Update app.py
Browse files
app.py
CHANGED
@@ -1,742 +1,837 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import torch
|
4 |
-
import re
|
5 |
-
import time
|
6 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
-
from huggingface_hub import hf_hub_download, snapshot_download
|
8 |
-
import json
|
9 |
-
from typing import Dict, List, Any, Optional, Union
|
10 |
-
|
11 |
-
# Import agent modules
|
12 |
-
from agent_reasoning import ReasoningEngine
|
13 |
-
from agent_tasks import TaskExecutor
|
14 |
-
from agent_memory import MemoryManager
|
15 |
-
|
16 |
-
class ResuRankAgent:
|
17 |
-
"""Autonomous AI Agent similar to Manus AI
|
18 |
-
|
19 |
-
This agent can:
|
20 |
-
1. Process user queries and generate responses
|
21 |
-
2. Perform reasoning through chain-of-thought
|
22 |
-
3. Execute tasks based on user instructions
|
23 |
-
4. Maintain conversation context
|
24 |
-
"""
|
25 |
-
|
26 |
-
def __init__(self, model_id="
|
27 |
-
"""Initialize the ResuRank Agent
|
28 |
-
|
29 |
-
Args:
|
30 |
-
model_id: Hugging Face model ID to use for the agent
|
31 |
-
use_cache: Whether to use cached models from Hugging Face Hub
|
32 |
-
|
33 |
-
|
34 |
-
self.
|
35 |
-
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
device_map="auto"
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
"
|
139 |
-
"
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
""
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
"""
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
r"i
|
251 |
-
r"i
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
r"
|
289 |
-
r"i
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
#
|
308 |
-
if
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
return
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
"""
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
"""
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
"""
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
"""
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
if
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
with gr.Row():
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
with gr.Column():
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
def
|
713 |
-
if not
|
714 |
-
return "
|
715 |
-
|
716 |
-
#
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
7 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
8 |
+
import json
|
9 |
+
from typing import Dict, List, Any, Optional, Union
|
10 |
+
|
11 |
+
# Import agent modules
|
12 |
+
from agent_reasoning import ReasoningEngine
|
13 |
+
from agent_tasks import TaskExecutor
|
14 |
+
from agent_memory import MemoryManager
|
15 |
+
|
16 |
+
class ResuRankAgent:
|
17 |
+
"""Autonomous AI Agent similar to Manus AI
|
18 |
+
|
19 |
+
This agent can:
|
20 |
+
1. Process user queries and generate responses
|
21 |
+
2. Perform reasoning through chain-of-thought
|
22 |
+
3. Execute tasks based on user instructions
|
23 |
+
4. Maintain conversation context
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, model_id="distilgpt2", use_cache=True, test_mode=False):
|
27 |
+
"""Initialize the ResuRank Agent
|
28 |
+
|
29 |
+
Args:
|
30 |
+
model_id: Hugging Face model ID to use for the agent
|
31 |
+
use_cache: Whether to use cached models from Hugging Face Hub
|
32 |
+
test_mode: Whether to run in test mode with minimal resources
|
33 |
+
"""
|
34 |
+
self.model_id = model_id
|
35 |
+
self.test_mode = test_mode
|
36 |
+
|
37 |
+
# Use CPU for test mode, otherwise check for CUDA
|
38 |
+
if test_mode:
|
39 |
+
self.device = "cpu"
|
40 |
+
print("Running in test mode on CPU with minimal resources")
|
41 |
+
else:
|
42 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
print(f"Using device: {self.device}")
|
44 |
+
|
45 |
+
# Load model and tokenizer from Hugging Face Hub
|
46 |
+
print(f"Loading model {model_id} from Hugging Face Hub...")
|
47 |
+
try:
|
48 |
+
# Configure model loading parameters based on mode
|
49 |
+
model_kwargs = {
|
50 |
+
"torch_dtype": torch.float32, # Use float32 for better compatibility
|
51 |
+
}
|
52 |
+
|
53 |
+
# Check if Accelerate is available for low_cpu_mem_usage and device_map
|
54 |
+
try:
|
55 |
+
import accelerate
|
56 |
+
model_kwargs["low_cpu_mem_usage"] = True
|
57 |
+
# Add device map only if not in test mode
|
58 |
+
if not test_mode:
|
59 |
+
model_kwargs["device_map"] = "auto"
|
60 |
+
if self.device == "cuda":
|
61 |
+
model_kwargs["torch_dtype"] = torch.float16
|
62 |
+
except ImportError:
|
63 |
+
print("Accelerate library not found, disabling low_cpu_mem_usage and device_map")
|
64 |
+
# Continue without these options
|
65 |
+
|
66 |
+
# Add cache directory if using cache
|
67 |
+
if use_cache:
|
68 |
+
model_kwargs["cache_dir"] = "./.cache"
|
69 |
+
print("Using cached models if available...")
|
70 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="./.cache")
|
71 |
+
else:
|
72 |
+
print("Downloading models from Hugging Face Hub...")
|
73 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id)
|
74 |
+
|
75 |
+
# Load the model with optimized parameters
|
76 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
|
77 |
+
|
78 |
+
print(f"Successfully loaded model {model_id}")
|
79 |
+
except Exception as e:
|
80 |
+
print(f"Error loading model: {str(e)}")
|
81 |
+
print("Falling back to smaller model...")
|
82 |
+
fallback_model = "distilgpt2" # Use a smaller model as fallback
|
83 |
+
self.model_id = fallback_model
|
84 |
+
|
85 |
+
try:
|
86 |
+
# Try loading the fallback model with minimal parameters
|
87 |
+
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model, cache_dir="./.cache")
|
88 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
89 |
+
fallback_model,
|
90 |
+
torch_dtype=torch.float32,
|
91 |
+
low_cpu_mem_usage=True,
|
92 |
+
cache_dir="./.cache"
|
93 |
+
)
|
94 |
+
print(f"Successfully loaded fallback model {fallback_model}")
|
95 |
+
except Exception as fallback_error:
|
96 |
+
print(f"Error loading fallback model: {str(fallback_error)}")
|
97 |
+
raise RuntimeError("Failed to load both primary and fallback models")
|
98 |
+
|
99 |
+
# Initialize agent components
|
100 |
+
self.reasoning_engine = ReasoningEngine(self.model, self.tokenizer, self.device)
|
101 |
+
self.memory_manager = MemoryManager(max_history_length=20)
|
102 |
+
self.task_executor = TaskExecutor(self.reasoning_engine)
|
103 |
+
|
104 |
+
def process_query(self, query: str, use_reasoning: bool = True) -> Dict[str, Any]:
|
105 |
+
"""Process a user query and generate a response
|
106 |
+
|
107 |
+
Args:
|
108 |
+
query: User query text
|
109 |
+
use_reasoning: Whether to use chain-of-thought reasoning
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
Dictionary containing response and metadata
|
113 |
+
"""
|
114 |
+
# Add query to conversation history
|
115 |
+
self.memory_manager.add_message("user", query)
|
116 |
+
|
117 |
+
start_time = time.time()
|
118 |
+
|
119 |
+
# Check if this is a task execution request
|
120 |
+
is_task_request = self._is_task_request(query)
|
121 |
+
|
122 |
+
# Process the query with appropriate method
|
123 |
+
if is_task_request:
|
124 |
+
# Handle as a task execution request
|
125 |
+
task_result = self.execute_task(query)
|
126 |
+
response = f"I've executed your task. {task_result.get('result', '')}\n\nStatus: {task_result.get('status', 'unknown')}"
|
127 |
+
reasoning = task_result.get('plan', '')
|
128 |
+
elif use_reasoning:
|
129 |
+
# Use chain-of-thought reasoning
|
130 |
+
# Enhance with context from memory
|
131 |
+
facts = self.memory_manager.format_facts_for_prompt()
|
132 |
+
context = self.memory_manager.format_conversation_for_prompt(max_turns=5)
|
133 |
+
|
134 |
+
# Create an enhanced query with context
|
135 |
+
enhanced_query = f"{facts}\n\nRecent conversation:\n{context}\n\nCurrent query: {query}"
|
136 |
+
|
137 |
+
result = self.reasoning_engine.chain_of_thought(enhanced_query)
|
138 |
+
response = result["answer"]
|
139 |
+
reasoning = result["reasoning"]
|
140 |
+
else:
|
141 |
+
# Simple response generation without reasoning
|
142 |
+
conversation_prompt = self.memory_manager.format_conversation_for_prompt(max_turns=10)
|
143 |
+
facts_prompt = self.memory_manager.format_facts_for_prompt()
|
144 |
+
|
145 |
+
prompt = f"{facts_prompt}\n\n{conversation_prompt}\nassistant: "
|
146 |
+
|
147 |
+
response = self.reasoning_engine.generate_text(prompt)
|
148 |
+
reasoning = None
|
149 |
+
|
150 |
+
# Add response to conversation history
|
151 |
+
self.memory_manager.add_message("assistant", response)
|
152 |
+
|
153 |
+
# Extract any important facts from the conversation
|
154 |
+
self._extract_facts(query, response)
|
155 |
+
|
156 |
+
processing_time = time.time() - start_time
|
157 |
+
|
158 |
+
return {
|
159 |
+
"response": response,
|
160 |
+
"reasoning": reasoning,
|
161 |
+
"processing_time": processing_time,
|
162 |
+
"timestamp": time.time()
|
163 |
+
}
|
164 |
+
|
165 |
+
def _is_task_request(self, query: str) -> bool:
|
166 |
+
"""Determine if a query is a task execution request
|
167 |
+
|
168 |
+
Args:
|
169 |
+
query: The user query
|
170 |
+
|
171 |
+
Returns:
|
172 |
+
True if the query appears to be a task request, False otherwise
|
173 |
+
"""
|
174 |
+
# Keywords that suggest a task execution request
|
175 |
+
task_keywords = [
|
176 |
+
"execute", "perform", "run", "do", "complete", "finish",
|
177 |
+
"task", "job", "work", "action", "operation", "function",
|
178 |
+
"can you", "please", "help me", "i need", "i want"
|
179 |
+
]
|
180 |
+
|
181 |
+
# Check if query contains task-related keywords
|
182 |
+
query_lower = query.lower()
|
183 |
+
for keyword in task_keywords:
|
184 |
+
if keyword in query_lower:
|
185 |
+
return True
|
186 |
+
|
187 |
+
return False
|
188 |
+
|
189 |
+
def _extract_facts(self, query: str, response: str) -> None:
|
190 |
+
"""Extract important facts from the conversation
|
191 |
+
|
192 |
+
Args:
|
193 |
+
query: User query
|
194 |
+
response: Agent response
|
195 |
+
"""
|
196 |
+
# Extract personal information
|
197 |
+
self._extract_personal_info(query)
|
198 |
+
|
199 |
+
# Extract preferences
|
200 |
+
self._extract_preferences(query)
|
201 |
+
|
202 |
+
# Extract task-related information
|
203 |
+
self._extract_task_info(query)
|
204 |
+
|
205 |
+
# Use the reasoning engine to identify important facts
|
206 |
+
self._extract_with_reasoning(query, response)
|
207 |
+
|
208 |
+
def _extract_personal_info(self, text: str) -> None:
|
209 |
+
"""Extract personal information from text
|
210 |
+
|
211 |
+
Args:
|
212 |
+
text: Text to extract information from
|
213 |
+
"""
|
214 |
+
text_lower = text.lower()
|
215 |
+
|
216 |
+
# Extract name
|
217 |
+
if "my name is" in text_lower or "i am called" in text_lower or "i'm called" in text_lower:
|
218 |
+
name_patterns = [
|
219 |
+
r"my name is ([\w\s]+)[.\,]?",
|
220 |
+
r"i am called ([\w\s]+)[.\,]?",
|
221 |
+
r"i'm called ([\w\s]+)[.\,]?"
|
222 |
+
]
|
223 |
+
|
224 |
+
for pattern in name_patterns:
|
225 |
+
name_match = re.search(pattern, text_lower)
|
226 |
+
if name_match:
|
227 |
+
name = name_match.group(1).strip()
|
228 |
+
self.memory_manager.add_important_fact(f"User's name is {name}", "user")
|
229 |
+
break
|
230 |
+
|
231 |
+
# Extract location
|
232 |
+
if "i am from" in text_lower or "i'm from" in text_lower or "i live in" in text_lower:
|
233 |
+
location_patterns = [
|
234 |
+
r"i am from ([\w\s]+)[.\,]?",
|
235 |
+
r"i'm from ([\w\s]+)[.\,]?",
|
236 |
+
r"i live in ([\w\s]+)[.\,]?"
|
237 |
+
]
|
238 |
+
|
239 |
+
for pattern in location_patterns:
|
240 |
+
location_match = re.search(pattern, text_lower)
|
241 |
+
if location_match:
|
242 |
+
location = location_match.group(1).strip()
|
243 |
+
self.memory_manager.add_important_fact(f"User is from {location}", "user")
|
244 |
+
break
|
245 |
+
|
246 |
+
# Extract profession/occupation
|
247 |
+
if "i work as" in text_lower or "i am a" in text_lower or "i'm a" in text_lower:
|
248 |
+
profession_patterns = [
|
249 |
+
r"i work as a[n]? ([\w\s]+)[.\,]?",
|
250 |
+
r"i am a[n]? ([\w\s]+)[.\,]?",
|
251 |
+
r"i'm a[n]? ([\w\s]+)[.\,]?"
|
252 |
+
]
|
253 |
+
|
254 |
+
for pattern in profession_patterns:
|
255 |
+
profession_match = re.search(pattern, text_lower)
|
256 |
+
if profession_match:
|
257 |
+
profession = profession_match.group(1).strip()
|
258 |
+
self.memory_manager.add_important_fact(f"User works as a {profession}", "user")
|
259 |
+
break
|
260 |
+
|
261 |
+
def _extract_preferences(self, text: str) -> None:
|
262 |
+
"""Extract user preferences from text
|
263 |
+
|
264 |
+
Args:
|
265 |
+
text: Text to extract information from
|
266 |
+
"""
|
267 |
+
text_lower = text.lower()
|
268 |
+
|
269 |
+
# Extract likes
|
270 |
+
if "i like" in text_lower or "i love" in text_lower or "i enjoy" in text_lower:
|
271 |
+
like_patterns = [
|
272 |
+
r"i like ([\w\s]+)[.\,]?",
|
273 |
+
r"i love ([\w\s]+)[.\,]?",
|
274 |
+
r"i enjoy ([\w\s]+)[.\,]?"
|
275 |
+
]
|
276 |
+
|
277 |
+
for pattern in like_patterns:
|
278 |
+
like_match = re.search(pattern, text_lower)
|
279 |
+
if like_match:
|
280 |
+
like = like_match.group(1).strip()
|
281 |
+
self.memory_manager.add_important_fact(f"User likes {like}", "user")
|
282 |
+
break
|
283 |
+
|
284 |
+
# Extract dislikes
|
285 |
+
if "i don't like" in text_lower or "i hate" in text_lower or "i dislike" in text_lower:
|
286 |
+
dislike_patterns = [
|
287 |
+
r"i don't like ([\w\s]+)[.\,]?",
|
288 |
+
r"i hate ([\w\s]+)[.\,]?",
|
289 |
+
r"i dislike ([\w\s]+)[.\,]?"
|
290 |
+
]
|
291 |
+
|
292 |
+
for pattern in dislike_patterns:
|
293 |
+
dislike_match = re.search(pattern, text_lower)
|
294 |
+
if dislike_match:
|
295 |
+
dislike = dislike_match.group(1).strip()
|
296 |
+
self.memory_manager.add_important_fact(f"User dislikes {dislike}", "user")
|
297 |
+
break
|
298 |
+
|
299 |
+
def _extract_task_info(self, text: str) -> None:
|
300 |
+
"""Extract task-related information from text
|
301 |
+
|
302 |
+
Args:
|
303 |
+
text: Text to extract information from
|
304 |
+
"""
|
305 |
+
text_lower = text.lower()
|
306 |
+
|
307 |
+
# Extract goals
|
308 |
+
if "my goal is" in text_lower or "i want to" in text_lower or "i need to" in text_lower:
|
309 |
+
goal_patterns = [
|
310 |
+
r"my goal is to ([\w\s]+)[.\,]?",
|
311 |
+
r"i want to ([\w\s]+)[.\,]?",
|
312 |
+
r"i need to ([\w\s]+)[.\,]?"
|
313 |
+
]
|
314 |
+
|
315 |
+
for pattern in goal_patterns:
|
316 |
+
goal_match = re.search(pattern, text_lower)
|
317 |
+
if goal_match:
|
318 |
+
goal = goal_match.group(1).strip()
|
319 |
+
self.memory_manager.add_important_fact(f"User's goal is to {goal}", "user")
|
320 |
+
break
|
321 |
+
|
322 |
+
def run_test_case(self) -> Dict[str, Any]:
|
323 |
+
"""Run a test case to demonstrate the agent's capabilities with minimal resources
|
324 |
+
|
325 |
+
This method is useful for testing the agent on resource-constrained environments
|
326 |
+
like Hugging Face Spaces or during development.
|
327 |
+
|
328 |
+
Returns:
|
329 |
+
Dictionary containing test results and performance metrics
|
330 |
+
"""
|
331 |
+
print("Running test case with minimal resources...")
|
332 |
+
start_time = time.time()
|
333 |
+
|
334 |
+
# Simple test query that doesn't require extensive reasoning
|
335 |
+
test_query = "What can you help me with?"
|
336 |
+
|
337 |
+
# Process the query with minimal settings
|
338 |
+
test_response = self.process_query(test_query, use_reasoning=False)
|
339 |
+
|
340 |
+
# Calculate performance metrics
|
341 |
+
processing_time = time.time() - start_time
|
342 |
+
memory_usage = self._estimate_memory_usage()
|
343 |
+
|
344 |
+
# Return test results
|
345 |
+
return {
|
346 |
+
"status": "success",
|
347 |
+
"model_id": self.model_id,
|
348 |
+
"device": self.device,
|
349 |
+
"test_query": test_query,
|
350 |
+
"test_response": test_response["response"],
|
351 |
+
"processing_time": processing_time,
|
352 |
+
"memory_usage_mb": memory_usage,
|
353 |
+
"timestamp": time.time()
|
354 |
+
}
|
355 |
+
|
356 |
+
def _estimate_memory_usage(self) -> float:
|
357 |
+
"""Estimate the memory usage of the model
|
358 |
+
|
359 |
+
Returns:
|
360 |
+
Estimated memory usage in MB
|
361 |
+
"""
|
362 |
+
try:
|
363 |
+
import psutil
|
364 |
+
process = psutil.Process(os.getpid())
|
365 |
+
memory_info = process.memory_info()
|
366 |
+
return memory_info.rss / (1024 * 1024) # Convert to MB
|
367 |
+
except ImportError:
|
368 |
+
return 0.0 # Return 0 if psutil is not available
|
369 |
+
|
370 |
+
def _extract_with_reasoning(self, query: str, response: str) -> None:
|
371 |
+
"""Use the reasoning engine to extract important facts
|
372 |
+
|
373 |
+
Args:
|
374 |
+
query: User query
|
375 |
+
response: Agent response
|
376 |
+
"""
|
377 |
+
# Only use this for longer queries to avoid unnecessary processing
|
378 |
+
if len(query) < 50:
|
379 |
+
return
|
380 |
+
|
381 |
+
extraction_prompt = f"""Extract important facts from this conversation:
|
382 |
+
|
383 |
+
User: {query}
|
384 |
+
Assistant: {response}
|
385 |
+
|
386 |
+
List of important facts (one per line):
|
387 |
+
1. """
|
388 |
+
|
389 |
+
try:
|
390 |
+
facts_text = self.reasoning_engine.generate_text(extraction_prompt, max_length=256)
|
391 |
+
|
392 |
+
# Parse the facts
|
393 |
+
for line in facts_text.split('\n'):
|
394 |
+
line = line.strip()
|
395 |
+
if line and (line[0].isdigit() or line.startswith('- ')):
|
396 |
+
# Remove numbering or bullet points
|
397 |
+
fact = re.sub(r'^\d+\.\s*|^-\s*', '', line).strip()
|
398 |
+
if fact and len(fact) > 10: # Only add substantial facts
|
399 |
+
self.memory_manager.add_important_fact(fact, "inference")
|
400 |
+
except Exception as e:
|
401 |
+
print(f"Error extracting facts with reasoning: {str(e)}")
|
402 |
+
# Continue without adding facts
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
def execute_task(self, task_description: str) -> Dict[str, Any]:
|
407 |
+
"""Execute a task based on the description
|
408 |
+
|
409 |
+
Args:
|
410 |
+
task_description: Description of the task to execute
|
411 |
+
|
412 |
+
Returns:
|
413 |
+
Dictionary containing task results and status
|
414 |
+
"""
|
415 |
+
return self.task_executor.execute_task(task_description)
|
416 |
+
|
417 |
+
def get_status(self) -> Dict[str, Any]:
|
418 |
+
"""Get the current status of the agent
|
419 |
+
|
420 |
+
Returns:
|
421 |
+
Dictionary containing agent status information
|
422 |
+
"""
|
423 |
+
memory_stats = self.memory_manager.get_memory_stats()
|
424 |
+
task_status = self.task_executor.get_task_status()
|
425 |
+
|
426 |
+
return {
|
427 |
+
"model_id": self.model_id,
|
428 |
+
"device": self.device,
|
429 |
+
"conversation_turns": memory_stats["conversation_turns"],
|
430 |
+
"important_facts": memory_stats["important_facts"],
|
431 |
+
"current_task": task_status["current_task"],
|
432 |
+
"task_status": task_status["status"]
|
433 |
+
}
|
434 |
+
|
435 |
+
def clear_conversation(self) -> None:
|
436 |
+
"""Clear the conversation history"""
|
437 |
+
self.memory_manager.clear_conversation_history()
|
438 |
+
|
439 |
+
def process_document(self, document_text: str, document_type: str = "resume") -> Dict[str, Any]:
|
440 |
+
"""Process a document (like a resume) and extract information
|
441 |
+
|
442 |
+
Args:
|
443 |
+
document_text: The text content of the document
|
444 |
+
document_type: The type of document (e.g., "resume", "job_description")
|
445 |
+
|
446 |
+
Returns:
|
447 |
+
Dictionary containing extracted information and analysis
|
448 |
+
"""
|
449 |
+
self.memory_manager.store_session_data(f"last_{document_type}", document_text)
|
450 |
+
start_time = time.time()
|
451 |
+
|
452 |
+
# Create a prompt for document analysis
|
453 |
+
analysis_prompt = f"""I need to analyze this {document_type} document and extract key information:
|
454 |
+
|
455 |
+
{document_text}
|
456 |
+
|
457 |
+
Detailed analysis:"""
|
458 |
+
|
459 |
+
# Generate analysis using reasoning engine
|
460 |
+
analysis = self.reasoning_engine.generate_text(analysis_prompt, max_length=1024)
|
461 |
+
|
462 |
+
# Extract structured information based on document type
|
463 |
+
if document_type.lower() == "resume":
|
464 |
+
extraction_prompt = f"""Based on this resume:
|
465 |
+
{document_text}
|
466 |
+
|
467 |
+
Extract the following information in a structured format:
|
468 |
+
1. Name:
|
469 |
+
2. Contact Information:
|
470 |
+
3. Education:
|
471 |
+
4. Work Experience:
|
472 |
+
5. Skills:
|
473 |
+
6. Projects:
|
474 |
+
7. Certifications:
|
475 |
+
8. Languages:
|
476 |
+
9. Key Strengths:
|
477 |
+
"""
|
478 |
+
elif document_type.lower() == "job_description":
|
479 |
+
extraction_prompt = f"""Based on this job description:
|
480 |
+
{document_text}
|
481 |
+
|
482 |
+
Extract the following information in a structured format:
|
483 |
+
1. Job Title:
|
484 |
+
2. Company:
|
485 |
+
3. Location:
|
486 |
+
4. Required Skills:
|
487 |
+
5. Required Experience:
|
488 |
+
6. Education Requirements:
|
489 |
+
7. Responsibilities:
|
490 |
+
8. Benefits:
|
491 |
+
9. Key Qualifications:
|
492 |
+
"""
|
493 |
+
else:
|
494 |
+
extraction_prompt = f"""Extract key information from this document:
|
495 |
+
{document_text}
|
496 |
+
|
497 |
+
Key information:
|
498 |
+
1. """
|
499 |
+
|
500 |
+
# Generate structured extraction
|
501 |
+
structured_info = self.reasoning_engine.generate_text(extraction_prompt, max_length=1024)
|
502 |
+
|
503 |
+
# Add important facts to memory
|
504 |
+
self._extract_document_facts(document_text, document_type, structured_info)
|
505 |
+
|
506 |
+
processing_time = time.time() - start_time
|
507 |
+
|
508 |
+
return {
|
509 |
+
"document_type": document_type,
|
510 |
+
"analysis": analysis,
|
511 |
+
"structured_info": structured_info,
|
512 |
+
"processing_time": processing_time,
|
513 |
+
"timestamp": time.time()
|
514 |
+
}
|
515 |
+
|
516 |
+
def _extract_document_facts(self, document_text: str, document_type: str, structured_info: str) -> None:
|
517 |
+
"""Extract important facts from a document and add them to memory
|
518 |
+
|
519 |
+
Args:
|
520 |
+
document_text: The text content of the document
|
521 |
+
document_type: The type of document
|
522 |
+
structured_info: Structured information extracted from the document
|
523 |
+
"""
|
524 |
+
# Extract key facts based on document type
|
525 |
+
if document_type.lower() == "resume":
|
526 |
+
# Extract name if present
|
527 |
+
name_match = re.search(r"Name:\s*([\w\s]+)\n", structured_info)
|
528 |
+
if name_match:
|
529 |
+
name = name_match.group(1).strip()
|
530 |
+
self.memory_manager.add_important_fact(f"Document contains resume for {name}", "document")
|
531 |
+
|
532 |
+
# Extract skills
|
533 |
+
skills_match = re.search(r"Skills:\s*([\w\s,\.\-\+]+)\n", structured_info)
|
534 |
+
if skills_match:
|
535 |
+
skills = skills_match.group(1).strip()
|
536 |
+
self.memory_manager.add_important_fact(f"Resume shows skills in: {skills}", "document")
|
537 |
+
|
538 |
+
# Extract education
|
539 |
+
education_match = re.search(r"Education:\s*([\w\s,\.\-\+]+)\n", structured_info)
|
540 |
+
if education_match:
|
541 |
+
education = education_match.group(1).strip()
|
542 |
+
self.memory_manager.add_important_fact(f"Resume shows education: {education}", "document")
|
543 |
+
|
544 |
+
elif document_type.lower() == "job_description":
|
545 |
+
# Extract job title
|
546 |
+
title_match = re.search(r"Job Title:\s*([\w\s]+)\n", structured_info)
|
547 |
+
if title_match:
|
548 |
+
title = title_match.group(1).strip()
|
549 |
+
self.memory_manager.add_important_fact(f"Document contains job description for {title}", "document")
|
550 |
+
|
551 |
+
# Extract required skills
|
552 |
+
skills_match = re.search(r"Required Skills:\s*([\w\s,\.\-\+]+)\n", structured_info)
|
553 |
+
if skills_match:
|
554 |
+
skills = skills_match.group(1).strip()
|
555 |
+
self.memory_manager.add_important_fact(f"Job requires skills in: {skills}", "document")
|
556 |
+
|
557 |
+
# Add general document fact
|
558 |
+
self.memory_manager.add_important_fact(f"Processed a {document_type} document", "system")
|
559 |
+
|
560 |
+
def rank_resumes(self, job_description: str, resumes: List[str]) -> Dict[str, Any]:
|
561 |
+
"""Rank multiple resumes against a job description
|
562 |
+
|
563 |
+
Args:
|
564 |
+
job_description: The job description text
|
565 |
+
resumes: List of resume texts to rank
|
566 |
+
|
567 |
+
Returns:
|
568 |
+
Dictionary containing rankings and analysis
|
569 |
+
"""
|
570 |
+
start_time = time.time()
|
571 |
+
|
572 |
+
# Process the job description first
|
573 |
+
job_result = self.process_document(job_description, "job_description")
|
574 |
+
job_analysis = job_result["structured_info"]
|
575 |
+
|
576 |
+
# Process each resume
|
577 |
+
resume_results = []
|
578 |
+
for i, resume in enumerate(resumes):
|
579 |
+
result = self.process_document(resume, "resume")
|
580 |
+
resume_results.append({
|
581 |
+
"index": i,
|
582 |
+
"text": resume,
|
583 |
+
"analysis": result["structured_info"]
|
584 |
+
})
|
585 |
+
|
586 |
+
# Create a ranking prompt
|
587 |
+
ranking_prompt = f"""I need to rank these resumes based on how well they match the job description.
|
588 |
+
|
589 |
+
Job Description Analysis:
|
590 |
+
{job_analysis}
|
591 |
+
|
592 |
+
Resumes:
|
593 |
+
"""
|
594 |
+
|
595 |
+
for i, result in enumerate(resume_results):
|
596 |
+
ranking_prompt += f"\nResume {i+1}:\n{result['analysis']}\n"
|
597 |
+
|
598 |
+
ranking_prompt += "\nRank these resumes from best to worst match for the job, with detailed reasoning for each:"
|
599 |
+
|
600 |
+
# Generate the ranking analysis
|
601 |
+
ranking_analysis = self.reasoning_engine.generate_text(ranking_prompt, max_length=2048)
|
602 |
+
|
603 |
+
# Generate a numerical scoring for each resume
|
604 |
+
scoring_prompt = f"""Based on my analysis of how well these resumes match the job description:
|
605 |
+
{ranking_analysis}
|
606 |
+
|
607 |
+
Assign a numerical score from 0-100 for each resume, where 100 is a perfect match:
|
608 |
+
|
609 |
+
Resume 1 Score:"""
|
610 |
+
|
611 |
+
scores_text = self.reasoning_engine.generate_text(scoring_prompt, max_length=512)
|
612 |
+
|
613 |
+
# Parse scores (simple regex approach)
|
614 |
+
scores = []
|
615 |
+
for i in range(len(resume_results)):
|
616 |
+
score_match = re.search(fr"Resume {i+1} Score:\s*(\d+)", scores_text)
|
617 |
+
if score_match:
|
618 |
+
scores.append(int(score_match.group(1)))
|
619 |
+
else:
|
620 |
+
# Default score if parsing fails
|
621 |
+
scores.append(50)
|
622 |
+
|
623 |
+
# Create the final rankings
|
624 |
+
rankings = []
|
625 |
+
for i, score in enumerate(scores):
|
626 |
+
rankings.append({
|
627 |
+
"resume_index": i,
|
628 |
+
"score": score,
|
629 |
+
"resume_text": resumes[i][:100] + "..." # Truncated for readability
|
630 |
+
})
|
631 |
+
|
632 |
+
# Sort by score (descending)
|
633 |
+
rankings.sort(key=lambda x: x["score"], reverse=True)
|
634 |
+
|
635 |
+
processing_time = time.time() - start_time
|
636 |
+
|
637 |
+
return {
|
638 |
+
"rankings": rankings,
|
639 |
+
"analysis": ranking_analysis,
|
640 |
+
"job_description": job_description,
|
641 |
+
"processing_time": processing_time
|
642 |
+
}
|
643 |
+
|
644 |
+
# Create the Gradio interface
|
645 |
+
def create_interface(test_mode=False):
|
646 |
+
"""Create the Gradio interface for the ResuRank AI Agent
|
647 |
+
|
648 |
+
Args:
|
649 |
+
test_mode: Whether to run in test mode with minimal resources
|
650 |
+
"""
|
651 |
+
# Initialize the agent with appropriate settings
|
652 |
+
if test_mode:
|
653 |
+
agent = ResuRankAgent(model_id="distilgpt2", use_cache=True, test_mode=True)
|
654 |
+
# Run a test case to verify functionality
|
655 |
+
test_results = agent.run_test_case()
|
656 |
+
print(f"Test results: {test_results}")
|
657 |
+
else:
|
658 |
+
agent = ResuRankAgent(model_id="google/flan-t5-base", use_cache=True)
|
659 |
+
|
660 |
+
with gr.Blocks(title="ResuRank AI Agent") as interface:
|
661 |
+
gr.Markdown("# ResuRank AI Agent")
|
662 |
+
gr.Markdown("An autonomous AI agent that can process queries, perform reasoning, and execute tasks.")
|
663 |
+
|
664 |
+
with gr.Tab("Chat"):
|
665 |
+
chatbot = gr.Chatbot(height=400)
|
666 |
+
msg = gr.Textbox(label="Your message", placeholder="Ask me anything...")
|
667 |
+
with gr.Row():
|
668 |
+
submit_btn = gr.Button("Submit")
|
669 |
+
clear_btn = gr.Button("Clear")
|
670 |
+
|
671 |
+
reasoning_checkbox = gr.Checkbox(label="Use reasoning", value=True)
|
672 |
+
|
673 |
+
if reasoning_checkbox.value:
|
674 |
+
reasoning_output = gr.Textbox(label="Reasoning", interactive=False)
|
675 |
+
else:
|
676 |
+
reasoning_output = gr.Textbox(label="Reasoning", interactive=False, visible=False)
|
677 |
+
|
678 |
+
def respond(message, chat_history, use_reasoning):
|
679 |
+
if not message.strip():
|
680 |
+
return chat_history, "", ""
|
681 |
+
|
682 |
+
# Process the query
|
683 |
+
result = agent.process_query(message, use_reasoning=use_reasoning)
|
684 |
+
|
685 |
+
# Update chat history
|
686 |
+
chat_history.append((message, result["response"]))
|
687 |
+
|
688 |
+
return chat_history, "", result.get("reasoning", "")
|
689 |
+
|
690 |
+
def clear_chat():
|
691 |
+
agent.clear_conversation()
|
692 |
+
return [], "", ""
|
693 |
+
|
694 |
+
# Set up event handlers
|
695 |
+
submit_btn.click(respond, [msg, chatbot, reasoning_checkbox], [chatbot, msg, reasoning_output])
|
696 |
+
msg.submit(respond, [msg, chatbot, reasoning_checkbox], [chatbot, msg, reasoning_output])
|
697 |
+
clear_btn.click(clear_chat, None, [chatbot, msg, reasoning_output])
|
698 |
+
reasoning_checkbox.change(lambda x: gr.update(visible=x), reasoning_checkbox, reasoning_output)
|
699 |
+
|
700 |
+
with gr.Tab("Task Execution"):
|
701 |
+
task_input = gr.Textbox(label="Task Description", placeholder="Describe the task to execute...")
|
702 |
+
execute_btn = gr.Button("Execute Task")
|
703 |
+
|
704 |
+
with gr.Row():
|
705 |
+
with gr.Column():
|
706 |
+
plan_output = gr.Textbox(label="Execution Plan", interactive=False)
|
707 |
+
with gr.Column():
|
708 |
+
results_output = gr.Textbox(label="Task Results", interactive=False)
|
709 |
+
|
710 |
+
task_status = gr.Textbox(label="Task Status", value="idle", interactive=False)
|
711 |
+
|
712 |
+
def execute_task(task_description):
|
713 |
+
if not task_description.strip():
|
714 |
+
return "No task provided.", "", "idle"
|
715 |
+
|
716 |
+
# Execute the task
|
717 |
+
result = agent.execute_task(task_description)
|
718 |
+
|
719 |
+
return result.get("plan", ""), result.get("result", ""), result.get("status", "")
|
720 |
+
|
721 |
+
# Set up event handlers
|
722 |
+
execute_btn.click(execute_task, task_input, [plan_output, results_output, task_status])
|
723 |
+
|
724 |
+
with gr.Tab("Agent Status"):
|
725 |
+
status_btn = gr.Button("Refresh Status")
|
726 |
+
|
727 |
+
with gr.Row():
|
728 |
+
with gr.Column():
|
729 |
+
model_info = gr.Textbox(label="Model Information", interactive=False)
|
730 |
+
with gr.Column():
|
731 |
+
conversation_info = gr.Textbox(label="Conversation Information", interactive=False)
|
732 |
+
|
733 |
+
def update_status():
|
734 |
+
status = agent.get_status()
|
735 |
+
model_text = f"Model ID: {status['model_id']}\nDevice: {status['device']}"
|
736 |
+
|
737 |
+
# Handle important_facts which might be an integer count or a list
|
738 |
+
important_facts_count = status['important_facts']
|
739 |
+
if isinstance(important_facts_count, list):
|
740 |
+
important_facts_count = len(important_facts_count)
|
741 |
+
|
742 |
+
conversation_text = f"Conversation Length: {status['conversation_turns']} turns\nImportant Facts: {important_facts_count}\nCurrent Task: {status['current_task'] or 'None'}\nTask Status: {status['task_status']}"
|
743 |
+
|
744 |
+
return model_text, conversation_text
|
745 |
+
|
746 |
+
# Set up event handlers
|
747 |
+
status_btn.click(update_status, None, [model_info, conversation_info])
|
748 |
+
|
749 |
+
# Initialize status on load
|
750 |
+
model_info.value, conversation_info.value = update_status()
|
751 |
+
|
752 |
+
with gr.Tab("Document Processing"):
|
753 |
+
with gr.Row():
|
754 |
+
with gr.Column():
|
755 |
+
document_input = gr.Textbox(label="Document Text", placeholder="Paste resume or job description text here...", lines=10)
|
756 |
+
document_type = gr.Radio(["resume", "job_description", "other"], label="Document Type", value="resume")
|
757 |
+
process_btn = gr.Button("Process Document")
|
758 |
+
|
759 |
+
with gr.Row():
|
760 |
+
with gr.Column():
|
761 |
+
analysis_output = gr.Textbox(label="Document Analysis", interactive=False, lines=10)
|
762 |
+
with gr.Column():
|
763 |
+
structured_output = gr.Textbox(label="Structured Information", interactive=False, lines=10)
|
764 |
+
|
765 |
+
def process_document(document_text, doc_type):
|
766 |
+
if not document_text.strip():
|
767 |
+
return "No document provided.", ""
|
768 |
+
|
769 |
+
# Process the document
|
770 |
+
result = agent.process_document(document_text, doc_type)
|
771 |
+
|
772 |
+
return result.get("analysis", ""), result.get("structured_info", "")
|
773 |
+
|
774 |
+
# Set up event handlers
|
775 |
+
process_btn.click(process_document, [document_input, document_type], [analysis_output, structured_output])
|
776 |
+
|
777 |
+
with gr.Tab("Resume Ranking"):
|
778 |
+
with gr.Row():
|
779 |
+
with gr.Column():
|
780 |
+
job_description_input = gr.Textbox(label="Job Description", placeholder="Paste job description here...", lines=8)
|
781 |
+
|
782 |
+
with gr.Row():
|
783 |
+
with gr.Column():
|
784 |
+
resume1_input = gr.Textbox(label="Resume 1", placeholder="Paste first resume here...", lines=6)
|
785 |
+
with gr.Column():
|
786 |
+
resume2_input = gr.Textbox(label="Resume 2", placeholder="Paste second resume here...", lines=6)
|
787 |
+
|
788 |
+
with gr.Row():
|
789 |
+
with gr.Column():
|
790 |
+
resume3_input = gr.Textbox(label="Resume 3 (Optional)", placeholder="Paste third resume here...", lines=6)
|
791 |
+
with gr.Column():
|
792 |
+
resume4_input = gr.Textbox(label="Resume 4 (Optional)", placeholder="Paste fourth resume here...", lines=6)
|
793 |
+
|
794 |
+
rank_btn = gr.Button("Rank Resumes")
|
795 |
+
|
796 |
+
ranking_output = gr.Textbox(label="Ranking Results", interactive=False, lines=15)
|
797 |
+
|
798 |
+
def rank_resumes(job_desc, resume1, resume2, resume3, resume4):
|
799 |
+
if not job_desc.strip() or not resume1.strip() or not resume2.strip():
|
800 |
+
return "Please provide at least a job description and two resumes."
|
801 |
+
|
802 |
+
# Collect all non-empty resumes
|
803 |
+
resumes = [r for r in [resume1, resume2, resume3, resume4] if r.strip()]
|
804 |
+
|
805 |
+
# Rank the resumes
|
806 |
+
result = agent.rank_resumes(job_desc, resumes)
|
807 |
+
|
808 |
+
# Format the results
|
809 |
+
output = "Resume Rankings (Best to Worst Match):\n\n"
|
810 |
+
|
811 |
+
for i, rank in enumerate(result["rankings"]):
|
812 |
+
resume_num = rank["resume_index"] + 1
|
813 |
+
score = rank["score"]
|
814 |
+
output += f"{i+1}. Resume {resume_num} - Score: {score}/100\n"
|
815 |
+
|
816 |
+
output += "\nDetailed Analysis:\n" + result["analysis"]
|
817 |
+
|
818 |
+
return output
|
819 |
+
|
820 |
+
# Set up event handlers
|
821 |
+
rank_btn.click(rank_resumes, [job_description_input, resume1_input, resume2_input, resume3_input, resume4_input], ranking_output)
|
822 |
+
|
823 |
+
return interface
|
824 |
+
|
825 |
+
# Launch the interface when run directly
|
826 |
+
if __name__ == "__main__":
|
827 |
+
import argparse
|
828 |
+
|
829 |
+
# Parse command line arguments
|
830 |
+
parser = argparse.ArgumentParser(description="ResuRank AI Agent")
|
831 |
+
parser.add_argument("--test", action="store_true", help="Run in test mode with minimal resources")
|
832 |
+
parser.add_argument("--share", action="store_true", help="Share the Gradio interface")
|
833 |
+
args = parser.parse_args()
|
834 |
+
|
835 |
+
# Create and launch the interface
|
836 |
+
interface = create_interface(test_mode=args.test)
|
837 |
+
interface.launch(share=args.share)
|