if "my goal is" in text_lower or "i want to" in text_lower or "i need to" in text_lower:
|
287 |
+
goal_patterns = [
|
288 |
+
r"my goal is to ([\w\s]+)[.\,]?",
|
289 |
+
r"i want to ([\w\s]+)[.\,]?",
|
290 |
+
r"i need to ([\w\s]+)[.\,]?"
|
291 |
+
]
|
292 |
+
|
293 |
+
for pattern in goal_patterns:
|
294 |
+
goal_match = re.search(pattern, text_lower)
|
295 |
+
if goal_match:
|
296 |
+
goal = goal_match.group(1).strip()
|
297 |
+
self.memory_manager.add_important_fact(f"User's goal is to {goal}", "user")
|
298 |
+
break
|
299 |
+
|
300 |
+
def _extract_with_reasoning(self, query: str, response: str) -> None:
|
301 |
+
"""Use the reasoning engine to extract important facts
|
302 |
+
|
303 |
+
Args:
|
304 |
+
query: User query
|
305 |
+
response: Agent response
|
306 |
+
"""
|
307 |
+
# Only use this for longer queries to avoid unnecessary processing
|
308 |
+
if len(query) < 50:
|
309 |
+
return
|
310 |
+
|
311 |
+
extraction_prompt = f"""Extract important facts from this conversation:
|
312 |
+
|
313 |
+
User: {query}
|
314 |
+
Assistant: {response}
|
315 |
+
|
316 |
+
List of important facts (one per line):
|
317 |
+
1. """
|
318 |
+
|
319 |
+
try:
|
320 |
+
facts_text = self.reasoning_engine.generate_text(extraction_prompt, max_length=256)
|
321 |
+
|
322 |
+
# Parse the facts
|
323 |
+
for line in facts_text.split('\n'):
|
324 |
+
line = line.strip()
|
325 |
+
if line and (line[0].isdigit() or line.startswith('- ')):
|
326 |
+
# Remove numbering or bullet points
|
327 |
+
fact = re.sub(r'^\d+\.\s*|^-\s*', '', line).strip()
|
328 |
+
if fact and len(fact) > 10: # Only add substantial facts
|
329 |
+
self.memory_manager.add_important_fact(fact, "inference")
|
330 |
+
except Exception as e:
|
331 |
+
print(f"Error extracting facts with reasoning: {str(e)}")
|
332 |
+
# Continue without adding facts
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
def execute_task(self, task_description: str) -> Dict[str, Any]:
|
337 |
+
"""Execute a task based on the description
|
338 |
+
|
339 |
+
Args:
|
340 |
+
task_description: Description of the task to execute
|
341 |
+
|
342 |
+
Returns:
|
343 |
+
Dictionary containing task results and status
|
344 |
+
"""
|
345 |
+
return self.task_executor.execute_task(task_description)
|
346 |
+
|
347 |
+
def get_status(self) -> Dict[str, Any]:
|
348 |
+
"""Get the current status of the agent
|
349 |
+
|
350 |
+
Returns:
|
351 |
+
Dictionary containing agent status information
|
352 |
+
"""
|
353 |
+
memory_stats = self.memory_manager.get_memory_stats()
|
354 |
+
task_status = self.task_executor.get_task_status()
|
355 |
+
|
356 |
+
return {
|
357 |
+
"model_id": self.model_id,
|
358 |
+
"device": self.device,
|
359 |
+
"conversation_turns": memory_stats["conversation_turns"],
|
360 |
+
"important_facts": memory_stats["important_facts"],
|
361 |
+
"current_task": task_status["current_task"],
|
362 |
+
"task_status": task_status["status"]
|
363 |
+
}
|
364 |
+
|
365 |
+
def clear_conversation(self) -> None:
|
366 |
+
"""Clear the conversation history"""
|
367 |
+
self.memory_manager.clear_conversation_history()
|
368 |
+
|
369 |
+
def process_document(self, document_text: str, document_type: str = "resume") -> Dict[str, Any]:
|
370 |
+
"""Process a document (like a resume) and extract information
|
371 |
+
|
372 |
+
Args:
|
373 |
+
document_text: The text content of the document
|
374 |
+
document_type: The type of document (e.g., "resume", "job_description")
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
Dictionary containing extracted information and analysis
|
378 |
+
"""
|
379 |
+
self.memory_manager.store_session_data(f"last_{document_type}", document_text)
|
380 |
+
start_time = time.time()
|
381 |
+
|
382 |
+
# Create a prompt for document analysis
|
383 |
+
analysis_prompt = f"""I need to analyze this {document_type} document and extract key information:
|
384 |
+
|
385 |
+
{document_text}
|
386 |
+
|
387 |
+
Detailed analysis:"""
|
388 |
+
|
389 |
+
# Generate analysis using reasoning engine
|
390 |
+
analysis = self.reasoning_engine.generate_text(analysis_prompt, max_length=1024)
|
391 |
+
|
392 |
+
# Extract structured information based on document type
|
393 |
+
if document_type.lower() == "resume":
|
394 |
+
extraction_prompt = f"""Based on this resume:
|
395 |
+
{document_text}
|
396 |
+
|
397 |
+
Extract the following information in a structured format:
|
398 |
+
1. Name:
|
399 |
+
2. Contact Information:
|
400 |
+
3. Education:
|
401 |
+
4. Work Experience:
|
402 |
+
5. Skills:
|
403 |
+
6. Projects:
|
404 |
+
7. Certifications:
|
405 |
+
8. Languages:
|
406 |
+
9. Key Strengths:
|
407 |
+
"""
|
408 |
+
elif document_type.lower() == "job_description":
|
409 |
+
extraction_prompt = f"""Based on this job description:
|
410 |
+
{document_text}
|
411 |
+
|
412 |
+
Extract the following information in a structured format:
|
413 |
+
1. Job Title:
|
414 |
+
2. Company:
|
415 |
+
3. Location:
|
416 |
+
4. Required Skills:
|
417 |
+
5. Required Experience:
|
418 |
+
6. Education Requirements:
|
419 |
+
7. Responsibilities:
|
420 |
+
8. Benefits:
|
421 |
+
9. Key Qualifications:
|
422 |
+
"""
|
423 |
+
else:
|
424 |
+
extraction_prompt = f"""Extract key information from this document:
|
425 |
+
{document_text}
|
426 |
+
|
427 |
+
Key information:
|
428 |
+
1. """
|
429 |
+
|
430 |
+
# Generate structured extraction
|
431 |
+
structured_info = self.reasoning_engine.generate_text(extraction_prompt, max_length=1024)
|
432 |
+
|
433 |
+
# Add important facts to memory
|
434 |
+
self._extract_document_facts(document_text, document_type, structured_info)
|
435 |
+
|
436 |
+
processing_time = time.time() - start_time
|
437 |
+
|
438 |
+
return {
|
439 |
+
"document_type": document_type,
|
440 |
+
"analysis": analysis,
|
441 |
+
"structured_info": structured_info,
|
442 |
+
"processing_time": processing_time,
|
443 |
+
"timestamp": time.time()
|
444 |
+
}
|
445 |
+
|
446 |
+
def _extract_document_facts(self, document_text: str, document_type: str, structured_info: str) -> None:
|
447 |
+
"""Extract important facts from a document and add them to memory
|
448 |
+
|
449 |
+
Args:
|
450 |
+
document_text: The text content of the document
|
451 |
+
document_type: The type of document
|
452 |
+
structured_info: Structured information extracted from the document
|
453 |
+
"""
|
454 |
+
# Extract key facts based on document type
|
455 |
+
if document_type.lower() == "resume":
|
456 |
+
# Extract name if present
|
457 |
+
name_match = re.search(r"Name:\s*([\w\s]+)\n", structured_info)
|
458 |
+
if name_match:
|
459 |
+
name = name_match.group(1).strip()
|
460 |
+
self.memory_manager.add_important_fact(f"Document contains resume for {name}", "document")
|
461 |
+
|
462 |
+
# Extract skills
|
463 |
+
skills_match = re.search(r"Skills:\s*([\w\s,\.\-\+]+)\n", structured_info)
|
464 |
+
if skills_match:
|
465 |
+
skills = skills_match.group(1).strip()
|
466 |
+
self.memory_manager.add_important_fact(f"Resume shows skills in: {skills}", "document")
|
467 |
+
|
468 |
+
# Extract education
|
469 |
+
education_match = re.search(r"Education:\s*([\w\s,\.\-\+]+)\n", structured_info)
|
470 |
+
if education_match:
|
471 |
+
education = education_match.group(1).strip()
|
472 |
+
self.memory_manager.add_important_fact(f"Resume shows education: {education}", "document")
|
473 |
+
|
474 |
+
elif document_type.lower() == "job_description":
|
475 |
+
# Extract job title
|
476 |
+
title_match = re.search(r"Job Title:\s*([\w\s]+)\n", structured_info)
|
477 |
+
if title_match:
|
478 |
+
title = title_match.group(1).strip()
|
479 |
+
self.memory_manager.add_important_fact(f"Document contains job description for {title}", "document")
|
480 |
+
|
481 |
+
# Extract required skills
|
482 |
+
skills_match = re.search(r"Required Skills:\s*([\w\s,\.\-\+]+)\n", structured_info)
|
483 |
+
if skills_match:
|
484 |
+
skills = skills_match.group(1).strip()
|
485 |
+
self.memory_manager.add_important_fact(f"Job requires skills in: {skills}", "document")
|
486 |
+
|
487 |
+
# Add general document fact
|
488 |
+
self.memory_manager.add_important_fact(f"Processed a {document_type} document", "system")
|
489 |
+
|
490 |
+
def rank_resumes(self, job_description: str, resumes: List[str]) -> Dict[str, Any]:
|
491 |
+
"""Rank multiple resumes against a job description
|
492 |
+
|
493 |
+
Args:
|
494 |
+
job_description: The job description text
|
495 |
+
resumes: List of resume texts to rank
|
496 |
+
|
497 |
+
Returns:
|
498 |
+
Dictionary containing rankings and analysis
|
499 |
+
"""
|
500 |
+
start_time = time.time()
|
501 |
+
|
502 |
+
# Process the job description first
|
503 |
+
job_result = self.process_document(job_description, "job_description")
|
504 |
+
job_analysis = job_result["structured_info"]
|
505 |
+
|
506 |
+
# Process each resume
|
507 |
+
resume_results = []
|
508 |
+
for i, resume in enumerate(resumes):
|
509 |
+
result = self.process_document(resume, "resume")
|
510 |
+
resume_results.append({
|
511 |
+
"index": i,
|
512 |
+
"text": resume,
|
513 |
+
"analysis": result["structured_info"]
|
514 |
+
})
|
515 |
+
|
516 |
+
# Create a ranking prompt
|
517 |
+
ranking_prompt = f"""I need to rank these resumes based on how well they match the job description.
|
518 |
+
|
519 |
+
Job Description Analysis:
|
520 |
+
{job_analysis}
|
521 |
+
|
522 |
+
Resumes:
|
523 |
+
"""
|
524 |
+
|
525 |
+
for i, result in enumerate(resume_results):
|
526 |
+
ranking_prompt += f"\nResume {i+1}:\n{result['analysis']}\n"
|
527 |
+
|
528 |
+
ranking_prompt += "\nRank these resumes from best to worst match for the job, with detailed reasoning for each:"
|
529 |
+
|
530 |
+
# Generate the ranking analysis
|
531 |
+
ranking_analysis = self.reasoning_engine.generate_text(ranking_prompt, max_length=2048)
|
532 |
+
|
533 |
+
# Generate a numerical scoring for each resume
|
534 |
+
scoring_prompt = f"""Based on my analysis of how well these resumes match the job description:
|
535 |
+
{ranking_analysis}
|
536 |
+
|
537 |
+
Assign a numerical score from 0-100 for each resume, where 100 is a perfect match:
|
538 |
+
|
539 |
+
Resume 1 Score:"""
|
540 |
+
|
541 |
+
scores_text = self.reasoning_engine.generate_text(scoring_prompt, max_length=512)
|
542 |
+
|
543 |
+
# Parse scores (simple regex approach)
|
544 |
+
scores = []
|
545 |
+
for i in range(len(resume_results)):
|
546 |
+
score_match = re.search(f"Resume {i+1} Score:\s*(\d+)", scores_text)
|
547 |
+
if score_match:
|
548 |
+
scores.append(int(score_match.group(1)))
|
549 |
+
else:
|
550 |
+
# Default score if parsing fails
|
551 |
+
scores.append(50)
|
552 |
+
|
553 |
+
# Create the final rankings
|
554 |
+
rankings = []
|
555 |
+
for i, score in enumerate(scores):
|
556 |
+
rankings.append({
|
557 |
+
"resume_index": i,
|
558 |
+
"score": score,
|
559 |
+
"resume_text": resumes[i][:100] + "..." # Truncated for readability
|
560 |
+
})
|
561 |
+
|
562 |
+
# Sort by score (descending)
|
563 |
+
rankings.sort(key=lambda x: x["score"], reverse=True)
|
564 |
+
|
565 |
+
processing_time = time.time() - start_time
|
566 |
+
|
567 |
+
return {
|
568 |
+
"rankings": rankings,
|
569 |
+
"analysis": ranking_analysis,
|
570 |
+
"job_description": job_description,
|
571 |
+
"processing_time": processing_time
|
572 |
+
}
|
573 |
+
|
574 |
+
# Create the Gradio interface
|
575 |
+
def create_interface():
|
576 |
+
# Initialize the agent with a suitable model for Hugging Face Spaces
|
577 |
+
# Using a smaller model by default for better performance in Spaces
|
578 |
+
agent = ResuRankAgent(model_id="google/flan-t5-base", use_cache=True)
|
579 |
+
|
580 |
+
with gr.Blocks(title="ResuRank AI Agent") as interface:
|
581 |
+
gr.Markdown("# ResuRank AI Agent")
|
582 |
+
gr.Markdown("An autonomous AI agent that can process queries, perform reasoning, and execute tasks.")
|
583 |
+
|
584 |
+
with gr.Tab("Chat"):
|
585 |
+
chatbot = gr.Chatbot(height=400)
|
586 |
+
msg = gr.Textbox(label="Your message", placeholder="Ask me anything...")
|
587 |
+
with gr.Row():
|
588 |
+
submit_btn = gr.Button("Submit")
|
589 |
+
clear_btn = gr.Button("Clear")
|
590 |
+
|
591 |
+
reasoning_checkbox = gr.Checkbox(label="Use reasoning", value=True)
|
592 |
+
|
593 |
+
if reasoning_checkbox.value:
|
594 |
+
reasoning_output = gr.Textbox(label="Reasoning", interactive=False)
|
595 |
+
else:
|
596 |
+
reasoning_output = gr.Textbox(label="Reasoning", interactive=False, visible=False)
|
597 |
+
|
598 |
+
def respond(message, chat_history, use_reasoning):
|
599 |
+
if not message.strip():
|
600 |
+
return chat_history, "", ""
|
601 |
+
|
602 |
+
# Process the query
|
603 |
+
result = agent.process_query(message, use_reasoning=use_reasoning)
|
604 |
+
|
605 |
+
# Update chat history
|
606 |
+
chat_history.append((message, result["response"]))
|
607 |
+
|
608 |
+
return chat_history, "", result.get("reasoning", "")
|
609 |
+
|
610 |
+
def clear_chat():
|
611 |
+
agent.clear_conversation()
|
612 |
+
return [], "", ""
|
613 |
+
|
614 |
+
# Set up event handlers
|
615 |
+
submit_btn.click(respond, [msg, chatbot, reasoning_checkbox], [chatbot, msg, reasoning_output])
|
616 |
+
msg.submit(respond, [msg, chatbot, reasoning_checkbox], [chatbot, msg, reasoning_output])
|
617 |
+
clear_btn.click(clear_chat, None, [chatbot, msg, reasoning_output])
|
618 |
+
reasoning_checkbox.change(lambda x: gr.update(visible=x), reasoning_checkbox, reasoning_output)
|
619 |
+
|
620 |
+
with gr.Tab("Task Execution"):
|
621 |
+
task_input = gr.Textbox(label="Task Description", placeholder="Describe the task to execute...")
|
622 |
+
execute_btn = gr.Button("Execute Task")
|
623 |
+
|
624 |
+
with gr.Row():
|
625 |
+
with gr.Column():
|
626 |
+
plan_output = gr.Textbox(label="Execution Plan", interactive=False)
|
627 |
+
with gr.Column():
|
628 |
+
results_output = gr.Textbox(label="Task Results", interactive=False)
|
629 |
+
|
630 |
+
task_status = gr.Textbox(label="Task Status", value="idle", interactive=False)
|
631 |
+
|
632 |
+
def execute_task(task_description):
|
633 |
+
if not task_description.strip():
|
634 |
+
return "No task provided.", "", "idle"
|
635 |
+
|
636 |
+
# Execute the task
|
637 |
+
result = agent.execute_task(task_description)
|
638 |
+
|
639 |
+
return result.get("plan", ""), result.get("result", ""), result.get("status", "")
|
640 |
+
|
641 |
+
# Set up event handlers
|
642 |
+
execute_btn.click(execute_task, task_input, [plan_output, results_output, task_status])
|
643 |
+
|
644 |
+
with gr.Tab("Agent Status"):
|
645 |
+
status_btn = gr.Button("Refresh Status")
|
646 |
+
|
647 |
+
with gr.Row():
|
648 |
+
with gr.Column():
|
649 |
+
model_info = gr.Textbox(label="Model Information", interactive=False)
|
650 |
+
with gr.Column():
|
651 |
+
conversation_info = gr.Textbox(label="Conversation Information", interactive=False)
|
652 |
+
|
653 |
+
def update_status():
|
654 |
+
status = agent.get_status()
|
655 |
+
model_text = f"Model ID: {status['model_id']}\nDevice: {status['device']}"
|
656 |
+
conversation_text = f"Conversation Length: {status['conversation_turns']} turns\nImportant Facts: {len(status['important_facts'])}\nCurrent Task: {status['current_task'] or 'None'}\nTask Status: {status['task_status']}"
|
657 |
+
|
658 |
+
return model_text, conversation_text
|
659 |
+
|
660 |
+
# Set up event handlers
|
661 |
+
status_btn.click(update_status, None, [model_info, conversation_info])
|
662 |
+
|
663 |
+
# Initialize status on load
|
664 |
+
model_info.value, conversation_info.value = update_status()
|
665 |
+
|
666 |
+
with gr.Tab("Document Processing"):
|
667 |
+
with gr.Row():
|
668 |
+
with gr.Column():
|
669 |
+
document_input = gr.Textbox(label="Document Text", placeholder="Paste resume or job description text here...", lines=10)
|
670 |
+
document_type = gr.Radio(["resume", "job_description", "other"], label="Document Type", value="resume")
|
671 |
+
process_btn = gr.Button("Process Document")
|
672 |
+
|
673 |
+
with gr.Row():
|
674 |
+
with gr.Column():
|
675 |
+
analysis_output = gr.Textbox(label="Document Analysis", interactive=False, lines=10)
|
676 |
+
with gr.Column():
|
677 |
+
structured_output = gr.Textbox(label="Structured Information", interactive=False, lines=10)
|
678 |
+
|
679 |
+
def process_document(document_text, doc_type):
|
680 |
+
if not document_text.strip():
|
681 |
+
return "No document provided.", ""
|
682 |
+
|
683 |
+
# Process the document
|
684 |
+
result = agent.process_document(document_text, doc_type)
|
685 |
+
|
686 |
+
return result.get("analysis", ""), result.get("structured_info", "")
|
687 |
+
|
688 |
+
# Set up event handlers
|
689 |
+
process_btn.click(process_document, [document_input, document_type], [analysis_output, structured_output])
|
690 |
+
|
691 |
+
with gr.Tab("Resume Ranking"):
|
692 |
+
with gr.Row():
|
693 |
+
with gr.Column():
|
694 |
+
job_description_input = gr.Textbox(label="Job Description", placeholder="Paste job description here...", lines=8)
|
695 |
+
|
696 |
+
with gr.Row():
|
697 |
+
with gr.Column():
|
698 |
+
resume1_input = gr.Textbox(label="Resume 1", placeholder="Paste first resume here...", lines=6)
|
699 |
+
with gr.Column():
|
700 |
+
resume2_input = gr.Textbox(label="Resume 2", placeholder="Paste second resume here...", lines=6)
|
701 |
+
|
702 |
+
with gr.Row():
|
703 |
+
with gr.Column():
|
704 |
+
resume3_input = gr.Textbox(label="Resume 3 (Optional)", placeholder="Paste third resume here...", lines=6)
|
705 |
+
with gr.Column():
|
706 |
+
resume4_input = gr.Textbox(label="Resume 4 (Optional)", placeholder="Paste fourth resume here...", lines=6)
|
707 |
+
|
708 |
+
rank_btn = gr.Button("Rank Resumes")
|
709 |
+
|
710 |
+
ranking_output = gr.Textbox(label="Ranking Results", interactive=False, lines=15)
|
711 |
+
|
712 |
+
def rank_resumes(job_desc, resume1, resume2, resume3, resume4):
|
713 |
+
if not job_desc.strip() or not resume1.strip() or not resume2.strip():
|
714 |
+
return "Please provide at least a job description and two resumes."
|
715 |
+
|
716 |
+
# Collect all non-empty resumes
|
717 |
+
resumes = [r for r in [resume1, resume2, resume3, resume4] if r.strip()]
|
718 |
+
|
719 |
+
# Rank the resumes
|
720 |
+
result = agent.rank_resumes(job_desc, resumes)
|
721 |
+
|
722 |
+
# Format the results
|
723 |
+
output = "Resume Rankings (Best to Worst Match):\n\n"
|
724 |
+
|
725 |
+
for i, rank in enumerate(result["rankings"]):
|
726 |
+
resume_num = rank["resume_index"] + 1
|
727 |
+
score = rank["score"]
|
728 |
+
output += f"{i+1}. Resume {resume_num} - Score: {score}/100\n"
|
729 |
+
|
730 |
+
output += "\nDetailed Analysis:\n" + result["analysis"]
|
731 |
+
|
732 |
+
return output
|
733 |
+
|
734 |
+
# Set up event handlers
|
735 |
+
rank_btn.click(rank_resumes, [job_description_input, resume1_input, resume2_input, resume3_input, resume4_input], ranking_output)
|
736 |
+
|
737 |
+
return interface
|
738 |
+
|
739 |
+
# Launch the interface when run directly
|
740 |
+
if __name__ == "__main__":
|
741 |
+
interface = create_interface()
|
742 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.30.0
|
2 |
+
torch>=2.0.0
|
3 |
+
fastapi>=0.95.0
|
4 |
+
uvicorn>=0.22.0
|
5 |
+
python-dotenv>=1.0.0
|
6 |
+
pydantic>=2.0.0
|
7 |
+
gradio>=3.35.0
|
8 |
+
huggingface_hub>=0.16.0
|
9 |
+
requests>=2.31.0
|
10 |
+
pillow>=9.5.0
|
11 |
+
numpy>=1.24.0
|
12 |
+
pandas>=2.0.0
|