Spaces:
Sleeping
Sleeping
abhinav kumar
commited on
Commit
·
06b991f
1
Parent(s):
3c22404
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
|
7 |
+
housing = pd.read_csv("housing.csv")
|
8 |
+
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
|
9 |
+
|
10 |
+
## 2. clean the missing values
|
11 |
+
train_set_clean = train_set.dropna(subset=["total_bedrooms"])
|
12 |
+
train_set_clean
|
13 |
+
|
14 |
+
## 2. derive training features and training labels
|
15 |
+
train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
|
16 |
+
train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
|
17 |
+
|
18 |
+
|
19 |
+
## 4. scale the numeric features in training set
|
20 |
+
from sklearn.preprocessing import MinMaxScaler
|
21 |
+
scaler = MinMaxScaler() ## define the transformer
|
22 |
+
scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
|
23 |
+
|
24 |
+
train_features_normalized = scaler.transform(train_features)
|
25 |
+
train_features_normalized
|
26 |
+
|
27 |
+
from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
|
28 |
+
lin_reg = LinearRegression() ## Initialize the class
|
29 |
+
lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
|
30 |
+
|
31 |
+
import numpy as np
|
32 |
+
def predict_price(input1, input2, input3, input4, input5, input6, input7, input8):
|
33 |
+
features = np.array([[float(input1), float(input2), float(input3), float(input4), float(input5), float(input6), float(input7), float(input8)]])
|
34 |
+
print("recived features are: ", features)
|
35 |
+
price = lin_reg.predict(features)
|
36 |
+
return price
|
37 |
+
|
38 |
+
input_module1 = gr.inputs.Textbox(label = "Input Feature 1")
|
39 |
+
input_module2 = gr.inputs.Textbox(label = "Input Feature 2")
|
40 |
+
input_module3 = gr.inputs.Textbox(label = "Input Feature 3")
|
41 |
+
input_module4 = gr.inputs.Textbox(label = "Input Feature 4")
|
42 |
+
input_module5 = gr.inputs.Textbox(label = "Input Feature 5")
|
43 |
+
input_module6 = gr.inputs.Textbox(label = "Input Feature 6")
|
44 |
+
input_module7 = gr.inputs.Textbox(label = "Input Feature 7")
|
45 |
+
input_module8 = gr.inputs.Textbox(label = "Input Feature 8")
|
46 |
+
|
47 |
+
output_module1 = gr.outputs.Textbox(label = "Output Text")
|
48 |
+
|
49 |
+
gr.Interface(fn=predict_price,
|
50 |
+
inputs=[input_module1, input_module2, input_module3,
|
51 |
+
input_module4, input_module5, input_module6,
|
52 |
+
input_module7, input_module8],
|
53 |
+
outputs=[output_module1]
|
54 |
+
).launch()
|