Spaces:
Sleeping
Sleeping
Upload 8 files
Browse files- QA.py +81 -0
- README.md +134 -12
- audio.py +25 -0
- captions.py +125 -0
- main.py +601 -0
- models.py +78 -0
- packages.txt +2 -0
- processing.py +127 -0
QA.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def answer_question(question, context, models):
|
4 |
+
"""Answer question based on context using a Gemma-style LLM"""
|
5 |
+
|
6 |
+
try:
|
7 |
+
prompt = f"""Based on the following video analysis data, please answer the question.
|
8 |
+
|
9 |
+
Video Captions and Transcription:
|
10 |
+
{context}
|
11 |
+
|
12 |
+
Question: {question}
|
13 |
+
|
14 |
+
Please provide a clear and concise answer based only on the information provided above."""
|
15 |
+
|
16 |
+
messages = [{"role": "user", "content": prompt}]
|
17 |
+
|
18 |
+
text = models['qa_tokenizer'].apply_chat_template(
|
19 |
+
messages,
|
20 |
+
tokenize=False,
|
21 |
+
add_generation_prompt=True,
|
22 |
+
enable_thinking=True
|
23 |
+
)
|
24 |
+
model_inputs = models['qa_tokenizer'](
|
25 |
+
[text],
|
26 |
+
return_tensors="pt"
|
27 |
+
).to(models['qa_model'].device)
|
28 |
+
|
29 |
+
with torch.no_grad():
|
30 |
+
generated_ids = models['qa_model'].generate(
|
31 |
+
**model_inputs,
|
32 |
+
max_new_tokens=32768,
|
33 |
+
# do_sample=False,
|
34 |
+
# temperature=0.7,
|
35 |
+
# eos_token_id=models['qa_tokenizer'].eos_token_id
|
36 |
+
)
|
37 |
+
|
38 |
+
# Extract the new tokens after the input prompt
|
39 |
+
input_length = model_inputs.input_ids.shape[-1]
|
40 |
+
output_ids = generated_ids[0][input_length:].tolist()
|
41 |
+
try:
|
42 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
43 |
+
except ValueError:
|
44 |
+
index = 0
|
45 |
+
|
46 |
+
answer = models['qa_tokenizer'].decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
47 |
+
|
48 |
+
return answer
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
return f"Error generating answer: {e}"
|
52 |
+
|
53 |
+
|
54 |
+
def get_context_for_qa(session_id, conn):
|
55 |
+
"""Retrieve all captions and transcriptions for QA context"""
|
56 |
+
cursor = conn.cursor()
|
57 |
+
|
58 |
+
# Get captions
|
59 |
+
cursor.execute(
|
60 |
+
"SELECT timestamp, caption FROM captions WHERE session_id = ? ORDER BY timestamp",
|
61 |
+
(session_id,)
|
62 |
+
)
|
63 |
+
captions = cursor.fetchall()
|
64 |
+
|
65 |
+
# Get transcription
|
66 |
+
cursor.execute(
|
67 |
+
"SELECT transcription FROM transcriptions WHERE session_id = ?",
|
68 |
+
(session_id,)
|
69 |
+
)
|
70 |
+
transcription_result = cursor.fetchone()
|
71 |
+
|
72 |
+
context = "CAPTIONS:\n"
|
73 |
+
for timestamp, caption in captions:
|
74 |
+
context += f"At {timestamp:.1f}s: {caption}\n"
|
75 |
+
|
76 |
+
if transcription_result:
|
77 |
+
context += f"\nAUDIO TRANSCRIPTION:\n{transcription_result[0]}"
|
78 |
+
|
79 |
+
# print(context)
|
80 |
+
|
81 |
+
return context
|
README.md
CHANGED
@@ -1,12 +1,134 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🎥 Video Analysis QA System
|
2 |
+
|
3 |
+
An intelligent video analysis system that extracts insights from videos through automated captioning, audio transcription, and natural language question-answering capabilities.
|
4 |
+
|
5 |
+
## ✨ Features
|
6 |
+
|
7 |
+
- **Video Processing**: Upload videos or capture directly from webcam
|
8 |
+
- **Frame Analysis**: Automatic extraction and intelligent captioning of video frames
|
9 |
+
- **Audio Transcription**: Speech-to-text conversion using advanced AI models
|
10 |
+
- **Question Answering**: Natural language queries about video content
|
11 |
+
- **Session Management**: Organize and revisit previous video analyses
|
12 |
+
- **Real-time Webcam**: Live video capture and processing
|
13 |
+
|
14 |
+
## 🚀 Getting Started
|
15 |
+
|
16 |
+
### Prerequisites
|
17 |
+
|
18 |
+
```bash
|
19 |
+
pip install -r requirements.txt
|
20 |
+
```
|
21 |
+
|
22 |
+
### Installation
|
23 |
+
|
24 |
+
1. Clone the repository
|
25 |
+
2. Install dependencies
|
26 |
+
3. Run the application:
|
27 |
+
|
28 |
+
```bash
|
29 |
+
streamlit run main.py
|
30 |
+
```
|
31 |
+
|
32 |
+
## 🏗️ Architecture
|
33 |
+
|
34 |
+
The system consists of several modular components:
|
35 |
+
|
36 |
+
- **`main.py`**: Streamlit web interface and application orchestration
|
37 |
+
- **`models.py`**: AI model loading and initialization with caching
|
38 |
+
- **`processing.py`**: Video processing pipeline coordinator
|
39 |
+
- **`captions.py`**: Frame extraction and image captioning
|
40 |
+
- **`audio.py`**: Audio extraction and transcription
|
41 |
+
- **`QA.py`**: Question-answering and context retrieval
|
42 |
+
|
43 |
+
## 🤖 AI Models Used
|
44 |
+
|
45 |
+
### Image Captioning
|
46 |
+
- **Model**: [QuadrantTechnologies/qhub-blip-image-captioning-finetuned](https://huggingface.co/quadranttechnologies/qhub-blip-image-captioning-finetuned)
|
47 |
+
- **Purpose**: Generate descriptive captions for video frames
|
48 |
+
|
49 |
+
### Audio Transcription
|
50 |
+
- **Model**: [OpenAI/whisper-medium](https://huggingface.co/openai/whisper-medium)
|
51 |
+
- **Purpose**: Convert speech to text from video audio tracks
|
52 |
+
|
53 |
+
### Question Answering
|
54 |
+
- **Model**: [Qwen/Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B)
|
55 |
+
- **Purpose**: Answer natural language questions about video content
|
56 |
+
|
57 |
+
## 📱 Usage
|
58 |
+
|
59 |
+
### Video Input Options
|
60 |
+
|
61 |
+
1. **File Upload**: Support for MP4, AVI, MOV, MKV formats
|
62 |
+
2. **Webcam Capture**: Real-time recording with customizable duration and FPS
|
63 |
+
|
64 |
+
### Analysis Process
|
65 |
+
|
66 |
+
1. **Frame Extraction**: Automatically samples frames at specified intervals
|
67 |
+
2. **Caption Generation**: Creates descriptive text for each frame
|
68 |
+
3. **Audio Processing**: Extracts and transcribes speech content
|
69 |
+
4. **Database Storage**: Stores results for persistent access
|
70 |
+
|
71 |
+
### Question Answering
|
72 |
+
|
73 |
+
Ask natural language questions about your videos:
|
74 |
+
- "What objects were visible in the video?"
|
75 |
+
- "What was the person doing?"
|
76 |
+
- "What did someone say about [topic]?"
|
77 |
+
|
78 |
+
## 💾 Data Management
|
79 |
+
|
80 |
+
- **SQLite Database**: Stores captions, transcriptions, and session data
|
81 |
+
- **Session System**: Organize analyses by unique session IDs
|
82 |
+
- **Persistent Storage**: Access previous analyses anytime
|
83 |
+
|
84 |
+
## 🛠️ Technical Details
|
85 |
+
|
86 |
+
### Video Processing
|
87 |
+
- Configurable frame sampling intervals
|
88 |
+
- Multi-format video support
|
89 |
+
- Real-time webcam integration
|
90 |
+
|
91 |
+
### AI Pipeline
|
92 |
+
- GPU acceleration when available
|
93 |
+
- Efficient model caching with Streamlit
|
94 |
+
- Batch processing for improved performance
|
95 |
+
|
96 |
+
### Database Schema
|
97 |
+
- `video_sessions`: Session metadata
|
98 |
+
- `captions`: Frame-level descriptions with timestamps
|
99 |
+
- `transcriptions`: Full audio transcripts per session
|
100 |
+
|
101 |
+
## 🔧 Configuration
|
102 |
+
|
103 |
+
### Webcam Settings
|
104 |
+
- Adjustable recording duration (3-30 seconds)
|
105 |
+
- Configurable frame rate (1-10 FPS)
|
106 |
+
- Real-time preview and progress tracking
|
107 |
+
|
108 |
+
### Processing Parameters
|
109 |
+
- Frame extraction interval (default: 0.5 seconds)
|
110 |
+
- Caption generation limits
|
111 |
+
- Audio sampling rate (16kHz for Whisper compatibility)
|
112 |
+
|
113 |
+
## 🚨 System Requirements
|
114 |
+
|
115 |
+
- **Python 3.8+**
|
116 |
+
- **CUDA-compatible GPU** (optional, for faster processing)
|
117 |
+
- **Webcam** (for live capture functionality)
|
118 |
+
- **FFmpeg** (for video processing)
|
119 |
+
|
120 |
+
## 🤝 Contributing
|
121 |
+
|
122 |
+
This system is modular and extensible. Key areas for enhancement:
|
123 |
+
- Additional video formats
|
124 |
+
- More sophisticated AI models
|
125 |
+
- Advanced question types
|
126 |
+
- Export capabilities
|
127 |
+
|
128 |
+
## 📄 License
|
129 |
+
|
130 |
+
Open source project - see individual model licenses for AI components.
|
131 |
+
|
132 |
+
---
|
133 |
+
|
134 |
+
*Built with Streamlit, PyTorch, and Transformers for seamless video intelligence.*
|
audio.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def extract_audio(video_path):
|
5 |
+
"""Extract audio from video file"""
|
6 |
+
try:
|
7 |
+
# Use librosa to extract audio
|
8 |
+
audio, sr = librosa.load(video_path, sr=16000) # Whisper expects 16kHz
|
9 |
+
return audio, sr
|
10 |
+
except Exception as e:
|
11 |
+
print(f"Error extracting audio: {e}")
|
12 |
+
return None, None
|
13 |
+
|
14 |
+
def transcribe_audio(audio, sr, models):
|
15 |
+
"""Transcribe audio using Whisper"""
|
16 |
+
try:
|
17 |
+
inputs = models['whisper_processor'](audio, sampling_rate=sr, return_tensors="pt").input_features.to(models['device'])
|
18 |
+
|
19 |
+
with torch.no_grad():
|
20 |
+
pred_ids = models['whisper_model'].generate(inputs)
|
21 |
+
transcription = models['whisper_processor'].batch_decode(pred_ids, skip_special_tokens=True)[0]
|
22 |
+
|
23 |
+
return transcription
|
24 |
+
except Exception as e:
|
25 |
+
return f"Error transcribing audio: {e}"
|
captions.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
6 |
+
|
7 |
+
def extract_frames(video_path, interval=0.5):
|
8 |
+
"""Original function - extract frames at fixed interval"""
|
9 |
+
return extract_frames_with_fps(video_path, interval=interval)
|
10 |
+
|
11 |
+
def extract_frames_with_fps(video_path, interval=0.5):
|
12 |
+
"""Extract frames from video at specified interval (supports FPS control)
|
13 |
+
|
14 |
+
Args:
|
15 |
+
video_path: Path to video file
|
16 |
+
interval: Time interval between frames in seconds (1/fps)
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
frames: List of PIL Images
|
20 |
+
timestamps: List of timestamp values
|
21 |
+
"""
|
22 |
+
frames = []
|
23 |
+
timestamps = []
|
24 |
+
|
25 |
+
try:
|
26 |
+
# Open video
|
27 |
+
cap = cv2.VideoCapture(video_path)
|
28 |
+
if not cap.isOpened():
|
29 |
+
print(f"Error: Could not open video {video_path}")
|
30 |
+
return frames, timestamps
|
31 |
+
|
32 |
+
# Get video properties
|
33 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
34 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
35 |
+
duration = total_frames / fps
|
36 |
+
|
37 |
+
print(f"Video info: {fps:.2f} FPS, {duration:.2f}s duration, {total_frames} total frames")
|
38 |
+
print(f"Extracting frames every {interval:.2f} seconds")
|
39 |
+
|
40 |
+
frame_interval = int(fps * interval) # Convert time interval to frame interval
|
41 |
+
frame_count = 0
|
42 |
+
|
43 |
+
while True:
|
44 |
+
ret, frame = cap.read()
|
45 |
+
if not ret:
|
46 |
+
break
|
47 |
+
|
48 |
+
# Extract frame at specified intervals
|
49 |
+
if frame_count % frame_interval == 0:
|
50 |
+
# Convert BGR to RGB
|
51 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
52 |
+
|
53 |
+
# Convert to PIL Image
|
54 |
+
pil_image = Image.fromarray(frame_rgb)
|
55 |
+
|
56 |
+
# Calculate timestamp
|
57 |
+
timestamp = frame_count / fps
|
58 |
+
|
59 |
+
frames.append(pil_image)
|
60 |
+
timestamps.append(timestamp)
|
61 |
+
|
62 |
+
if len(frames) % 10 == 0:
|
63 |
+
print(f"Extracted {len(frames)} frames...")
|
64 |
+
|
65 |
+
frame_count += 1
|
66 |
+
|
67 |
+
cap.release()
|
68 |
+
print(f"Extraction complete: {len(frames)} frames extracted")
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error extracting frames: {str(e)}")
|
72 |
+
|
73 |
+
return frames, timestamps
|
74 |
+
|
75 |
+
def generate_caption(image, models):
|
76 |
+
"""Generate caption for a single image using your custom model - FIXED VERSION"""
|
77 |
+
try:
|
78 |
+
# FIXED: Use the correct processor call with 'images=' parameter like your working original
|
79 |
+
inputs = models['caption_processor'](images=image, return_tensors="pt").to(models['device'])
|
80 |
+
|
81 |
+
with torch.no_grad():
|
82 |
+
# FIXED: Use generate with max_new_tokens like your working original
|
83 |
+
output_ids = models['caption_model'].generate(**inputs, max_new_tokens=50)
|
84 |
+
caption = models['caption_processor'].batch_decode(output_ids, skip_special_tokens=True)[0]
|
85 |
+
|
86 |
+
return caption
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error generating caption: {str(e)}")
|
90 |
+
return f"Error generating caption: {e}"
|
91 |
+
|
92 |
+
def batch_generate_captions(frames, models, batch_size=4):
|
93 |
+
"""Generate captions for multiple frames in batches (more efficient)"""
|
94 |
+
captions = []
|
95 |
+
|
96 |
+
try:
|
97 |
+
processor = models['caption_processor']
|
98 |
+
model = models['caption_model']
|
99 |
+
device = models['device']
|
100 |
+
|
101 |
+
# Process frames in batches
|
102 |
+
for i in range(0, len(frames), batch_size):
|
103 |
+
batch_frames = frames[i:i + batch_size]
|
104 |
+
|
105 |
+
# FIXED: Use the correct processor call with 'images=' parameter
|
106 |
+
inputs = processor(images=batch_frames, return_tensors="pt").to(device)
|
107 |
+
|
108 |
+
# Generate captions
|
109 |
+
with torch.no_grad():
|
110 |
+
# FIXED: Use max_new_tokens instead of max_length for your model
|
111 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
112 |
+
|
113 |
+
# Decode captions - FIXED: Use batch_decode like your original
|
114 |
+
batch_captions = processor.batch_decode(outputs, skip_special_tokens=True)
|
115 |
+
|
116 |
+
captions.extend(batch_captions)
|
117 |
+
print(f"Generated captions for batch {i//batch_size + 1}/{(len(frames)-1)//batch_size + 1}")
|
118 |
+
|
119 |
+
except Exception as e:
|
120 |
+
print(f"Error in batch caption generation: {str(e)}")
|
121 |
+
# Fallback to individual processing using the working method
|
122 |
+
for frame in frames:
|
123 |
+
captions.append(generate_caption(frame, models))
|
124 |
+
|
125 |
+
return captions
|
main.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from models import init_database, load_models
|
3 |
+
from QA import get_context_for_qa, answer_question
|
4 |
+
from processing import process_video
|
5 |
+
import os
|
6 |
+
import tempfile
|
7 |
+
import time
|
8 |
+
import sqlite3
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
from datetime import datetime
|
12 |
+
import threading
|
13 |
+
import queue
|
14 |
+
import io
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
# Global variables
|
18 |
+
models = None
|
19 |
+
conn = None
|
20 |
+
current_session_id = "main_session"
|
21 |
+
current_fps_setting = 5
|
22 |
+
|
23 |
+
def clear_database_for_new_video(session_id, conn):
|
24 |
+
"""Clear database entries for a specific session (new video)"""
|
25 |
+
try:
|
26 |
+
cursor = conn.cursor()
|
27 |
+
# Clear previous data for this session
|
28 |
+
cursor.execute("DELETE FROM captions WHERE session_id = ?", (session_id,))
|
29 |
+
cursor.execute("DELETE FROM transcriptions WHERE session_id = ?", (session_id,))
|
30 |
+
cursor.execute("DELETE FROM video_sessions WHERE session_id = ?", (session_id,))
|
31 |
+
conn.commit()
|
32 |
+
print(f"Database cleared for session: {session_id}")
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error clearing database: {e}")
|
35 |
+
|
36 |
+
def process_video_with_fps(video_path, session_id, models, conn, fps):
|
37 |
+
"""Wrapper for process_video that handles FPS setting"""
|
38 |
+
try:
|
39 |
+
# Import your processing modules
|
40 |
+
from captions import extract_frames_with_fps, generate_caption
|
41 |
+
from audio import extract_audio, transcribe_audio
|
42 |
+
|
43 |
+
# Extract frames with custom FPS
|
44 |
+
print(f"Extracting frames at {fps} FPS...")
|
45 |
+
interval = 1.0 / fps # Convert FPS to interval
|
46 |
+
frames, timestamps = extract_frames_with_fps(video_path, interval=interval)
|
47 |
+
|
48 |
+
if not frames:
|
49 |
+
print("No frames could be extracted from the video.")
|
50 |
+
return
|
51 |
+
|
52 |
+
# Generate captions
|
53 |
+
print(f"Generating captions for {len(frames)} frames...")
|
54 |
+
cursor = conn.cursor()
|
55 |
+
|
56 |
+
for i, (frame, timestamp) in enumerate(zip(frames, timestamps)):
|
57 |
+
caption = generate_caption(frame, models)
|
58 |
+
cursor.execute(
|
59 |
+
"INSERT INTO captions (session_id, timestamp, caption) VALUES (?, ?, ?)",
|
60 |
+
(session_id, timestamp, caption)
|
61 |
+
)
|
62 |
+
|
63 |
+
# Update status every 10 frames
|
64 |
+
if i % 10 == 0:
|
65 |
+
print(f"Generating captions... {i+1}/{len(frames)}")
|
66 |
+
|
67 |
+
conn.commit()
|
68 |
+
|
69 |
+
# Extract and transcribe audio
|
70 |
+
print("Extracting and transcribing audio...")
|
71 |
+
audio, sr = extract_audio(video_path)
|
72 |
+
|
73 |
+
if audio is not None and len(audio) > 0:
|
74 |
+
transcription = transcribe_audio(audio, sr, models)
|
75 |
+
cursor.execute(
|
76 |
+
"INSERT INTO transcriptions (session_id, transcription) VALUES (?, ?)",
|
77 |
+
(session_id, transcription)
|
78 |
+
)
|
79 |
+
conn.commit()
|
80 |
+
else:
|
81 |
+
print("No audio found in the video or audio extraction failed.")
|
82 |
+
|
83 |
+
print("Processing complete!")
|
84 |
+
|
85 |
+
except ImportError:
|
86 |
+
# Fallback to original process_video function if custom FPS functions don't exist
|
87 |
+
print("Using original process_video function...")
|
88 |
+
process_video(video_path, session_id, models, conn)
|
89 |
+
except Exception as e:
|
90 |
+
print(f"Error processing video: {str(e)}")
|
91 |
+
|
92 |
+
def initialize_system():
|
93 |
+
"""Initialize database and load models - NO DATABASE CLEARING HERE"""
|
94 |
+
global models, conn
|
95 |
+
|
96 |
+
# Initialize database (but don't clear it here)
|
97 |
+
conn = init_database()
|
98 |
+
|
99 |
+
# Load models
|
100 |
+
models = load_models()
|
101 |
+
if models is None:
|
102 |
+
raise Exception("Failed to load models. Please check your internet connection and try again.")
|
103 |
+
|
104 |
+
return "✅ System initialized successfully!"
|
105 |
+
|
106 |
+
def process_uploaded_video(video_file, fps_setting, progress=gr.Progress()):
|
107 |
+
"""Process uploaded video file with FPS setting - CLEARS DB FIRST"""
|
108 |
+
global models, conn, current_session_id
|
109 |
+
|
110 |
+
if video_file is None:
|
111 |
+
return "❌ Please upload a video file", "", ""
|
112 |
+
|
113 |
+
if models is None or conn is None:
|
114 |
+
return "❌ System not initialized. Please wait for initialization to complete.", "", ""
|
115 |
+
|
116 |
+
progress(0.05, desc="Clearing previous data...")
|
117 |
+
|
118 |
+
# CLEAR DATABASE FOR NEW VIDEO
|
119 |
+
clear_database_for_new_video(current_session_id, conn)
|
120 |
+
|
121 |
+
progress(0.1, desc="Processing video...")
|
122 |
+
|
123 |
+
try:
|
124 |
+
# Create fresh session in database
|
125 |
+
cursor = conn.cursor()
|
126 |
+
cursor.execute(
|
127 |
+
"INSERT INTO video_sessions (session_id) VALUES (?)",
|
128 |
+
(current_session_id,)
|
129 |
+
)
|
130 |
+
conn.commit()
|
131 |
+
|
132 |
+
progress(0.3, desc="Analyzing video content...")
|
133 |
+
|
134 |
+
# Set global FPS setting for frame extraction
|
135 |
+
global current_fps_setting
|
136 |
+
current_fps_setting = fps_setting
|
137 |
+
|
138 |
+
# Process the video (using global FPS setting)
|
139 |
+
process_video_with_fps(video_file, current_session_id, models, conn, fps_setting)
|
140 |
+
|
141 |
+
progress(0.8, desc="Retrieving results...")
|
142 |
+
|
143 |
+
# Get results
|
144 |
+
captions_text, transcription_text = get_analysis_results()
|
145 |
+
|
146 |
+
progress(1.0, desc="Complete!")
|
147 |
+
|
148 |
+
return "✅ Video processed successfully!", captions_text, transcription_text
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
return f"❌ Error processing video: {str(e)}", "", ""
|
152 |
+
|
153 |
+
def capture_webcam_video(duration, fps, progress=gr.Progress()):
|
154 |
+
"""Capture video from webcam"""
|
155 |
+
global models, conn, current_session_id
|
156 |
+
|
157 |
+
if models is None or conn is None:
|
158 |
+
return "❌ System not initialized. Please wait for initialization to complete.", None, gr.Button(visible=False)
|
159 |
+
|
160 |
+
progress(0.1, desc="Initializing webcam...")
|
161 |
+
|
162 |
+
try:
|
163 |
+
cap = cv2.VideoCapture(0)
|
164 |
+
if not cap.isOpened():
|
165 |
+
return "❌ Could not open webcam. Please check your camera connection.", None, gr.Button(visible=False)
|
166 |
+
|
167 |
+
# Set camera properties
|
168 |
+
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
|
169 |
+
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
|
170 |
+
actual_fps = cap.get(cv2.CAP_PROP_FPS)
|
171 |
+
print(f"Camera FPS: {actual_fps}, Requested: {fps}")
|
172 |
+
|
173 |
+
# Create temporary video file with better naming
|
174 |
+
timestamp = int(time.time())
|
175 |
+
video_path = f"temp_webcam_{timestamp}.mp4"
|
176 |
+
|
177 |
+
# Setup video writer with better codec settings
|
178 |
+
height, width = 480, 640
|
179 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
180 |
+
out = cv2.VideoWriter(video_path, fourcc, float(fps), (width, height))
|
181 |
+
|
182 |
+
if not out.isOpened():
|
183 |
+
return "❌ Could not initialize video writer.", None, gr.Button(visible=False)
|
184 |
+
|
185 |
+
start_time = time.time()
|
186 |
+
frame_count = 0
|
187 |
+
expected_frames = duration * fps
|
188 |
+
|
189 |
+
progress(0.2, desc=f"Recording for {duration} seconds...")
|
190 |
+
|
191 |
+
while (time.time() - start_time) < duration:
|
192 |
+
ret, frame = cap.read()
|
193 |
+
if not ret:
|
194 |
+
print("Failed to capture frame")
|
195 |
+
break
|
196 |
+
|
197 |
+
# Resize frame to ensure consistent size
|
198 |
+
frame = cv2.resize(frame, (width, height))
|
199 |
+
out.write(frame)
|
200 |
+
frame_count += 1
|
201 |
+
|
202 |
+
# Update progress
|
203 |
+
elapsed = time.time() - start_time
|
204 |
+
progress_val = 0.2 + (elapsed / duration) * 0.6
|
205 |
+
progress(min(progress_val, 0.8), desc=f"Recording... {elapsed:.1f}s / {duration}s")
|
206 |
+
|
207 |
+
# Control frame rate more precisely
|
208 |
+
time.sleep(max(0, (1.0 / fps) - 0.01))
|
209 |
+
|
210 |
+
cap.release()
|
211 |
+
out.release()
|
212 |
+
|
213 |
+
progress(0.9, desc="Finalizing video...")
|
214 |
+
|
215 |
+
# Verify the video file was created and has content
|
216 |
+
if not os.path.exists(video_path) or os.path.getsize(video_path) < 1000:
|
217 |
+
return "❌ Video file was not created properly.", None, gr.Button(visible=False)
|
218 |
+
|
219 |
+
if frame_count == 0:
|
220 |
+
try:
|
221 |
+
os.unlink(video_path)
|
222 |
+
except:
|
223 |
+
pass
|
224 |
+
return "❌ No frames were captured. Please check your webcam.", None, gr.Button(visible=False)
|
225 |
+
|
226 |
+
progress(1.0, desc="Recording complete!")
|
227 |
+
|
228 |
+
print(f"Video saved: {video_path}, Size: {os.path.getsize(video_path)} bytes, Frames: {frame_count}")
|
229 |
+
|
230 |
+
return (
|
231 |
+
f"✅ Webcam video recorded successfully! ({frame_count} frames, {frame_count/fps:.1f}s)",
|
232 |
+
video_path,
|
233 |
+
gr.Button("🚀 Process Recorded Video", visible=True, variant="secondary")
|
234 |
+
)
|
235 |
+
|
236 |
+
except Exception as e:
|
237 |
+
print(f"Webcam capture error: {str(e)}")
|
238 |
+
return f"❌ Error with webcam capture: {str(e)}", None, gr.Button(visible=False)
|
239 |
+
|
240 |
+
def process_webcam_video(video_path, fps_setting, progress=gr.Progress()):
|
241 |
+
"""Process the recorded webcam video - CLEARS DB FIRST"""
|
242 |
+
global models, conn, current_session_id
|
243 |
+
|
244 |
+
if not video_path:
|
245 |
+
return "❌ No video to process", "", ""
|
246 |
+
|
247 |
+
if models is None or conn is None:
|
248 |
+
return "❌ System not initialized", "", ""
|
249 |
+
|
250 |
+
progress(0.05, desc="Clearing previous data...")
|
251 |
+
|
252 |
+
# CLEAR DATABASE FOR NEW VIDEO
|
253 |
+
clear_database_for_new_video(current_session_id, conn)
|
254 |
+
|
255 |
+
progress(0.1, desc="Processing recorded video...")
|
256 |
+
|
257 |
+
try:
|
258 |
+
# Create fresh session in database
|
259 |
+
cursor = conn.cursor()
|
260 |
+
cursor.execute(
|
261 |
+
"INSERT INTO video_sessions (session_id) VALUES (?)",
|
262 |
+
(current_session_id,)
|
263 |
+
)
|
264 |
+
conn.commit()
|
265 |
+
|
266 |
+
progress(0.3, desc="Analyzing video content...")
|
267 |
+
|
268 |
+
# Set global FPS setting for frame extraction
|
269 |
+
global current_fps_setting
|
270 |
+
current_fps_setting = fps_setting
|
271 |
+
|
272 |
+
# Process the recorded video with FPS setting
|
273 |
+
process_video_with_fps(video_path, current_session_id, models, conn, fps_setting)
|
274 |
+
|
275 |
+
progress(0.8, desc="Retrieving results...")
|
276 |
+
|
277 |
+
# Get results
|
278 |
+
captions_text, transcription_text = get_analysis_results()
|
279 |
+
|
280 |
+
progress(1.0, desc="Complete!")
|
281 |
+
|
282 |
+
# Clean up temporary file
|
283 |
+
try:
|
284 |
+
os.unlink(video_path)
|
285 |
+
except:
|
286 |
+
pass
|
287 |
+
|
288 |
+
return "✅ Video processed successfully!", captions_text, transcription_text
|
289 |
+
|
290 |
+
except Exception as e:
|
291 |
+
return f"❌ Error processing video: {str(e)}", "", ""
|
292 |
+
|
293 |
+
def get_analysis_results():
|
294 |
+
"""Get analysis results for current session"""
|
295 |
+
global conn, current_session_id
|
296 |
+
|
297 |
+
if conn is None:
|
298 |
+
return "System not initialized.", "System not initialized."
|
299 |
+
|
300 |
+
cursor = conn.cursor()
|
301 |
+
|
302 |
+
# Get captions
|
303 |
+
cursor.execute(
|
304 |
+
"SELECT timestamp, caption FROM captions WHERE session_id = ? ORDER BY timestamp",
|
305 |
+
(current_session_id,)
|
306 |
+
)
|
307 |
+
captions = cursor.fetchall()
|
308 |
+
|
309 |
+
if captions:
|
310 |
+
captions_text = "\n".join([f"**{timestamp:.1f}s:** {caption}" for timestamp, caption in captions])
|
311 |
+
else:
|
312 |
+
captions_text = "No captions found. Please process a video first."
|
313 |
+
|
314 |
+
# Get transcription
|
315 |
+
cursor.execute(
|
316 |
+
"SELECT transcription FROM transcriptions WHERE session_id = ?",
|
317 |
+
(current_session_id,)
|
318 |
+
)
|
319 |
+
transcription_result = cursor.fetchone()
|
320 |
+
|
321 |
+
if transcription_result:
|
322 |
+
transcription_text = transcription_result[0]
|
323 |
+
else:
|
324 |
+
transcription_text = "No transcription found. Please process a video with audio."
|
325 |
+
|
326 |
+
return captions_text, transcription_text
|
327 |
+
|
328 |
+
def refresh_results():
|
329 |
+
"""Refresh analysis results"""
|
330 |
+
return get_analysis_results()
|
331 |
+
|
332 |
+
def answer_video_question(question):
|
333 |
+
"""Answer question about the video"""
|
334 |
+
global models, conn, current_session_id
|
335 |
+
|
336 |
+
if not question.strip():
|
337 |
+
return "Please enter a question."
|
338 |
+
|
339 |
+
if models is None or conn is None:
|
340 |
+
return "System not initialized. Please wait for initialization to complete."
|
341 |
+
|
342 |
+
try:
|
343 |
+
context = get_context_for_qa(current_session_id, conn)
|
344 |
+
|
345 |
+
if context.strip() == "CAPTIONS:":
|
346 |
+
return "No video data found. Please process a video first."
|
347 |
+
|
348 |
+
answer = answer_question(question, context, models)
|
349 |
+
return f"**Answer:** {answer}"
|
350 |
+
|
351 |
+
except Exception as e:
|
352 |
+
return f"Error generating answer: {str(e)}"
|
353 |
+
|
354 |
+
def set_example_question(question):
|
355 |
+
"""Set example question in the textbox"""
|
356 |
+
return question
|
357 |
+
|
358 |
+
# Initialize system at startup (no database clearing here)
|
359 |
+
try:
|
360 |
+
init_message = initialize_system()
|
361 |
+
print(init_message)
|
362 |
+
except Exception as e:
|
363 |
+
print(f"Initialization error: {e}")
|
364 |
+
models = None
|
365 |
+
conn = None
|
366 |
+
|
367 |
+
# Define example questions
|
368 |
+
example_questions = [
|
369 |
+
"What objects were visible in the video?",
|
370 |
+
"What was the person doing?",
|
371 |
+
"What did someone say about [topic]?",
|
372 |
+
"What was moving in the scene?",
|
373 |
+
"Describe what happened at the beginning/middle/end"
|
374 |
+
]
|
375 |
+
|
376 |
+
# Create Gradio interface
|
377 |
+
with gr.Blocks(title="Video Analysis QA System", theme=gr.themes.Soft()) as demo:
|
378 |
+
gr.Markdown("# 🎥 Video Analysis QA System")
|
379 |
+
gr.Markdown("Upload a video or use webcam to analyze content and ask questions!")
|
380 |
+
|
381 |
+
# Store video path for webcam processing
|
382 |
+
webcam_video_path = gr.State(value=None)
|
383 |
+
|
384 |
+
# Main tabs
|
385 |
+
with gr.Tabs():
|
386 |
+
# Video Input Tab
|
387 |
+
with gr.TabItem("📹 Video Input"):
|
388 |
+
input_method = gr.Radio(
|
389 |
+
choices=["Upload Video", "Use Webcam"],
|
390 |
+
value="Upload Video",
|
391 |
+
label="Choose input method"
|
392 |
+
)
|
393 |
+
|
394 |
+
# Upload Video Section
|
395 |
+
with gr.Group(visible=True) as upload_section:
|
396 |
+
gr.Markdown("### Upload Video")
|
397 |
+
with gr.Row():
|
398 |
+
with gr.Column(scale=3):
|
399 |
+
video_upload = gr.File(
|
400 |
+
label="Choose a video file",
|
401 |
+
file_types=[".mp4", ".avi", ".mov", ".mkv"]
|
402 |
+
)
|
403 |
+
with gr.Column(scale=1):
|
404 |
+
upload_fps = gr.Dropdown(
|
405 |
+
choices=[1, 2, 5, 10, 15, 30],
|
406 |
+
value=5,
|
407 |
+
label="Analysis FPS"
|
408 |
+
)
|
409 |
+
|
410 |
+
video_preview = gr.Video(label="Video Preview")
|
411 |
+
upload_btn = gr.Button("🚀 Process Video", variant="primary")
|
412 |
+
upload_status = gr.Textbox(label="Status", interactive=False)
|
413 |
+
|
414 |
+
# Webcam Section
|
415 |
+
with gr.Group(visible=False) as webcam_section:
|
416 |
+
gr.Markdown("### 📸 Webcam Capture")
|
417 |
+
|
418 |
+
with gr.Row():
|
419 |
+
with gr.Column(scale=2):
|
420 |
+
webcam_preview = gr.Image(
|
421 |
+
label="Webcam Preview",
|
422 |
+
sources=["webcam"],
|
423 |
+
streaming=True
|
424 |
+
)
|
425 |
+
|
426 |
+
with gr.Column(scale=1):
|
427 |
+
duration_slider = gr.Slider(
|
428 |
+
minimum=3,
|
429 |
+
maximum=30,
|
430 |
+
value=10,
|
431 |
+
step=1,
|
432 |
+
label="Recording Duration (seconds)"
|
433 |
+
)
|
434 |
+
|
435 |
+
fps_dropdown = gr.Dropdown(
|
436 |
+
choices=[1, 2, 5, 10, 15],
|
437 |
+
value=5,
|
438 |
+
label="Recording FPS"
|
439 |
+
)
|
440 |
+
|
441 |
+
webcam_analysis_fps = gr.Dropdown(
|
442 |
+
choices=[1, 2, 5, 10, 15, 30],
|
443 |
+
value=5,
|
444 |
+
label="Analysis FPS"
|
445 |
+
)
|
446 |
+
|
447 |
+
webcam_info = gr.Markdown("Will capture approximately 50 frames")
|
448 |
+
webcam_btn = gr.Button("🔴 Start Recording", variant="primary")
|
449 |
+
|
450 |
+
# Status and recorded video preview
|
451 |
+
webcam_status = gr.Textbox(label="Status", interactive=False)
|
452 |
+
|
453 |
+
with gr.Row():
|
454 |
+
with gr.Column(scale=3):
|
455 |
+
recorded_video_preview = gr.Video(label="Recorded Video", visible=True)
|
456 |
+
with gr.Column(scale=1):
|
457 |
+
process_webcam_btn = gr.Button("🚀 Process Recorded Video", visible=False, variant="secondary", size="lg")
|
458 |
+
|
459 |
+
# Analysis Results Tab
|
460 |
+
with gr.TabItem("🔍 Analysis Results"):
|
461 |
+
refresh_btn = gr.Button("🔄 Refresh Results", variant="secondary")
|
462 |
+
|
463 |
+
with gr.Row():
|
464 |
+
with gr.Column():
|
465 |
+
gr.Markdown("### Frame Captions")
|
466 |
+
captions_output = gr.Textbox(
|
467 |
+
label="Captions",
|
468 |
+
lines=10,
|
469 |
+
max_lines=20,
|
470 |
+
interactive=False
|
471 |
+
)
|
472 |
+
|
473 |
+
with gr.Column():
|
474 |
+
gr.Markdown("### Audio Transcription")
|
475 |
+
transcription_output = gr.Textbox(
|
476 |
+
label="Transcription",
|
477 |
+
lines=10,
|
478 |
+
max_lines=20,
|
479 |
+
interactive=False
|
480 |
+
)
|
481 |
+
|
482 |
+
# Ask Questions Tab
|
483 |
+
with gr.TabItem("❓ Ask Questions"):
|
484 |
+
question_input = gr.Textbox(
|
485 |
+
label="Ask a question about the video",
|
486 |
+
placeholder="What was moving in the video?",
|
487 |
+
lines=2
|
488 |
+
)
|
489 |
+
ask_btn = gr.Button("🤔 Get Answer", variant="primary")
|
490 |
+
answer_output = gr.Textbox(
|
491 |
+
label="Answer",
|
492 |
+
lines=5,
|
493 |
+
max_lines=10,
|
494 |
+
interactive=False
|
495 |
+
)
|
496 |
+
|
497 |
+
gr.Markdown("### 💡 Example Questions")
|
498 |
+
with gr.Row():
|
499 |
+
for i, question in enumerate(example_questions):
|
500 |
+
example_btn = gr.Button(question, size="sm")
|
501 |
+
example_btn.click(
|
502 |
+
fn=set_example_question,
|
503 |
+
inputs=[gr.State(question)],
|
504 |
+
outputs=[question_input]
|
505 |
+
)
|
506 |
+
|
507 |
+
# Event handlers
|
508 |
+
def toggle_input_method(method):
|
509 |
+
return (
|
510 |
+
gr.Group(visible=(method == "Upload Video")),
|
511 |
+
gr.Group(visible=(method == "Use Webcam"))
|
512 |
+
)
|
513 |
+
|
514 |
+
def update_webcam_info(duration, fps):
|
515 |
+
estimated_frames = duration * fps
|
516 |
+
return f"Will capture approximately {estimated_frames} frames"
|
517 |
+
|
518 |
+
def preview_video(file):
|
519 |
+
return file if file else None
|
520 |
+
|
521 |
+
def handle_webcam_capture(duration, fps):
|
522 |
+
"""Handle webcam capture and return results"""
|
523 |
+
status, video_path, _ = capture_webcam_video(duration, fps)
|
524 |
+
|
525 |
+
if video_path:
|
526 |
+
return (
|
527 |
+
status,
|
528 |
+
video_path, # Store path in state
|
529 |
+
video_path, # Pass path directly to video component
|
530 |
+
gr.Button("🚀 Process Recorded Video", visible=True, variant="secondary")
|
531 |
+
)
|
532 |
+
else:
|
533 |
+
return (
|
534 |
+
status,
|
535 |
+
None,
|
536 |
+
None,
|
537 |
+
gr.Button("🚀 Process Recorded Video", visible=False, variant="secondary")
|
538 |
+
)
|
539 |
+
|
540 |
+
# Connect event handlers
|
541 |
+
input_method.change(
|
542 |
+
fn=toggle_input_method,
|
543 |
+
inputs=[input_method],
|
544 |
+
outputs=[upload_section, webcam_section]
|
545 |
+
)
|
546 |
+
|
547 |
+
duration_slider.change(
|
548 |
+
fn=update_webcam_info,
|
549 |
+
inputs=[duration_slider, fps_dropdown],
|
550 |
+
outputs=[webcam_info]
|
551 |
+
)
|
552 |
+
|
553 |
+
fps_dropdown.change(
|
554 |
+
fn=update_webcam_info,
|
555 |
+
inputs=[duration_slider, fps_dropdown],
|
556 |
+
outputs=[webcam_info]
|
557 |
+
)
|
558 |
+
|
559 |
+
video_upload.change(
|
560 |
+
fn=preview_video,
|
561 |
+
inputs=[video_upload],
|
562 |
+
outputs=[video_preview]
|
563 |
+
)
|
564 |
+
|
565 |
+
upload_btn.click(
|
566 |
+
fn=process_uploaded_video,
|
567 |
+
inputs=[video_upload, upload_fps],
|
568 |
+
outputs=[upload_status, captions_output, transcription_output]
|
569 |
+
)
|
570 |
+
|
571 |
+
webcam_btn.click(
|
572 |
+
fn=handle_webcam_capture,
|
573 |
+
inputs=[duration_slider, fps_dropdown],
|
574 |
+
outputs=[webcam_status, webcam_video_path, recorded_video_preview, process_webcam_btn]
|
575 |
+
)
|
576 |
+
|
577 |
+
process_webcam_btn.click(
|
578 |
+
fn=process_webcam_video,
|
579 |
+
inputs=[webcam_video_path, webcam_analysis_fps],
|
580 |
+
outputs=[webcam_status, captions_output, transcription_output]
|
581 |
+
)
|
582 |
+
|
583 |
+
refresh_btn.click(
|
584 |
+
fn=refresh_results,
|
585 |
+
outputs=[captions_output, transcription_output]
|
586 |
+
)
|
587 |
+
|
588 |
+
ask_btn.click(
|
589 |
+
fn=answer_video_question,
|
590 |
+
inputs=[question_input],
|
591 |
+
outputs=[answer_output]
|
592 |
+
)
|
593 |
+
|
594 |
+
# Launch the app
|
595 |
+
if __name__ == "__main__":
|
596 |
+
demo.launch(
|
597 |
+
server_name="0.0.0.0", # Required for Hugging Face Spaces
|
598 |
+
server_port=7860, # Standard port for Hugging Face Spaces
|
599 |
+
share=False,
|
600 |
+
show_error=True
|
601 |
+
)
|
models.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoProcessor, AutoModelForVision2Seq,
|
5 |
+
WhisperProcessor, WhisperForConditionalGeneration,
|
6 |
+
AutoTokenizer, AutoModelForCausalLM
|
7 |
+
)
|
8 |
+
|
9 |
+
def init_database():
|
10 |
+
"""Initialize SQLite database"""
|
11 |
+
conn = sqlite3.connect('video_analysis.db', check_same_thread=False)
|
12 |
+
cursor = conn.cursor()
|
13 |
+
|
14 |
+
# Create tables
|
15 |
+
cursor.execute('''
|
16 |
+
CREATE TABLE IF NOT EXISTS video_sessions (
|
17 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
18 |
+
session_id TEXT UNIQUE,
|
19 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
20 |
+
)
|
21 |
+
''')
|
22 |
+
|
23 |
+
cursor.execute('''
|
24 |
+
CREATE TABLE IF NOT EXISTS captions (
|
25 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
26 |
+
session_id TEXT,
|
27 |
+
timestamp REAL,
|
28 |
+
caption TEXT,
|
29 |
+
FOREIGN KEY (session_id) REFERENCES video_sessions (session_id)
|
30 |
+
)
|
31 |
+
''')
|
32 |
+
|
33 |
+
cursor.execute('''
|
34 |
+
CREATE TABLE IF NOT EXISTS transcriptions (
|
35 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
36 |
+
session_id TEXT,
|
37 |
+
transcription TEXT,
|
38 |
+
FOREIGN KEY (session_id) REFERENCES video_sessions (session_id)
|
39 |
+
)
|
40 |
+
''')
|
41 |
+
|
42 |
+
conn.commit()
|
43 |
+
return conn
|
44 |
+
|
45 |
+
def load_models():
|
46 |
+
"""Load all AI models"""
|
47 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
48 |
+
|
49 |
+
try:
|
50 |
+
# Load captioning model
|
51 |
+
print("Loading captioning model...")
|
52 |
+
caption_model_id = "quadranttechnologies/qhub-blip-image-captioning-finetuned"
|
53 |
+
caption_processor = AutoProcessor.from_pretrained(caption_model_id)
|
54 |
+
caption_model = AutoModelForVision2Seq.from_pretrained(caption_model_id).to(device)
|
55 |
+
|
56 |
+
# Load transcription model
|
57 |
+
print("Loading transcription model...")
|
58 |
+
whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
|
59 |
+
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium").to(device)
|
60 |
+
whisper_model.config.forced_decoder_ids = None
|
61 |
+
|
62 |
+
# Load QA model
|
63 |
+
print("Loading QA model...")
|
64 |
+
qa_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-1.7B")
|
65 |
+
qa_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-1.7B",torch_dtype="auto",device_map="auto")
|
66 |
+
|
67 |
+
return {
|
68 |
+
'caption_processor': caption_processor,
|
69 |
+
'caption_model': caption_model,
|
70 |
+
'whisper_processor': whisper_processor,
|
71 |
+
'whisper_model': whisper_model,
|
72 |
+
'qa_tokenizer': qa_tokenizer,
|
73 |
+
'qa_model': qa_model,
|
74 |
+
'device': device
|
75 |
+
}
|
76 |
+
except Exception as e:
|
77 |
+
print(f"Error loading models: {e}")
|
78 |
+
return None
|
packages.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
libgl1-mesa-glx
|
2 |
+
libglib2.0-0
|
processing.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
def process_video(video_path, session_id, models, conn):
|
4 |
+
"""Original process_video function - maintains compatibility"""
|
5 |
+
|
6 |
+
try:
|
7 |
+
# Import your modules
|
8 |
+
from captions import extract_frames, generate_caption
|
9 |
+
from audio import extract_audio, transcribe_audio
|
10 |
+
|
11 |
+
# Extract frames with default interval
|
12 |
+
print("Extracting frames...")
|
13 |
+
frames, timestamps = extract_frames(video_path, interval=0.5)
|
14 |
+
|
15 |
+
if not frames:
|
16 |
+
print("No frames could be extracted from the video.")
|
17 |
+
return
|
18 |
+
|
19 |
+
# Generate captions
|
20 |
+
print(f"Generating captions for {len(frames)} frames...")
|
21 |
+
cursor = conn.cursor()
|
22 |
+
|
23 |
+
for i, (frame, timestamp) in enumerate(zip(frames, timestamps)):
|
24 |
+
caption = generate_caption(frame, models)
|
25 |
+
cursor.execute(
|
26 |
+
"INSERT INTO captions (session_id, timestamp, caption) VALUES (?, ?, ?)",
|
27 |
+
(session_id, timestamp, caption)
|
28 |
+
)
|
29 |
+
|
30 |
+
# Update status every 10 frames
|
31 |
+
if i % 10 == 0:
|
32 |
+
print(f"Generating captions... {i+1}/{len(frames)}")
|
33 |
+
|
34 |
+
conn.commit()
|
35 |
+
|
36 |
+
# Extract and transcribe audio
|
37 |
+
print("Extracting and transcribing audio...")
|
38 |
+
audio, sr = extract_audio(video_path)
|
39 |
+
|
40 |
+
if audio is not None and len(audio) > 0:
|
41 |
+
transcription = transcribe_audio(audio, sr, models)
|
42 |
+
cursor.execute(
|
43 |
+
"INSERT INTO transcriptions (session_id, transcription) VALUES (?, ?)",
|
44 |
+
(session_id, transcription)
|
45 |
+
)
|
46 |
+
conn.commit()
|
47 |
+
else:
|
48 |
+
print("No audio found in the video or audio extraction failed.")
|
49 |
+
|
50 |
+
print("Processing complete!")
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error processing video: {str(e)}")
|
54 |
+
|
55 |
+
def process_video_with_fps(video_path, session_id, models, conn, fps=5):
|
56 |
+
"""Enhanced process_video function with FPS control"""
|
57 |
+
|
58 |
+
try:
|
59 |
+
# Import your modules
|
60 |
+
from captions import extract_frames_with_fps, generate_caption, batch_generate_captions
|
61 |
+
from audio import extract_audio, transcribe_audio
|
62 |
+
|
63 |
+
# Calculate interval from FPS
|
64 |
+
interval = 1.0 / fps
|
65 |
+
|
66 |
+
# Extract frames with custom FPS
|
67 |
+
print(f"Extracting frames at {fps} FPS (interval: {interval:.2f}s)...")
|
68 |
+
frames, timestamps = extract_frames_with_fps(video_path, interval=interval)
|
69 |
+
|
70 |
+
if not frames:
|
71 |
+
print("No frames could be extracted from the video.")
|
72 |
+
return
|
73 |
+
|
74 |
+
# Generate captions (use batch processing for efficiency)
|
75 |
+
print(f"Generating captions for {len(frames)} frames...")
|
76 |
+
cursor = conn.cursor()
|
77 |
+
|
78 |
+
# Option 1: Batch processing (more efficient)
|
79 |
+
try:
|
80 |
+
captions = batch_generate_captions(frames, models, batch_size=4)
|
81 |
+
|
82 |
+
# Insert all captions
|
83 |
+
for i, (timestamp, caption) in enumerate(zip(timestamps, captions)):
|
84 |
+
cursor.execute(
|
85 |
+
"INSERT INTO captions (session_id, timestamp, caption) VALUES (?, ?, ?)",
|
86 |
+
(session_id, timestamp, caption)
|
87 |
+
)
|
88 |
+
|
89 |
+
if i % 10 == 0:
|
90 |
+
print(f"Inserting captions... {i+1}/{len(captions)}")
|
91 |
+
|
92 |
+
except:
|
93 |
+
# Option 2: Fallback to individual processing
|
94 |
+
print("Batch processing failed, using individual processing...")
|
95 |
+
for i, (frame, timestamp) in enumerate(zip(frames, timestamps)):
|
96 |
+
caption = generate_caption(frame, models)
|
97 |
+
cursor.execute(
|
98 |
+
"INSERT INTO captions (session_id, timestamp, caption) VALUES (?, ?, ?)",
|
99 |
+
(session_id, timestamp, caption)
|
100 |
+
)
|
101 |
+
|
102 |
+
if i % 10 == 0:
|
103 |
+
print(f"Generating captions... {i+1}/{len(frames)}")
|
104 |
+
|
105 |
+
conn.commit()
|
106 |
+
|
107 |
+
# Extract and transcribe audio
|
108 |
+
print("Extracting and transcribing audio...")
|
109 |
+
audio, sr = extract_audio(video_path)
|
110 |
+
|
111 |
+
if audio is not None and len(audio) > 0:
|
112 |
+
transcription = transcribe_audio(audio, sr, models)
|
113 |
+
cursor.execute(
|
114 |
+
"INSERT INTO transcriptions (session_id, transcription) VALUES (?, ?)",
|
115 |
+
(session_id, transcription)
|
116 |
+
)
|
117 |
+
conn.commit()
|
118 |
+
else:
|
119 |
+
print("No audio found in the video or audio extraction failed.")
|
120 |
+
|
121 |
+
print("Processing complete!")
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
print(f"Error processing video with FPS: {str(e)}")
|
125 |
+
# Fallback to original function
|
126 |
+
print("Falling back to original processing...")
|
127 |
+
process_video(video_path, session_id, models, conn)
|