Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,27 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
6 |
model_id = "alphaoumardev/Llama3-8B-noryu-instruct"
|
7 |
|
8 |
-
|
9 |
-
|
|
|
10 |
model.eval()
|
11 |
|
12 |
-
#
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
model.to(device)
|
15 |
|
16 |
def chat(user_input, history=[]):
|
17 |
-
# Add user input to the history
|
18 |
history.append({"role": "user", "content": user_input})
|
19 |
|
20 |
-
# Format prompt
|
21 |
prompt = ""
|
22 |
for turn in history:
|
23 |
role = turn["role"]
|
@@ -38,24 +42,19 @@ def chat(user_input, history=[]):
|
|
38 |
)
|
39 |
|
40 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
-
|
42 |
-
# Extract just the assistant's reply
|
43 |
assistant_reply = output_text.split("assistant:")[-1].strip()
|
44 |
history.append({"role": "assistant", "content": assistant_reply})
|
45 |
|
46 |
-
#
|
47 |
chat_history = [(h["content"], history[i + 1]["content"]) for i, h in enumerate(history[:-1]) if h["role"] == "user"]
|
48 |
return chat_history, history
|
49 |
|
50 |
-
#
|
51 |
with gr.Blocks() as demo:
|
52 |
chatbot = gr.Chatbot()
|
53 |
-
state = gr.State([]) #
|
54 |
txt = gr.Textbox(show_label=False, placeholder="Type your message...")
|
55 |
|
56 |
-
|
57 |
-
return chat(user_message, history)
|
58 |
|
59 |
-
txt.submit(user_submit, [txt, state], [chatbot, state])
|
60 |
-
|
61 |
demo.launch()
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import torch
|
5 |
|
6 |
+
# Get the HF token from environment
|
7 |
+
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
8 |
+
|
9 |
+
# Your fine-tuned model
|
10 |
model_id = "alphaoumardev/Llama3-8B-noryu-instruct"
|
11 |
|
12 |
+
# Authenticate with token when loading tokenizer/model
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_token)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_token)
|
15 |
model.eval()
|
16 |
|
17 |
+
# Device setup
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
model.to(device)
|
20 |
|
21 |
def chat(user_input, history=[]):
|
|
|
22 |
history.append({"role": "user", "content": user_input})
|
23 |
|
24 |
+
# Format the prompt
|
25 |
prompt = ""
|
26 |
for turn in history:
|
27 |
role = turn["role"]
|
|
|
42 |
)
|
43 |
|
44 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
45 |
assistant_reply = output_text.split("assistant:")[-1].strip()
|
46 |
history.append({"role": "assistant", "content": assistant_reply})
|
47 |
|
48 |
+
# Gradio expects tuple list format for Chatbot display
|
49 |
chat_history = [(h["content"], history[i + 1]["content"]) for i, h in enumerate(history[:-1]) if h["role"] == "user"]
|
50 |
return chat_history, history
|
51 |
|
52 |
+
# Gradio Blocks UI
|
53 |
with gr.Blocks() as demo:
|
54 |
chatbot = gr.Chatbot()
|
55 |
+
state = gr.State([]) # memory of the conversation
|
56 |
txt = gr.Textbox(show_label=False, placeholder="Type your message...")
|
57 |
|
58 |
+
txt.submit(chat, [txt, state], [chatbot, state])
|
|
|
59 |
|
|
|
|
|
60 |
demo.launch()
|