afriddev's picture
Update app.py
7ca8abc verified
import gradio as gr
from sentence_transformers import CrossEncoder
import torch
import requests
import ast
import os
# -------------------------------
# MODELS
# -------------------------------
CROSS_ENCODER_RERANK = "cross-encoder/ms-marco-MiniLM-L-12-v2"
JINA_MODEL = "jina-reranker-m0"
JINA_API_KEY = os.getenv("JINA_API_KEY") # set in HF Space settings
JINA_ENDPOINT = "https://api.jina.ai/v1/rerank"
NV_MODEL = "NV-RerankQA-Mistral-4B-v3"
HF_API_KEY = os.getenv("HF_API_KEY") # set in HF Space settings
# -------------------------------
# Load models
# -------------------------------
ce_rerank = CrossEncoder(CROSS_ENCODER_RERANK)
# -------------------------------
# Pipeline Function
# -------------------------------
def evaluate_models(query, docs_str):
try:
docs = ast.literal_eval(docs_str)
assert isinstance(docs, list), "Input must be a Python list of strings"
except Exception as e:
return {"Error": f"⚠️ Error parsing documents list: {e}"}
results = {}
# 1. CrossEncoder reranker (MS MARCO)
ce_rerank_scores = ce_rerank.predict([(query, d) for d in docs])
ce_rerank_scores = [round(torch.sigmoid(torch.tensor(s)).item(), 4) for s in ce_rerank_scores]
results["CrossEncoder (MS MARCO)"] = ce_rerank_scores
# 2. Jina Reranker
if JINA_API_KEY:
headers = {"Authorization": f"Bearer {JINA_API_KEY}", "Content-Type": "application/json"}
payload = {"model": JINA_MODEL, "query": query, "documents": docs}
try:
r = requests.post(JINA_ENDPOINT, headers=headers, json=payload, timeout=30)
r.raise_for_status()
jina_scores = [0] * len(docs)
for res in r.json()["results"]:
jina_scores[res["index"]] = round(res["relevance_score"], 4)
results["Jina Reranker"] = jina_scores
except Exception as e:
results["Jina Reranker"] = [f"Error: {e}"]
else:
results["Jina Reranker"] = ["Error: Missing JINA_API_KEY"]
# 3. NV RerankQA Mistral-4B-v3 (HF Inference API)
if HF_API_KEY:
try:
hf_endpoint = f"https://api-inference.huggingface.co/models/{NV_MODEL}"
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
payload = {"inputs": {"query": query, "documents": docs}}
r = requests.post(hf_endpoint, headers=headers, json=payload, timeout=60)
r.raise_for_status()
nv_scores = [round(res["score"], 4) for res in r.json()]
results["NV-RerankQA-Mistral-4B-v3"] = nv_scores
except Exception as e:
results["NV-RerankQA-Mistral-4B-v3"] = [f"Error: {e}"]
else:
results["NV-RerankQA-Mistral-4B-v3"] = ["Error: Missing HF_API_KEY"]
return results
# -------------------------------
# Gradio UI
# -------------------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## πŸ‘‘ Ranking Battle (Aligned Scores)\nOutputs only **scores aligned to input docs** from 3 models.")
query = gr.Textbox(label="Query", lines=2, placeholder="Enter your search query...")
docs = gr.Textbox(
label="Documents (Python list)",
lines=6,
placeholder='Example: [\"Doc one text\", \"Doc two text\", \"Doc three text\"]'
)
out = gr.JSON(label="Model Scores")
btn = gr.Button("Evaluate πŸš€")
btn.click(evaluate_models, inputs=[query, docs], outputs=out)
demo.launch()