Spaces:
Running
Running
File size: 30,035 Bytes
ac15cf4 1971175 5ef407f ee1b999 7b52df4 b077021 7b52df4 b077021 7b52df4 b077021 7b52df4 b077021 7b52df4 b077021 7b52df4 b077021 7b52df4 ee1b999 7b52df4 ee1b999 1971175 9181029 95d1ab7 9181029 95d1ab7 9181029 95d1ab7 9181029 95d1ab7 1971175 9181029 95d1ab7 9181029 5ef407f 21516b7 b47a3c3 21516b7 5ef407f ac15cf4 5ef407f 0aeab65 5ef407f ee1b999 5ef407f ee1b999 cd5338b ee1b999 ac15cf4 21516b7 3317293 21516b7 1971175 a0bf2a2 ee1b999 a0bf2a2 dd5281a 11de2f8 dd5281a 1971175 ee1b999 1971175 ee1b999 11de2f8 ee1b999 1971175 ee1b999 02a4349 ee1b999 1971175 ee1b999 1971175 37bf680 1971175 2972be9 1971175 b0bd18e a0bf2a2 b0bd18e a0bf2a2 1971175 011f79c b0bd18e 1971175 011f79c b0bd18e 1971175 011f79c b0bd18e 1971175 11de2f8 2972be9 7b52df4 2972be9 9832707 ac9171f ae05bbd ac9171f 9832707 ac9171f ae05bbd ac9171f 50fb0f5 ae05bbd 50fb0f5 ac9171f 0d80b6f b48ebfb cd5338b 37bf680 cd5338b 07dc6d3 cd5338b 37bf680 cd5338b 37bf680 cd5338b 37bf680 cd5338b 9a90879 37bf680 9a90879 ac15cf4 49b6cdd ac15cf4 cdccabc ac15cf4 9c18850 011f79c ac15cf4 011f79c 9c18850 50fb0f5 b392800 21516b7 b392800 21516b7 b392800 21516b7 0aeab65 21516b7 20c57a4 50fb0f5 20c57a4 50fb0f5 20c57a4 50fb0f5 20c57a4 50fb0f5 20c57a4 50fb0f5 afb9b4c c917078 afb9b4c c917078 afb9b4c c934393 1e64d2b 268d785 1e64d2b 268d785 1e64d2b 268d785 1e64d2b 268d785 1e64d2b 07dc6d3 28bc4e5 268d785 1e64d2b abb9f0a 07dc6d3 482c591 abb9f0a 482c591 c22c48e 7b52df4 17162c9 ac15cf4 b077021 17162c9 eeb1750 17162c9 5015459 17162c9 5015459 17162c9 eeb1750 17162c9 e31d809 ffbe9ce ee1b999 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
import re
def create_gradio_anchor_id(text: str, validation) -> str:
"""
Replicates the ID format created by gr.Markdown(header_links=True).
Example: "Paper Finder Validation" -> "h-paper-finder-validation"
"""
text = text.lower()
text = re.sub(r'\s+', '-', text) # Replace spaces with hyphens
text = re.sub(r'[^\w-]', '', text) # Remove non-word characters
if validation:
return f"h-{text}-leaderboard-1"
return f"h-{text}-leaderboard"
TITLE = """<h1 align="left" id="space-title">AstaBench Leaderboard</h1>"""
INTRO_PARAGRAPH = """
<p>
<strong>AstaBench</strong> provides an aggregated view of agent performance and efficiency across all benchmarks in all four categories. We report:
</p>
<ul class="info-list">
<li>
<strong>Overall score:</strong> A macro-average of the four category-level average scores. Each category contributes equally, regardless of how many benchmarks it includes. This ensures fair comparisons across agents with different domain strengths.
</li>
<li>
<strong>Overall cost:</strong> A macro-average of the agent’s cost per problem across all categories, in USD. Each category contributes equally.
</li>
</ul>
<p>
This view is designed for quick comparison of general-purpose scientific agents. For more details on how we calculate scores and cost, please see the <a href="/about" style="color: #0FCB8C; text-decoration: underline;">About</a> Page.
</p>
"""
SCATTER_DISCLAIMER = """
**Note:** Agents without cost data are displayed to the right of the vertical divider line.
"""
PARETO_DISCLAIMER = """
Agents names that are green are Pareto optimal, meaning they achieve the best performance for their cost.
"""
LIT_DESCRIPTION = """
The **Literature Understanding** category evaluates how well agents comprehend and interact with scientific literature—testing their ability to find research papers, assess citation quality, extract information from text, and more.
<br><br>
The scores shown below reflect performance aggregated across five distinct benchmarks, each targeting a different aspect of literature-based reasoning.
<br><br>
For detailed results, use the links above to explore individual benchmarks.
<br>
"""
CODE_EXECUTION_DESCRIPTION = """
The **Code & Execution** category in AstaBench includes tasks that evaluate an agent’s ability to write, modify, and run code in realistic research scenarios. Unlike literature tasks—which only require read-only tools and can sometimes even be solved by a language model alone—these problems often require the agent to manipulate a machine environment with tools: reading input files, executing code, and writing outputs to specific files in the required format.
<br><br>
The scores in this category are aggregated from three distinct benchmarks, each targeting different facets of scientific coding and execution. Together, these benchmarks evaluate whether an agent can function as a hands-on scientific assistant—not just by reasoning about code, but by running it in real-world contexts.
<br><br>
For detailed results, use the links above to explore individual benchmark pages.
<br>
"""
DATA_ANALYSIS_DESCRIPTION = """
The **Data Analysis** category evaluates agents on their ability to analyze structured datasets and generate meaningful scientific hypotheses. It currently includes a single benchmark, DiscoveryBench, so the category-level scores are the same as the benchmark-level results.
<br><br>
As additional benchmarks are added in the future, this category will expand to cover a broader range of data-driven reasoning tasks across scientific domains.
<br>
"""
DISCOVERY_DESCRIPTION = """
The **End-to-End Discovery** category tests whether agents can carry out a complete scientific workflow, from task description to experiment design, code execution, results analysis, and report writing. These tasks require agents to integrate multiple capabilities, producing not just answers but full research artifacts.
<br><br>
Scores in this category are aggregated from two benchmarks, providing the first standardized way to evaluate automated scientific discovery (ASD) agents across all stages of the research process. Use the links above to explore individual benchmark pages.
<br>
"""
SUBMISSION_CONFIRMATION = """
**Your agent has been submitted to AstaBench for evaluation.**
<br><br>
🙏 Thanks for contributing!
<br><br>
You'll receive a confirmation email from our team within 2 business days with next steps. We will reach out to you directly if further information is needed.
<br><br>
We appreciate your support in advancing scientific AI.
"""
# External URLs for benchmark descriptions
SCHOLAR_QA_CS_URL = "https://www.semanticscholar.org/paper/OpenScholar%3A-Synthesizing-Scientific-Literature-LMs-Asai-He/b40df4b273f255b3cb5639e220c8ab7b1bdb313e"
LITQA2_URL = "https://www.semanticscholar.org/paper/Language-agents-achieve-superhuman-synthesis-of-Skarlinski-Cox/fa5f9aa1cb6f97654ca8e6d279ceee1427a87e68"
ARXIV_DIGESTABLES_URL = "https://www.semanticscholar.org/paper/ArxivDIGESTables%3A-Synthesizing-Scientific-into-Newman-Lee/c7face35e84f2cb04fb1600d54298799aa0ed189"
SUPER_URL = "https://www.semanticscholar.org/paper/SUPER%3A-Evaluating-Agents-on-Setting-Up-and-Tasks-Bogin-Yang/053ef8299988680d47df36224bfccffc817472f1"
CORE_BENCH_URL = "https://www.semanticscholar.org/paper/CORE-Bench%3A-Fostering-the-Credibility-of-Published-Siegel-Kapoor/4c913d59d150fe7581386b87dfd9f90448a9adee"
DS1000_URL = "https://arxiv.org/abs/2211.11501"
DISCOVERY_BENCH_URL = "https://www.semanticscholar.org/paper/DiscoveryBench%3A-Towards-Data-Driven-Discovery-with-Majumder-Surana/48c83799530dc523ee01e6c1c40ad577d5c10a16"
# Helper function to create external links
def external_link(url, text, is_s2_url=False):
url = f"{url}?utm_source=asta_leaderboard" if is_s2_url else url
return f"<a href='{url}' target='_blank' rel='noopener noreferrer'>{text}</a>"
def internal_leaderboard_link(text, validation):
anchor_id = create_gradio_anchor_id(text, validation)
return f"<a href='#{anchor_id}'>{text}</a>"
# Function to get benchmark descriptions with validation flag
def get_benchmark_description(benchmark_name, validation):
descriptions = {
'PaperFindingBench': (
"PaperFindingBench assesses an agent's ability to locate sets of papers based on a natural language "
"description that may involve both the papers' content and metadata, such as the author or publication year."
),
'LitQA2-FullText-Search': (
f"A version of {internal_leaderboard_link('LitQA2-FullText', validation)} that isolates the retrieval aspect of the task. "
f"This benchmark features the same multi-choice questions as {internal_leaderboard_link('LitQA2-FullText', validation)}, but the agent is not evaluated on answering the actual question "
"but rather on providing a ranked list of papers in which the answer is likely to be found."
),
'ScholarQA-CS2': (
"ScholarQA-CS2 assesses long-form model responses to literature review questions in the domain of computer science. "
"Answers are expected to be comprehensive reports, such as those produced by deep research systems. "
f"This benchmark advances on the previously released {external_link(SCHOLAR_QA_CS_URL, 'ScholarQA-CS', is_s2_url=True)} "
"by using queries from real-world usage, and introducing new evaluation methods for coverage and precision "
"of both the report text and its citations."
),
'LitQA2-FullText': (
f"{external_link(LITQA2_URL, 'LitQA2', is_s2_url=True)}, a benchmark introduced by FutureHouse, gauges a model's ability to answer questions that require document retrieval from the scientific literature. "
"It consists of multiple-choice questions that necessitate finding a unique paper and analyzing its detailed full text to spot precise information; these questions cannot be answered from a paper’s abstract. "
"While the original version of the benchmark provided for each question the title of the paper in which the answer can be found, it did not specify the overall collection to search over. In our version, "
"we search over the index we provide as part of the Asta standard toolset. The “-FullText” suffix indicates we consider only the subset of LitQA2 questions for which "
"the full-text version of the answering paper is open source and available in our index."
),
'ArxivDIGESTables-Clean': (
f"{external_link(ARXIV_DIGESTABLES_URL, 'ArxivDIGESTables', is_s2_url=True)} assesses the ability of models to construct literature review tables, i.e., tables whose rows are papers and whose columns constitute a set of "
"aspects used to compare and contrast the papers. The goal is to construct such tables given a set of related papers and a table caption describing the user's goal. Generated tables are evaluated by "
"comparing them to actual tables published in ArXiv papers. The “-Clean” suffix indicates a curated subset of ArxivDIGESTables which drops tables that are either trivial or impossible to reconstruct from full-texts."
),
'SUPER-Expert': (
"SUPER-Expert evaluates the capability of models in setting up and executing tasks from low-resource "
"research repositories—centralized databases containing research data and related materials. "
f"The \"-Expert\" split indicates the name of the most challenging split in the {external_link(SUPER_URL, 'original SUPER benchmark', is_s2_url=True)} "
"that involves solving reproduction tasks from scratch and without any intermediate hints or details "
"about the important landmarks involved in each task."
),
'CORE-Bench-Hard': (
"Core-Bench-Hard tests computational reproducibility, a task involving reproducing the results of a study "
"using provided code and data. It consists of both language-only and vision-language challenges across "
"multiple difficulty levels. "
f"The \"-Hard\" split refers to the name of the most challenging split in the original {external_link(CORE_BENCH_URL, 'Core-bench benchmark', is_s2_url=True)} "
"where only a README file is provided with no instructions or an auxiliary Dockerfile."
),
'DS-1000': (
"DS-1000 is an established code generation benchmark containing Python data science coding questions "
"originally sourced from StackOverflow. It's designed to reflect an array of diverse, realistic, and "
"practical use cases and directly involves many of the Python libraries commonly used in data science "
f"and machine learning research. We split the original {external_link(DS1000_URL, 'dataset')} "
"into 100 validation and 900 test problems."
),
'DiscoveryBench': (
"DiscoveryBench is the first comprehensive benchmark to formalize the multi-step process of data-driven "
"analysis and discovery (i.e., data loading, transformation, statistical analysis, and modeling). "
f"Originally introduced {external_link(DISCOVERY_BENCH_URL, 'here', is_s2_url=True)}, it is designed to systematically "
"evaluate how well current LLMs can replicate or reproduce published scientific findings across diverse "
"domains, including social science, biology, history, and more."
),
'E2E-Bench': (
"E2E-Bench is the \"decathlon\" of AI-assisted research. It measures whether a system can run the entire "
"research pipeline, starting with an initial task description, to designing and performing (software) "
"experiments, to analyzing and writing up the results."
),
'E2E-Bench-Hard': (
f"E2E-Bench-Hard is a more challenging variant of {internal_leaderboard_link('E2E-Bench', validation)}. Tasks are generated using the HypER system, "
"which identifies research trends and proposes new, underexplored problems. Unlike the regular version, "
"these tasks are not simplified or curated for accessibility; they are reviewed only for feasibility. "
"This version is intended to test whether systems can handle more complex and less-structured research "
f"scenarios, following the same end-to-end process as {internal_leaderboard_link('E2E-Bench', validation)}."
)
}
return descriptions.get(benchmark_name, "")
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@article{asta-bench,
title={AstaBench},
author={AstaBench folks},
year={2025},
eprint={TBD.TBD},
archivePrefix={arXiv},
primaryClass={cs.AI},
secondaryClass={cs.CL}
}"""
LEGAL_DISCLAIMER_TEXT = """
<h2>Terms and Conditions</h2>
<p>
The Allen Institute for Artificial Intelligence (Ai2) maintains this repository for agent evaluation submissions to AstaBench. To keep AstaBench fair and auditable, all evaluation logs and associated submission files will be made publicly available. This includes your benchmark inputs, model output responses, and other data and information related to your submission as needed to verify the results.
</p>
<br>
<p>
Your submissions to AstaBench will be posted, scored, and ranked on the leaderboard at <a href="https://huggingface.co/spaces/allenai/asta-bench-leaderboard" target="_blank" rel="noopener noreferrer">https://huggingface.co/spaces/allenai/asta-bench-leaderboard</a>. You agree you have the rights to the materials you submit and that you will not share any personal, sensitive, proprietary, or confidential information.
</p>
"""
def format_error(msg):
return f"<p style='color: red; font-size: 20px; text-align: center;'>{msg}</p>"
def format_warning(msg):
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{msg}</p>"
def format_log(msg):
return f"<p style='color: green; font-size: 20px; text-align: center;'>{msg}</p>"
def hyperlink(link_url: str, text: str = "🔗") -> str:
if not link_url or not isinstance(link_url, str):
return str(text) # Or simply "" if link_url is bad
return f'<a target="_blank" href="{link_url}">{text}</a>'
def hf_uri_to_web_url(uri: str) -> str:
"""
Convert a Hugging Face-style URI like:
hf://datasets/{namespace}/{repo}/{path...}
into a public web URL:
https://huggingface.co/datasets/{namespace}/{repo}/tree/main/{path...}
"""
prefix = "hf://datasets/"
if not uri.startswith(prefix):
raise ValueError("URI must start with 'hf://datasets/'")
parts = uri[len(prefix) :].split("/", 2)
if len(parts) < 3:
raise ValueError("Expected format: hf://datasets/{namespace}/{repo}/{path...}")
namespace, repo, path = parts
return f"https://huggingface.co/datasets/{namespace}/{repo}/tree/main/{path}"
css = """
/* CSS Color Variables using Gradio theme */
:root {
--color-primary-green: var(--primary-900); /* #0FCB8C */
--color-primary-pink: var(--secondary-900); /* #f0529c */
--color-neutral-light: var(--neutral-200); /* #C9C9C3 */
--color-background-light: var(--neutral-50); /* #FAF2E9 */
--color-background-dark: var(--neutral-900); /* #032629 */
--color-text-light: var(--neutral-50); /* #FAF2E9 */
}
/* This makes space for the huggingface header bar which must shown on HF spaces. */
/* FIXME Media queries don't seem to survive rendering. */
/* @media (min-width: 768px) { ... } */
gradio-app {
padding-top: 65px;
}
/* Global Styles */
h2 {
overflow: hidden;
}
#intro-paragraph {
font-size: 18px;
max-width: 90%;
padding-left: 35px;
margin-top: 20px;
}
#intro-paragraph p,
#intro-paragraph li {
font-size: 16px;
line-height: 1.8;
}
#intro-paragraph ul {
margin-top: 20px;
margin-bottom: 20px;
}
#diagram-image {
height: 100%;
}
#diagram-image img {
width: 100%;
height: 100%;
object-fit: cover;
}
#intro-category-paragraph {
font-size: 18px;
max-width: 90%;
margin-top: 20px;
}
#intro-category-paragraph p,
#intro-category-paragraph li {
font-size: 16px;
line-height: 1.8;
}
#intro-category-paragraph ul {
margin-top: 20px;
margin-bottom: 20px;
}
#about-content {
font-size: 18px;
max-width: 60%;
padding-left: 25px;
}
#category-intro {
font-size: 18px;
max-width: 60%;
}
#logo-image {
margin: 0;
margin-bottom: 30px;
justify-content: flex-start;
max-width: 250px;
height: auto;
}
#page-content-wrapper{
padding-left: 25px;
}
.table-component{
height: auto !important;
max-height: none !important;
}
.table-wrap {
max-height: none !important;
height: auto !important;
overflow-y: visible !important;
}
/* --- New Rules for Table Density --- */
table.gr-table th, table.gr-table td {
padding: 4px 4px !important;
width: 1%;
white-space: nowrap;
}
table.svelte-1e98i6s td {
vertical-align: top !important;
}
table.gr-table {
font-size: 14px !important;
}
.html-container {
padding-top: 0 !important;
}
#scatter-disclaimer {
overflow: visible !important;
}
#pareto-disclaimer {
color: #f0529c !important;
}
thead.svelte-1e98i6s th {
background: white !important;
}
.dark thead.svelte-1e98i6s th {
background: #091a1a !important;
}
.cell-wrap.svelte-v1pjjd {
font-family: 'Manrope';
}
nav.svelte-ti537g.svelte-ti537g {
justify-content: flex-start;
}
.nav-holder {
padding-left: 20px !important;
}
#legend-markdown span {
margin-right: 15px !important;
}
#leaderboard-accordion .label-wrap {
font-size: 1.4rem !important;
z-index: 10 !important;
position: relative !important;
}
.dark #leaderboard-accordion .label-wrap {
color: #0FCB8C !important;
}
.dark block.svelte-1svsvh2 {
background: #032629 !important;
}
.padding.svelte-phx28p {
padding: 0 !important;
}
.sub-nav-bar-container {
display: flex !important;
flex-wrap: wrap !important;
align-items: center !important;
gap: 10px !important;
}
.dark .primary-link-button {
color: var(--color-primary-green);
}
.primary-link-button {
background: none;
border: none;
padding: 0;
margin: 0;
font-family: inherit;
font-size: 16px;
color: var(--color-primary-pink);
text-decoration: none;
cursor: pointer;
white-space: nowrap;
}
.primary-link-button:hover {
text-decoration: underline;
}
.sub-nav-label {
font-weight: bold;
font-size: 16px;
display: flex;
align-items: center;
}
.wrap-header-df th span{
white-space: normal !important;
word-break: normal !important;
overflow-wrap: break-word !important;
line-height: 1.2 !important;
vertical-align: top !important;
font-size: 12px !important;
font-family: 'Manrope';
}
.wrap-header-df th {
height: auto !important;
}
.wrap-header-df .cell-wrap img {
width: 16px;
height: 16px;
vertical-align: middle;
}
#legend-markdown img {
width: 16px;
height: 16px;
vertical-align: middle;
}
/*------ Global tooltip styles ------*/
.tooltip-icon {
display: inline-block;
cursor: help;
position: relative;
}
.tooltip-icon::after {
content: attr(data-tooltip);
position: absolute;
bottom: 125%;
background-color: #105257;
color: #fff;
padding: 10px;
border-radius: 4px;
font-size: 12px;
opacity: 0;
transition: opacity 0.2s;
white-space: pre-line;
width: max-content;
text-align: left;
pointer-events: none;
max-width: 300px;
left: 50%;
transform: translateX(-50%);
z-index: 1000;
}
@media (max-width: 768px) {
.tooltip-icon::after {
max-width: 250px;
}
}
.tooltip-icon:hover::after {
opacity: 1;
}
/*------ Openness label tooltip styles ------*/
.styler,
#openness-label-html,
#agent-tooling-label-html {
overflow: visible !important;
}
/*------ Table cell tooltip styles ------*/
.wrap.default.full,
span.wrap[tabindex="0"][role="button"][data-editable="false"] {
overflow: visible !important;
}
.cell-tooltip-icon::after {
height: fit-content;
top: 125%;
}
/*------ Table column description tooltip styles ------*/
#legend-markdown,
#leaderboard-accordion {
overflow: visible !important;
}
/* --- inside table tooltips --- */
.native-tooltip-icon {
cursor: help;
text-decoration: underline dotted 1px;
}
/* Main Nav bar styling */
.nav-holder nav {
display: grid !important;
grid-template-columns: auto auto auto auto auto 1fr auto auto !important;
gap: 10px 20px !important; /* Vertical and horizontal spacing */
width: 100% !important;
align-items: center;
}
.nav-holder nav a[href*="about"] {
grid-row: 1 !important;
grid-column: 7 !important;
}
.nav-holder nav a[href*="submit"] {
grid-row: 1 !important;
grid-column: 8 !important;
white-space: nowrap !important;
}
/* Divider line between header and category nav */
.nav-holder nav::after {
content: ''; /* Required for pseudo-elements to appear */
background-color: #C9C9C3;
height: 1px;
grid-row: 2 !important;
grid-column: 1 / -1 !important;
}
/* Horizontal scrolling for navigation */
.nav-holder nav {
overflow-x: auto;
scrollbar-width: none;
-ms-overflow-style: none;
}
.nav-holder nav::-webkit-scrollbar {
display: none;
}
/* Category navigation buttons in row 3 */
.nav-holder nav a[href*="literature-understanding"],
.nav-holder nav a[href*="code-execution"],
.nav-holder nav a[href*="data-analysis"],
.nav-holder nav a[href*="discovery"] {
grid-row: 3 !important;
justify-self: center !important;
width: fit-content !important;
white-space: nowrap;
flex-shrink: 0;
}
.nav-holder nav a[href*="literature-understanding"] { grid-column: 1 !important; }
.nav-holder nav a[href*="code-execution"] { grid-column: 2 !important; }
.nav-holder nav a[href*="data-analysis"] { grid-column: 3 !important; }
.nav-holder nav a[href*="discovery"] { grid-column: 4 !important; }
/* Navigation hover styles */
.nav-holder nav a[href*="about"]:hover,
.nav-holder nav a[href*="submit"]:hover,
.nav-holder nav a[href*="literature-understanding"]:hover,
.nav-holder nav a[href*="code-execution"]:hover,
.nav-holder nav a[href*="data-analysis"]:hover,
.nav-holder nav a[href*="discovery"]:hover {
background-color: #FDF9F4;
}
.dark .nav-holder nav a[href*="about"]:hover,
.dark .nav-holder nav a[href*="submit"]:hover,
.dark .nav-holder nav a[href*="literature-understanding"]:hover,
.dark .nav-holder nav a[href*="code-execution"]:hover,
.dark .nav-holder nav a[href*="data-analysis"]:hover,
.dark .nav-holder nav a[href*="discovery"]:hover {
background-color: #1C3A3C;
}
.benchmark-main-subtitle{
color: var(--color-primary-green);
overflow: hidden;
padding-top: 120px;
}
.benchmark-title{
color: var(--color-primary-pink);
margin-top: 50px;
font-size: 20px;
}
.dark .benchmark-title{
color: var(--color-primary-green);
}
.benchmark-description {
margin: 20px 0;
max-width: 800px;
}
/*------ Submission Page CSS ------*/
#submission-modal .modal-container,
#success-modal .modal-container {
height: auto;
max-width: 600px;
}
#submission-modal-content,
#success-modal .submission-modal-content {
padding: 20px;
background-color: inherit;
border-radius: 8px;
text-align: center;
}
#submission-modal-content p,
#success-modal .submission-modal-content p {
font-size: 16px;
}
#legal-modal-content {
padding: 30px;
background-color: inherit;
border-radius: 8px;
text-align: left;
font-size: 14px;
}
#legal-modal-content h2 {
text-align: center;
}
#legal-modal-content button {
width: fit-content;
}
.spinner-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
padding: 30px;
}
.spinner {
width: 50px;
height: 50px;
border: 5px solid #dee2e6;
border-top: 5px solid #007bff;
border-radius: 50%;
animation: spin 1s linear infinite;
margin-bottom: 20px;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
#submission-page-container {
max-width: 800px;
margin: 0 auto;
}
#submission-file-label {
padding: 10px;
}
#submission-button {
max-width: fit-content;
font-size: 14px;
}
.custom-form-group {
border: 1px solid #000 !important;
border-radius: 4px !important;
padding: 24px !important;
overflow: visible !important;
}
#openness-label-html,
#agent-tooling-label-html,
#agent-info-label-html,
#submitter-info-label-html,
#username-label-html,
#email-label-html,
#role-label-html {
padding-left: 12px;
}
.form-label {
margin: 4px 0px 0px 6px;
}
.form-label-fieldset {
padding-top: 10px !important;
}
#agent-tooling-label-html {
padding-top: 6px;
}
.custom-form-group,
.styler {
background: none;
}
#feedback-button {
display: inline-block;
background-color: #345d60;
color: white;
border: none;
border-radius: 4px;
padding: 15px 20px;
font-size: 16px;
cursor: pointer;
transition: all 0.3s ease;
text-decoration: none;
}
#feedback-button:hover {
background-color: #5d888b;
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
}
.dark #main-header h2 {
color: #0fcb8c;
}
#main-header h2 {
color: #f0529c;
}
/* --- New HTML-Based Tooltip Styles --- */
.tooltip-icon-legend {
position: relative;
cursor: help;
display: inline-block;
}
/* The HTML pop-up card tooltips.*/
.tooltip-card {
/* Hiding mechanism */
opacity: 0;
visibility: hidden;
transition: opacity 0.2s;
pointer-events: none;
/* Card appearance */
position: fixed;
z-index: 1000;
background-color: #083c40;
color: #e5e7eb;
border-radius: 12px;
padding: 15px;
width: max-content;
max-width: 400px;
text-align: left;
}
.tooltip-card.visible {
opacity: 1;
visibility: visible;
}
.tooltip-card h3 {
font-size: 18px;
color: #fff;
margin-top: 0;
margin-bottom: 12px;
}
.tooltip-card .tooltip-description {
margin-bottom: 20px;
line-height: 1.3;
}
.tooltip-card .tooltip-items-container {
display: flex;
flex-direction: column;
gap: 10px;
}
.tooltip-card .tooltip-legend-item {
display: flex;
align-items:
flex-start;
gap: 10px;
}
.tooltip-card .tooltip-legend-item img {
width: 20px;
height: 20px;
margin-top: 2px;
}
.tooltip-card .tooltip-legend-item div {
display: flex;
flex-direction: column;
}
.tooltip-card .tooltip-legend-item strong {
font-weight: 600;
color: #fff;
}
.tooltip-card .tooltip-legend-item span {
font-size: 13px;
line-height: 1.3;
}
.tooltip-sub-list {
list-style-type: '• ';
padding-left: 18px;
font-size: 13px;
line-height: 1.3;
display: flex;
flex-direction: column;
}
.table-legend-item {
display: flex;
align-items: center;
white-space: nowrap;
margin-top: 8px;
flex-wrap: wrap;
}
/* About Page CSS */
#about-page-content-wrapper {
margin-left: auto;
margin-right: auto;
max-width: 800px;
padding: 0 24px;
display: flex;
flex-direction: column;
gap: 40px;
margin-top: 40px;
opacity: 85%;
margin-bottom: 60px;
}
.link-buttons-container {
display: flex;
flex-wrap: wrap; /* Allows buttons to stack on very narrow screens */
gap: 16px;
margin-top: 16px;
}
.link-button {
display: flex;
justify-content: space-between;
align-items: center;
flex-grow: 1;
background-color: #083c40;
padding: 16px 20px;
font-weight: 600;
border-radius: 12px;
text-decoration: none;
transition: background-color 0.2s ease-in-out;
}
.link-button:hover {
background-color: #0a4c52;
}
.external-link-icon {
font-size: 20px;
line-height: 1;
margin-left: 12px;
}
#leaderboard-accordion table {
width: auto !important;
margin-right: auto !important;
}
.info-list {
padding-left: 20px;
}
/* Smooth scrolling for the entire page */
html {
scroll-behavior: smooth;
}
/* Home Page Styling */
.diagram-placeholder {
width: 100%;
height: 100%;
min-height: 250px;
display: flex;
align-items: center;
justify-content: center;
background-color: #FAF2E9;
color: #F0529C;
border-radius: 8px;
font-size: 14px;
text-align: center;
}
/* 2. Responsive behavior for smaller screens */
@media (max-width: 900px) {
#intro-row {
flex-direction: column;
}
}
/* Plot legend styles */
.plot-legend-container {
min-height: 572px;
background-color: #fff;
padding: 24px 32px;
border: 1px solid black;
border-radius: 4px;
}
.dark .plot-legend-container {
background: rgba(250, 242, 233, 0.1);
border-color: rgb(159, 234, 209);
}
#plot-legend-logo {
margin-bottom: 24px;
}
#plot-legend-logo img {
height: 19px;
}
.plot-legend-category-heading {
font-size: 16px;
font-weight: 700;
}
.plot-legend-item {
display: flex;
margin-top: 8px;
}
.plot-legend-item-text .description {
color: #888;
font-size: 12px;
}
.plot-legend-item-svg {
margin-top: 3px;
width: 14px;
height: 14px;
margin-right: 8px;
}
.plot-legend-tooling-svg {
height: 16px;
width: 16px;
margin-top: 2px;
}
#plot-legend-item-pareto-svg {
width: 18px;
height: 18px;
margin-right: 2px;
}
h3 .header-link-icon {
font-size: 12px;
vertical-align: text-top;
margin-left: 6px;
text-decoration: none;
}
/* Targets all "overall stats" columns in the main leaderboard for each category */
#main-leaderboard td:nth-child(6) .prose,
#main-leaderboard td:nth-child(7) .prose {
font-weight: 700 !important;
}
"""
|