abhinav kumar commited on
Commit
06b991f
·
1 Parent(s): 3c22404

Add application file

Browse files
Files changed (1) hide show
  1. app.py +54 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import pandas as pd
4
+
5
+ from sklearn.model_selection import train_test_split
6
+
7
+ housing = pd.read_csv("housing.csv")
8
+ train_set, test_set = train_test_split(housing, test_size=0.2, random_state=10)
9
+
10
+ ## 2. clean the missing values
11
+ train_set_clean = train_set.dropna(subset=["total_bedrooms"])
12
+ train_set_clean
13
+
14
+ ## 2. derive training features and training labels
15
+ train_labels = train_set_clean["median_house_value"].copy() # get labels for output label Y
16
+ train_features = train_set_clean.drop("median_house_value", axis=1) # drop labels to get features X for training set
17
+
18
+
19
+ ## 4. scale the numeric features in training set
20
+ from sklearn.preprocessing import MinMaxScaler
21
+ scaler = MinMaxScaler() ## define the transformer
22
+ scaler.fit(train_features) ## call .fit() method to calculate the min and max value for each column in dataset
23
+
24
+ train_features_normalized = scaler.transform(train_features)
25
+ train_features_normalized
26
+
27
+ from sklearn.linear_model import LinearRegression ## import the LinearRegression Function
28
+ lin_reg = LinearRegression() ## Initialize the class
29
+ lin_reg.fit(train_features_normalized, train_labels) # feed the training data X, and label Y for supervised learning
30
+
31
+ import numpy as np
32
+ def predict_price(input1, input2, input3, input4, input5, input6, input7, input8):
33
+ features = np.array([[float(input1), float(input2), float(input3), float(input4), float(input5), float(input6), float(input7), float(input8)]])
34
+ print("recived features are: ", features)
35
+ price = lin_reg.predict(features)
36
+ return price
37
+
38
+ input_module1 = gr.inputs.Textbox(label = "Input Feature 1")
39
+ input_module2 = gr.inputs.Textbox(label = "Input Feature 2")
40
+ input_module3 = gr.inputs.Textbox(label = "Input Feature 3")
41
+ input_module4 = gr.inputs.Textbox(label = "Input Feature 4")
42
+ input_module5 = gr.inputs.Textbox(label = "Input Feature 5")
43
+ input_module6 = gr.inputs.Textbox(label = "Input Feature 6")
44
+ input_module7 = gr.inputs.Textbox(label = "Input Feature 7")
45
+ input_module8 = gr.inputs.Textbox(label = "Input Feature 8")
46
+
47
+ output_module1 = gr.outputs.Textbox(label = "Output Text")
48
+
49
+ gr.Interface(fn=predict_price,
50
+ inputs=[input_module1, input_module2, input_module3,
51
+ input_module4, input_module5, input_module6,
52
+ input_module7, input_module8],
53
+ outputs=[output_module1]
54
+ ).launch()