Upload 22 files
Browse files- MultiModalTimer.py +186 -0
- app.py +192 -0
- ckpt/CLIPQwenTimer/Australian_Electricity/config.json +9 -0
- ckpt/CLIPQwenTimer/Australian_Electricity/model.safetensors +3 -0
- ckpt/CLIPQwenTimer/CIF_2016/config.json +9 -0
- ckpt/CLIPQwenTimer/CIF_2016/model.safetensors +3 -0
- ckpt/CLIPQwenTimer/NN5_Daily/config.json +9 -0
- ckpt/CLIPQwenTimer/NN5_Daily/model.safetensors +3 -0
- ckpt/CLIPQwenTimer/Tourism_Monthly/config.json +9 -0
- ckpt/CLIPQwenTimer/Tourism_Monthly/model.safetensors +3 -0
- models/__pycache__/configuration_timer.cpython-310.pyc +0 -0
- models/__pycache__/modeling_clipPT.cpython-310.pyc +0 -0
- models/__pycache__/modeling_qwen2.cpython-310.pyc +0 -0
- models/__pycache__/modeling_timer.cpython-310.pyc +0 -0
- models/__pycache__/ts_generation_mixin.cpython-310.pyc +0 -0
- models/configuration_timer.py +40 -0
- models/modeling_clipPT.py +1374 -0
- models/modeling_qwen2.py +1416 -0
- models/modeling_timer.py +604 -0
- models/ts_generation_mixin.py +275 -0
- requirements.txt +8 -0
- runtime.txt +1 -0
MultiModalTimer.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
7 |
+
|
8 |
+
# CLIP
|
9 |
+
from models.modeling_clipPT import CLIPVisionTransformer
|
10 |
+
from transformers import CLIPImageProcessor
|
11 |
+
|
12 |
+
# Qwen
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
from models.modeling_qwen2 import Qwen2Model
|
15 |
+
|
16 |
+
# Timer
|
17 |
+
from models.modeling_timer import TimerForPrediction
|
18 |
+
|
19 |
+
class MultiModalTimerConfig(PretrainedConfig):
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
forecasting_length = None,
|
23 |
+
vision_model_name = None,
|
24 |
+
text_model_name = None,
|
25 |
+
vision_model_prompt_len = None,
|
26 |
+
text_model_prompt_len = None,
|
27 |
+
timer_prompt_len = None,
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
super().__init__(**kwargs)
|
31 |
+
self.forecasting_length = forecasting_length
|
32 |
+
self.vision_model_name = vision_model_name
|
33 |
+
self.text_model_name = text_model_name
|
34 |
+
|
35 |
+
self.vision_model_prompt_len = vision_model_prompt_len if vision_model_prompt_len is not None else 10
|
36 |
+
self.text_model_prompt_len = text_model_prompt_len if text_model_prompt_len is not None else 4
|
37 |
+
self.timer_prompt_len = timer_prompt_len if timer_prompt_len is not None else 4
|
38 |
+
|
39 |
+
class MultiModalTimerModel(PreTrainedModel):
|
40 |
+
|
41 |
+
config_class = MultiModalTimerConfig
|
42 |
+
|
43 |
+
def __init__(self, config):
|
44 |
+
super().__init__(config)
|
45 |
+
self.config = config
|
46 |
+
|
47 |
+
# Vision Model
|
48 |
+
if config.vision_model_name is None:
|
49 |
+
pass
|
50 |
+
elif config.vision_model_name == 'CLIP':
|
51 |
+
from transformers import AutoModel
|
52 |
+
vision_model = AutoModel.from_pretrained("openai/clip-vit-base-patch32").vision_model
|
53 |
+
state_dict = vision_model.state_dict()
|
54 |
+
state_dict = {k: v.to(torch.bfloat16) for k, v in state_dict.items()}
|
55 |
+
self.vision_model = CLIPVisionTransformer(vision_model.config, config.vision_model_prompt_len)
|
56 |
+
self.vision_model.load_state_dict(state_dict, strict=False)
|
57 |
+
for name, param in self.vision_model.named_parameters(): # Freeze layers other than prompts
|
58 |
+
if "encoder.prompts" in name:
|
59 |
+
param.requires_grad = True
|
60 |
+
else:
|
61 |
+
param.requires_grad = False
|
62 |
+
else:
|
63 |
+
pass
|
64 |
+
|
65 |
+
# Text Model
|
66 |
+
if config.text_model_name is None:
|
67 |
+
pass
|
68 |
+
elif config.text_model_name == 'Qwen':
|
69 |
+
self.tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
70 |
+
from transformers import AutoModelForCausalLM
|
71 |
+
text_model = AutoModelForCausalLM.from_pretrained(
|
72 |
+
"Qwen/Qwen2-1.5B-Instruct",
|
73 |
+
torch_dtype=torch.bfloat16,
|
74 |
+
device_map="cpu",
|
75 |
+
attn_implementation="sdpa"
|
76 |
+
).model
|
77 |
+
state_dict = text_model.state_dict()
|
78 |
+
self.text_model = Qwen2Model(text_model.config, config.text_model_prompt_len)
|
79 |
+
self.text_model.load_state_dict(state_dict, strict=False)
|
80 |
+
for name, param in self.text_model.named_parameters(): # Freeze layers other than prompts
|
81 |
+
if "prompts" in name:
|
82 |
+
param.requires_grad = True
|
83 |
+
else:
|
84 |
+
param.requires_grad = False
|
85 |
+
else:
|
86 |
+
pass
|
87 |
+
|
88 |
+
# Timer
|
89 |
+
from transformers import AutoModelForCausalLM
|
90 |
+
timer = AutoModelForCausalLM.from_pretrained('thuml/timer-base-84m', trust_remote_code=True)
|
91 |
+
state_dict = timer.state_dict()
|
92 |
+
self.timer = TimerForPrediction(timer.config, config.timer_prompt_len)
|
93 |
+
self.timer.load_state_dict(state_dict, strict=False)
|
94 |
+
for name, param in self.timer.named_parameters(): # Freeze layers other than prompts
|
95 |
+
if "model.prompts" in name:
|
96 |
+
param.requires_grad = True
|
97 |
+
else:
|
98 |
+
param.requires_grad = False
|
99 |
+
|
100 |
+
# Vision Interaction Layer
|
101 |
+
if config.vision_model_name is None:
|
102 |
+
pass
|
103 |
+
else:
|
104 |
+
self.vision_interaction_layer = nn.Linear(self.vision_model.config.hidden_size, self.timer.config.hidden_size)
|
105 |
+
|
106 |
+
# Text Interaction Layer
|
107 |
+
if config.text_model_name is None:
|
108 |
+
pass
|
109 |
+
else:
|
110 |
+
self.text_interaction_layer = nn.Linear(self.text_model.config.hidden_size, self.timer.config.hidden_size)
|
111 |
+
|
112 |
+
def forward(self, input_ids = None, images = None, texts = None, labels = None):
|
113 |
+
if self.config.vision_model_name is None and images is None:
|
114 |
+
vision_embedding = None
|
115 |
+
else:
|
116 |
+
vision_embedding = self.vision_model(images)
|
117 |
+
vision_embedding = vision_embedding.pooler_output
|
118 |
+
vision_embedding = self.vision_interaction_layer(vision_embedding)
|
119 |
+
|
120 |
+
if self.config.text_model_name is None and all(x is None for x in texts):
|
121 |
+
text_embedding = None
|
122 |
+
else:
|
123 |
+
tokenized_texts = self.tokenizer(texts, return_tensors="pt").to(input_ids.device)
|
124 |
+
text_embedding = self.text_model(**tokenized_texts)
|
125 |
+
text_embedding = text_embedding.last_hidden_state[:, 0 , :]
|
126 |
+
text_embedding = self.text_interaction_layer(text_embedding)
|
127 |
+
|
128 |
+
out = self.timer(input_ids=input_ids, vision_embedding=vision_embedding, text_embedding=text_embedding)
|
129 |
+
out = out["logits"]
|
130 |
+
|
131 |
+
if labels is not None:
|
132 |
+
if self.config.forecasting_length == out.shape[-1]:
|
133 |
+
loss = torch.mean(torch.square(out-labels)) # MSE
|
134 |
+
else: # pretrained Timer has 96 forecasting length. This is in case of shorter forecasting length. Forecasting length larger than 96 will occure an error.
|
135 |
+
loss = torch.mean(torch.square(out[:, :self.config.forecasting_length]-labels))
|
136 |
+
else:
|
137 |
+
loss = None
|
138 |
+
|
139 |
+
return {
|
140 |
+
"loss": loss,
|
141 |
+
"logits": out
|
142 |
+
}
|
143 |
+
|
144 |
+
class MultiModalTimerDataset(Dataset): # need to refactored
|
145 |
+
def __init__(self, dataset_path, vision_model_name = None, dataset_text = None, forecasting_length: int = 96):
|
146 |
+
|
147 |
+
self.dataset_path = dataset_path
|
148 |
+
self.vision_model_name = vision_model_name
|
149 |
+
self.dataset_text = dataset_text
|
150 |
+
|
151 |
+
if vision_model_name is None:
|
152 |
+
pass
|
153 |
+
elif vision_model_name == 'CLIP':
|
154 |
+
self.processor = CLIPImageProcessor()
|
155 |
+
else:
|
156 |
+
pass
|
157 |
+
|
158 |
+
self.inputs = torch.load(os.path.join(dataset_path, "inputs.pt"))
|
159 |
+
if forecasting_length:
|
160 |
+
self.targets = torch.load(os.path.join(dataset_path, f"targets_{forecasting_length}.pt"))
|
161 |
+
else:
|
162 |
+
self.targets = torch.load(os.path.join(dataset_path, "targets.pt"))
|
163 |
+
self.keys = list(self.targets.keys())
|
164 |
+
|
165 |
+
def __len__(self):
|
166 |
+
return len(self.keys)
|
167 |
+
|
168 |
+
def __getitem__(self, idx):
|
169 |
+
img_name = self.keys[idx]
|
170 |
+
|
171 |
+
if self.vision_model_name is None:
|
172 |
+
images = None
|
173 |
+
else:
|
174 |
+
img_path = os.path.join(self.dataset_path, 'img', img_name)
|
175 |
+
images = Image.open(img_path).convert("RGB")
|
176 |
+
images = self.processor.preprocess(images)['pixel_values'][0]
|
177 |
+
|
178 |
+
input_tensor = self.inputs[img_name].float().squeeze()
|
179 |
+
target_tensor = self.targets[img_name].float().squeeze()
|
180 |
+
|
181 |
+
return {
|
182 |
+
"input_ids": input_tensor,
|
183 |
+
"images": images,
|
184 |
+
"texts": self.dataset_text,
|
185 |
+
"labels": target_tensor
|
186 |
+
}
|
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from MultiModalTimer import MultiModalTimerConfig, MultiModalTimerModel
|
2 |
+
from safetensors.torch import load_file
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import io
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
from transformers import CLIPImageProcessor
|
11 |
+
|
12 |
+
inputs = {
|
13 |
+
"NN5 Daily": [
|
14 |
+
"0.3910, 1.7167, 1.1042, -0.6679, -0.0730, -0.5204, -0.2152, 0.6485, 2.8109, 1.4125, -0.2568, 0.7014, 1.2558, 2.9853, -0.9938, -1.0800, -0.2318, -0.9222, -0.6326, -0.1353, 1.3316, -1.1879, 0.3443, -1.3457, -0.6679, -0.6450, -0.7810, -0.9419, -0.1787, -1.2575, 0.7232, -0.0730, -0.5599, -0.8962, -0.7987, 0.1450, 1.1177, 0.4772, -0.9699, -0.7748, -0.7634, -0.6741, -0.1602, 1.2849, 2.1974, 0.2062, -0.3564, -0.5547, -0.5588, 0.1626, 1.1073, 0.4575, -0.7198, -0.5443, -0.6357, -0.8070",
|
15 |
+
"0.5456, 1.4991, 1.1747, -0.6072, -0.1441, 0.3698, -0.3747, 0.3952, 1.3213, 2.2103, -0.2672, 1.3604, 1.3135, 2.1556, -1.9260, -1.8713, -0.5368, -1.2031, 0.4577, 0.0024, 1.6632, -1.3907, -0.0855, -0.0914, -1.1113, -0.3629, -1.3047, -0.7185, -0.3414, 0.7820, 0.4909, -0.6033, -0.2496, -0.7478, -0.3942, 0.2901, 0.3600, 0.7508, -0.7439, -0.6404, -0.7088, -0.6462, 0.5163, 1.2275, 0.4850, -2.0940, -1.6876, -0.3199, -0.1988, 0.4206, 1.4014, 1.3916, 0.0591, -0.5935, -0.1773, -0.5017",
|
16 |
+
"0.6767, -0.7404, -0.0247, -0.5122, 0.1192, 0.8660, 3.3852, 1.7256, -0.4448, 0.4084, 1.4521, 1.7801, -1.4599, -1.1773, -0.2282, -1.0087, 0.0907, -0.0234, 1.0890, -1.3394, 0.5938, -0.1453, -1.1928, -0.4085, -0.7144, -0.1673, -0.0182, 0.8453, 0.3980, -1.0645, -0.4875, -0.6755, -0.3086, 0.3358, 1.1383, 0.2074, -1.0554, -0.4357, -0.4759, -0.3631, 0.1529, 1.1953, 0.1633, -0.9932, -0.3177, -0.6457, -0.6807, -0.2412, -1.5286, 2.7797, -0.5757, -0.0986, -1.3899, -0.2995, 0.5471, 1.2926"
|
17 |
+
],
|
18 |
+
"Australian Electricity": [
|
19 |
+
"0.1561, 0.0250, -0.1232, -0.3055, -0.3450, -0.6220, -0.9393, -1.1442, -1.3506, -1.5285, -1.6454, -1.7910, -1.8572, -1.8765, -1.8602, -1.7844, -1.5492, -1.3167, -0.8213, -0.3058, 0.1053, 0.4125, 0.6468, 0.7649, 0.8247, 0.8206, 0.8007, 0.8021, 0.8096, 0.8684, 0.8706, 0.8588, 0.8742, 0.9041, 0.8933, 0.8302, 0.8022, 0.8173, 0.8135, 0.7948, 0.6960, 0.6982, 0.9220, 0.9045, 0.7065, 0.6502, 0.6367, 0.4564",
|
20 |
+
"-0.3264, -0.3155, -0.3910, -0.2909, -0.3695, -0.4594, -0.6087, -0.7602, -0.9589, -1.2557, -1.5857, -1.8475, -1.9940, -2.0640, -2.0380, -1.8492, -1.6252, -1.1220, -0.5189, -0.2555, 0.1371, 0.3406, 0.4399, 0.6321, 0.7476, 0.8676, 0.9294, 0.9488, 1.0222, 1.0061, 1.0013, 1.0430, 1.0417, 1.0566, 1.0340, 0.9836, 0.9892, 0.9969, 0.9595, 0.8409, 0.7677, 0.6153, 0.5256, 0.4210, 0.5014, 0.4849, 0.3080, -0.0058",
|
21 |
+
"0.5091, 0.1714, -0.2558, -0.6192, -0.9358, -1.1645, -1.3079, -1.3875, -1.4657, -1.6180, -1.6260, -1.5982, -1.5640, -1.5354, -1.4960, -1.3395, -1.1070, -0.5613, 0.2179, 1.1485, 1.7363, 1.8791, 1.6987, 1.3585, 1.1350, 0.8669, 0.7281, 0.5676, 0.4495, 0.2027, 0.0901, -0.0161, -0.0750, -0.0981, -0.0711, 0.0944, 0.0466, 0.1898, 0.2478, 0.3899, 0.5053, 0.5426, 0.6315, 0.6308, 0.8361, 1.0080, 1.0234, 0.9366"
|
22 |
+
],
|
23 |
+
"CIF 2016": [
|
24 |
+
"-2.1365, -0.6420, -0.9545, -0.4169, 0.5554, -0.5115, 0.2702, -0.1587, 1.0649, 1.3542, 0.6126, 0.9629",
|
25 |
+
"1.5888, 1.3587, 0.6136, 0.7122, 0.6355, -0.4164, -0.7670, -1.0409, -1.0300, 0.0219, -1.5559, -0.1205",
|
26 |
+
"1.3580, 1.1319, 1.5850, 0.7912, 0.0083, -0.0066, -0.3669, -0.6251, -0.5215, -1.3642, -0.7737, -1.2164"
|
27 |
+
],
|
28 |
+
"Tourism Monthly": [
|
29 |
+
"-0.7495, -0.8636, -0.9378, -0.7584, -0.3905, -0.1575, 0.3522, 1.9419, 1.9991, 0.5223, -0.2807, -0.8089, -0.7009, -0.8471, -0.9227, -0.6670, -0.4053, -0.1508, 0.3640, 1.8908, 1.9565, 0.5652, -0.1896, -0.7617",
|
30 |
+
"0.8332, 1.4813, 0.1061, -0.4110, -1.0407, -1.1521, -0.8156, -0.8842, -0.9908, 0.0014, 0.8833, 1.5613, 1.3095, 1.6260, 0.2534, -0.4883, -1.0412, -1.1210, -0.7034, -0.8304, -0.8239, -0.0673, 0.7531, 1.5613",
|
31 |
+
"0.8778, -0.0008, -0.6814, -0.7851, -0.7828, -0.6682, -0.8473, -0.9634, -0.4615, 0.1523, 2.3755, 1.0437, 1.5980, 0.1482, -0.1063, -0.7360, -0.7700, -0.7560, -0.7145, -0.8552, -0.4242, 0.2896, 2.2307, 0.8371"
|
32 |
+
]
|
33 |
+
}
|
34 |
+
|
35 |
+
targets = {
|
36 |
+
"NN5 Daily": [
|
37 |
+
[-0.5433, 0.6589, 0.4668, -0.6959, -0.5474, -0.7685, -0.7125, -0.0273, 1.3170, 0.5883, -0.7675, -0.5163, -0.6035, -0.5028, 0.0505, 0.5530, 0.5810, -0.8049, -0.5370, -0.6149, -0.5609, 0.2166, 1.3202, 0.5852, -0.5921, -0.5038, -0.7301, -0.7644, 0.2011, 0.6942, 0.5052, -0.7644, -0.7644, -0.7364, -0.3896, 0.1917, 1.1084, 0.3827, -0.6679, -0.5568, -0.5910, -0.4052, 0.3599, 1.0617, 1.0461, -0.6326, -0.6990, -0.9056, -0.6159, 0.2696, 1.5299, 0.8032, -1.1879, -0.8153, -0.4872, -0.3491],
|
38 |
+
[0.6140, 1.0575, 0.2213, -0.3903, -0.5388, -0.6677, -0.4196, 0.1841, 1.6300, 0.4147, -0.5505, -0.4469, -0.3903, -0.3786, 0.5886, 1.0321, 0.3053, -0.5368, -0.6443, -0.5700, -0.5290, 0.1587, 1.6437, 1.1435, -0.6404, -0.1988, -0.6423, -0.4489, 0.1880, 0.9872, 1.1044, -0.7654, -0.2320, -0.6931, -0.9725, 0.3014, 1.3447, 0.8895, -0.5446, -0.0445, -0.3336, -0.6482, 0.7097, 1.7238, 1.3037, -0.3551, -0.4919, -0.5544, -0.4196, 0.4753, 1.4795, 1.3760, -0.4430, -0.0347, 0.2330, -0.4079],
|
39 |
+
[0.2800, -0.9634, -0.2114, -0.6185, -0.4473, 0.4408, 1.3276, 0.4408, -1.0165, -0.6470, -0.4103, -0.7404, -0.2490, 1.0709, 0.6690, -1.0528, -0.4655, -0.7365, -0.3981, 0.0907, 1.4754, 1.0359, -0.9400, -0.3449, -0.6418, 0.0155, 0.5717, 1.2355, 0.4589, -0.9776, -0.1867, -0.6587, -0.3358, 0.2644, 1.4145, 0.3189, -1.1708, -0.2412, -0.5848, -0.1077, 0.5951, 0.8777, 0.6599, -1.1565, -0.5122, -0.5666, -0.2931, 0.1983, 1.8410, 1.1370, -1.2330, -0.2840, 0.0090, 0.2411, 0.5912, 1.2822]
|
40 |
+
],
|
41 |
+
"Australian Electricity": [
|
42 |
+
[0.2418, 0.1000, -0.0648, -0.2259, -0.2967, -0.5842, -0.9359, -1.1101, -1.3467, -1.5249, -1.7000, -1.7966, -1.8497, -1.8812, -1.9009, -1.8194, -1.6176, -1.3769, -0.8809, -0.4156, 0.0521, 0.3505, 0.6003, 0.7191, 0.8154, 0.8006, 0.7769, 0.7888, 0.8156, 0.8311, 0.8516, 0.8480, 0.8405, 0.9085, 0.8990, 0.9031, 0.9135, 0.9160, 0.8557, 0.8282, 0.7075, 0.7170, 0.9111, 0.9671, 0.7844, 0.7513, 0.6663, 0.5040],
|
43 |
+
[-0.2806, -0.2256, -0.3062, -0.2318, -0.3017, -0.4339, -0.5957, -0.7385, -0.9333, -1.2554, -1.5583, -1.8179, -1.9639, -2.0259, -2.0105, -1.8515, -1.5978, -1.1026, -0.5616, -0.2580, 0.0937, 0.3312, 0.3877, 0.5459, 0.6491, 0.7382, 0.7652, 0.7550, 0.8130, 0.7863, 0.7734, 0.7761, 0.7552, 0.7527, 0.7178, 0.6544, 0.6689, 0.6651, 0.6142, 0.4929, 0.3658, 0.1463, 0.0122, -0.0509, 0.0453, 0.0132, -0.1152, -0.3515],
|
44 |
+
[0.6565, 0.3575, -0.0906, -0.4682, -0.7850, -1.0572, -1.2190, -1.3699, -1.4444, -1.4917, -1.4912, -1.4580, -1.4893, -1.4474, -1.3971, -1.2866, -1.0777, -0.6444, -0.0932, 0.5655, 1.0824, 1.1828, 1.1444, 1.1274, 0.9795, 0.7276, 0.5866, 0.4147, 0.1967, 0.0191, -0.1381, -0.2384, -0.3049, -0.3523, -0.3015, -0.1735, -0.1186, -0.0017, 0.1577, 0.2584, 0.3643, 0.5303, 0.6169, 0.6950, 0.8434, 0.9273, 0.8578, 0.7277]
|
45 |
+
],
|
46 |
+
"CIF 2016": [
|
47 |
+
[0.7780, 1.4980, 0.9115, 0.5034, 1.8105, 1.6583, 1.6255, 1.9613, 1.6311, 2.2943, 2.4116, 2.4785],
|
48 |
+
[-1.1615, -0.6684, -1.1396, -0.8766, -0.1863, -0.5040, -1.4683, -1.6765, -1.7312, -0.9862, -0.7341, -0.5807],
|
49 |
+
[-0.9360, -1.0646, -1.2660, -1.1586, -1.7037, -2.1642, -2.2156, -2.0456, -2.1657, -2.6387, -2.3959, -2.3520]
|
50 |
+
],
|
51 |
+
"Tourism Monthly": [
|
52 |
+
[-0.7218, -0.8162, -0.8599, -0.6781, -0.1500, 0.0297, 0.5061, 2.2237, 1.9718, 0.7502, -0.0718, -0.7254, -0.5999, -0.8048, -0.8552, -0.5962, -0.2393, -0.0513, 0.5497, 2.0177, 2.3518, 0.6854, -0.1190, -0.7002],
|
53 |
+
[1.4626, 1.6710, 0.9104, -0.5530, -0.9392, -1.0148, -0.6596, -0.7959, -0.7170, 0.1262, 1.1316, 1.9928, 1.8925, 2.1458, 0.7225, -0.1372, -0.8087, -0.8994, -0.5187, -0.6408, -0.5757, 0.1131, 1.2596, 2.4437],
|
54 |
+
[0.7737, 0.2534, -0.4698, -0.8390, -0.7692, -0.6648, -0.7311, -0.8054, -0.3891, 0.8623, 2.7314, 1.3378, 1.2805, 0.5682, -0.4299, -0.7511, -0.8982, -0.6067, -0.6572, -0.8337, -0.2564, 0.5460, 2.5010, 1.5309]
|
55 |
+
]
|
56 |
+
}
|
57 |
+
|
58 |
+
descriptions = {
|
59 |
+
"NN5 Daily": "Daily cash withdrawal volumes from automated teller machines (ATMs) in the United Kingdom, originally used in the NN5 forecasting competition.",
|
60 |
+
"Australian Electricity": "Half-hourly electricity demand data across five Australian states.",
|
61 |
+
"CIF 2016": "Monthly banking time series used in the CIF 2016 forecasting challenge, reflecting customer financial behaviours.",
|
62 |
+
"Tourism Monthly": "Monthly tourism-related time series used in the Kaggle Tourism forecasting competition, covering various regions and visitor types."
|
63 |
+
}
|
64 |
+
|
65 |
+
models = {}
|
66 |
+
# for dataset in ["NN5_Daily", "Australian_Electricity", "CIF_2016", "Tourism_Monthly"]:
|
67 |
+
for dataset in ["NN5_Daily", "Australian_Electricity"]:
|
68 |
+
config = MultiModalTimerConfig.from_pretrained(f"ckpt/CLIPQwenTimer/{dataset}/config.json")
|
69 |
+
model = MultiModalTimerModel(config)
|
70 |
+
state_dict = load_file(f"ckpt/CLIPQwenTimer/{dataset}/model.safetensors")
|
71 |
+
model.load_state_dict(state_dict, strict=False)
|
72 |
+
|
73 |
+
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
74 |
+
device = torch.device("cpu")
|
75 |
+
model.to(device)
|
76 |
+
|
77 |
+
models[dataset.replace("_", " ")] = model
|
78 |
+
|
79 |
+
context_length = {
|
80 |
+
"NN5 Daily": 56,
|
81 |
+
"Australian Electricity": 48,
|
82 |
+
"CIF 2016": 12,
|
83 |
+
"Tourism Monthly": 24
|
84 |
+
}
|
85 |
+
|
86 |
+
def predict(dataset, example, inputs, text):
|
87 |
+
inputs = np.array([float(x.strip()) for x in inputs.split(',')])
|
88 |
+
mean = np.mean(inputs)
|
89 |
+
std = np.std(inputs)
|
90 |
+
inputs = (inputs-mean)/std
|
91 |
+
input_ids = torch.tensor(inputs).to(torch.float32).to(device)
|
92 |
+
input_ids = input_ids.unsqueeze(0)
|
93 |
+
|
94 |
+
plt.figure(figsize=(384/100, 384/100), dpi=100)
|
95 |
+
plt.plot(inputs, color="black", linestyle="-", linewidth=1, marker="*", markersize=1)
|
96 |
+
plt.xticks([])
|
97 |
+
plt.yticks([])
|
98 |
+
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
99 |
+
plt.margins(0,0)
|
100 |
+
|
101 |
+
buf = io.BytesIO()
|
102 |
+
plt.savefig(buf, format='png')
|
103 |
+
buf.seek(0)
|
104 |
+
plot_img = Image.open(buf).convert('RGB')
|
105 |
+
|
106 |
+
processor = CLIPImageProcessor()
|
107 |
+
images = processor.preprocess(plot_img)['pixel_values'][0]
|
108 |
+
images = torch.tensor(images).to(device)
|
109 |
+
images = images.unsqueeze(0)
|
110 |
+
|
111 |
+
text = None if text == '' else text
|
112 |
+
|
113 |
+
out = models[dataset](**{'input_ids': input_ids, 'images': images, 'texts': text})['logits']
|
114 |
+
|
115 |
+
cl = context_length[dataset]
|
116 |
+
out = out[0, :cl]
|
117 |
+
|
118 |
+
plt.style.use("seaborn-v0_8")
|
119 |
+
fig, ax = plt.subplots()
|
120 |
+
ax.plot(range(cl), inputs, color="black", alpha=0.7, linewidth=3, label='Input')
|
121 |
+
if example == "Custom":
|
122 |
+
pass
|
123 |
+
else:
|
124 |
+
ax.plot(range(cl, 2*cl), targets[dataset][int(example)-1], color='C0', alpha=0.7, linewidth=3, label='True')
|
125 |
+
ax.plot(range(cl, 2*cl), out.detach().cpu().numpy(), color='C2', alpha=0.7, linewidth=3, label='Forecast')
|
126 |
+
ax.legend()
|
127 |
+
|
128 |
+
buf = io.BytesIO()
|
129 |
+
fig.savefig(buf, format='png')
|
130 |
+
buf.seek(0)
|
131 |
+
forecast_img = Image.open(buf).convert('RGB')
|
132 |
+
|
133 |
+
# return plot_img, out, forecast_img
|
134 |
+
return forecast_img
|
135 |
+
|
136 |
+
def make_input_example_dropdown(example, done):
|
137 |
+
if done:
|
138 |
+
return example, True
|
139 |
+
else:
|
140 |
+
return gr.Dropdown(["1", "2", "3", "Custom"], label="Input Examples", value=None, interactive=True), True
|
141 |
+
|
142 |
+
def update_options(dataset, example):
|
143 |
+
if example == "1":
|
144 |
+
time_series = inputs[dataset][0]
|
145 |
+
desc = descriptions[dataset]
|
146 |
+
placeholder = None
|
147 |
+
interactive = False
|
148 |
+
elif example == "2":
|
149 |
+
time_series = inputs[dataset][1]
|
150 |
+
desc = descriptions[dataset]
|
151 |
+
placeholder = None
|
152 |
+
interactive = False
|
153 |
+
elif example == "3":
|
154 |
+
time_series = inputs[dataset][2]
|
155 |
+
desc = descriptions[dataset]
|
156 |
+
placeholder = None
|
157 |
+
interactive = False
|
158 |
+
elif example == "Custom":
|
159 |
+
time_series = ""
|
160 |
+
desc = ""
|
161 |
+
placeholder = f"Please Enter {context_length[dataset]} Time Steps Long Time Series Input."
|
162 |
+
interactive = True
|
163 |
+
else:
|
164 |
+
time_series = ""
|
165 |
+
desc = ""
|
166 |
+
placeholder = None
|
167 |
+
interactive = False
|
168 |
+
|
169 |
+
return gr.Textbox(value=time_series, label="Time Series Input", placeholder=placeholder, interactive=interactive), gr.Textbox(value=desc, label="Dataset Description", interactive=interactive)
|
170 |
+
|
171 |
+
with gr.Blocks() as demo:
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Column():
|
174 |
+
# dataset_dropdown = gr.Dropdown(["NN5 Daily", "Australian Electricity", "CIF 2016", "Tourism Monthly"], value=None, label="Datasets", interactive=True)
|
175 |
+
dataset_dropdown = gr.Dropdown(["NN5 Daily", "Australian Electricity"], value=None, label="Datasets", interactive=True)
|
176 |
+
input_example_dropdown = gr.Dropdown([], label="Input Examples", value=None, interactive=False)
|
177 |
+
done = gr.State(False)
|
178 |
+
|
179 |
+
time_series_textbox = gr.Textbox(label="Time Series Input")
|
180 |
+
dataset_description_textbox = gr.Textbox(label="Dataset Description")
|
181 |
+
|
182 |
+
dataset_dropdown.change(make_input_example_dropdown, inputs=[input_example_dropdown, done], outputs=[input_example_dropdown, done])
|
183 |
+
dataset_dropdown.change(update_options, inputs=[dataset_dropdown, input_example_dropdown], outputs=[time_series_textbox, dataset_description_textbox])
|
184 |
+
input_example_dropdown.change(update_options, inputs=[dataset_dropdown, input_example_dropdown], outputs=[time_series_textbox, dataset_description_textbox])
|
185 |
+
|
186 |
+
btn = gr.Button("Run")
|
187 |
+
with gr.Column():
|
188 |
+
forecast_image = gr.Image(label="Forecast")
|
189 |
+
|
190 |
+
btn.click(predict, inputs=[dataset_dropdown, input_example_dropdown, time_series_textbox, dataset_description_textbox], outputs=forecast_image)
|
191 |
+
|
192 |
+
demo.launch(ssr_mode=False)
|
ckpt/CLIPQwenTimer/Australian_Electricity/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"forecasting_length": 48,
|
3 |
+
"text_model_name": "Qwen",
|
4 |
+
"text_model_prompt_len": 4,
|
5 |
+
"timer_prompt_len": 4,
|
6 |
+
"transformers_version": "4.40.1",
|
7 |
+
"vision_model_name": "CLIP",
|
8 |
+
"vision_model_prompt_len": 10
|
9 |
+
}
|
ckpt/CLIPQwenTimer/Australian_Electricity/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3974a01b497fa5149d2f1702cc5daa736a98a4ed32c081f6cad28be807fd680e
|
3 |
+
size 10638152
|
ckpt/CLIPQwenTimer/CIF_2016/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"forecasting_length": 12,
|
3 |
+
"text_model_name": "Qwen",
|
4 |
+
"text_model_prompt_len": 4,
|
5 |
+
"timer_prompt_len": 4,
|
6 |
+
"transformers_version": "4.40.1",
|
7 |
+
"vision_model_name": "CLIP",
|
8 |
+
"vision_model_prompt_len": 10
|
9 |
+
}
|
ckpt/CLIPQwenTimer/CIF_2016/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ed3fced554180a08675776ec0508ae2f39a65e778aaca9c69c333e239a7be6a8
|
3 |
+
size 10638152
|
ckpt/CLIPQwenTimer/NN5_Daily/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"forecasting_length": 56,
|
3 |
+
"text_model_name": "Qwen",
|
4 |
+
"text_model_prompt_len": 4,
|
5 |
+
"timer_prompt_len": 4,
|
6 |
+
"transformers_version": "4.40.1",
|
7 |
+
"vision_model_name": "CLIP",
|
8 |
+
"vision_model_prompt_len": 10
|
9 |
+
}
|
ckpt/CLIPQwenTimer/NN5_Daily/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3a4e052bdb44da28792f4b0b24ce5d141143c8ff1da2148fb4b05d0b80c0e76
|
3 |
+
size 10638152
|
ckpt/CLIPQwenTimer/Tourism_Monthly/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"forecasting_length": 24,
|
3 |
+
"text_model_name": "Qwen",
|
4 |
+
"text_model_prompt_len": 4,
|
5 |
+
"timer_prompt_len": 4,
|
6 |
+
"transformers_version": "4.40.1",
|
7 |
+
"vision_model_name": "CLIP",
|
8 |
+
"vision_model_prompt_len": 10
|
9 |
+
}
|
ckpt/CLIPQwenTimer/Tourism_Monthly/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1978e7504e9166e38fab24579d4ce3dd74bd20cf8e9c6bdf142a56df0c234d7b
|
3 |
+
size 10638152
|
models/__pycache__/configuration_timer.cpython-310.pyc
ADDED
Binary file (1.35 kB). View file
|
|
models/__pycache__/modeling_clipPT.cpython-310.pyc
ADDED
Binary file (44.2 kB). View file
|
|
models/__pycache__/modeling_qwen2.cpython-310.pyc
ADDED
Binary file (39.7 kB). View file
|
|
models/__pycache__/modeling_timer.cpython-310.pyc
ADDED
Binary file (16.1 kB). View file
|
|
models/__pycache__/ts_generation_mixin.cpython-310.pyc
ADDED
Binary file (6.38 kB). View file
|
|
models/configuration_timer.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
from transformers import PretrainedConfig
|
3 |
+
|
4 |
+
|
5 |
+
class TimerConfig(PretrainedConfig):
|
6 |
+
model_type = "timer"
|
7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
8 |
+
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
input_token_len: int = 1,
|
12 |
+
hidden_size: int = 1024,
|
13 |
+
intermediate_size: int = 2048,
|
14 |
+
output_token_lens: List[int] = [1, 8, 32, 64],
|
15 |
+
num_hidden_layers: int = 8,
|
16 |
+
num_attention_heads: int = 8,
|
17 |
+
hidden_act: str = "silu",
|
18 |
+
use_cache: bool = True,
|
19 |
+
rope_theta: int = 10000,
|
20 |
+
attention_dropout: float = 0.0,
|
21 |
+
initializer_range: float = 0.02,
|
22 |
+
max_position_embeddings: int = 10000,
|
23 |
+
**kwargs,
|
24 |
+
):
|
25 |
+
self.input_token_len = input_token_len
|
26 |
+
self.hidden_size = hidden_size
|
27 |
+
self.intermediate_size = intermediate_size
|
28 |
+
self.num_hidden_layers = num_hidden_layers
|
29 |
+
self.num_attention_heads = num_attention_heads
|
30 |
+
self.hidden_act = hidden_act
|
31 |
+
self.output_token_lens = output_token_lens
|
32 |
+
self.use_cache = use_cache
|
33 |
+
self.rope_theta = rope_theta
|
34 |
+
self.attention_dropout = attention_dropout
|
35 |
+
self.initializer_range = initializer_range
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
|
38 |
+
super().__init__(
|
39 |
+
**kwargs,
|
40 |
+
)
|
models/modeling_clipPT.py
ADDED
@@ -0,0 +1,1374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch CLIP model."""
|
16 |
+
|
17 |
+
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Any, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
27 |
+
from transformers.modeling_utils import PreTrainedModel
|
28 |
+
from transformers.utils import (
|
29 |
+
ModelOutput,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
logging,
|
33 |
+
replace_return_docstrings,
|
34 |
+
)
|
35 |
+
from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CHECKPOINT_FOR_DOC = "openai/clip-vit-base-patch32"
|
41 |
+
|
42 |
+
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
43 |
+
"openai/clip-vit-base-patch32",
|
44 |
+
# See all CLIP models at https://huggingface.co/models?filter=clip
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
49 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
50 |
+
"""
|
51 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
52 |
+
"""
|
53 |
+
bsz, src_len = mask.size()
|
54 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
55 |
+
|
56 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
57 |
+
|
58 |
+
inverted_mask = 1.0 - expanded_mask
|
59 |
+
|
60 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
61 |
+
|
62 |
+
|
63 |
+
# contrastive loss function, adapted from
|
64 |
+
# https://sachinruk.github.io/blog/2021-03-07-clip.html
|
65 |
+
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
|
66 |
+
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
|
67 |
+
|
68 |
+
|
69 |
+
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
|
70 |
+
caption_loss = contrastive_loss(similarity)
|
71 |
+
image_loss = contrastive_loss(similarity.t())
|
72 |
+
return (caption_loss + image_loss) / 2.0
|
73 |
+
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class CLIPVisionModelOutput(ModelOutput):
|
77 |
+
"""
|
78 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
79 |
+
|
80 |
+
Args:
|
81 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
82 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
83 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
84 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
85 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
86 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
87 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
88 |
+
|
89 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
90 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
91 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
92 |
+
sequence_length)`.
|
93 |
+
|
94 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
95 |
+
heads.
|
96 |
+
"""
|
97 |
+
|
98 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
99 |
+
last_hidden_state: torch.FloatTensor = None
|
100 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
101 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
102 |
+
|
103 |
+
|
104 |
+
@dataclass
|
105 |
+
class CLIPTextModelOutput(ModelOutput):
|
106 |
+
"""
|
107 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
111 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
112 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
113 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
114 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
115 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
116 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
117 |
+
|
118 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
119 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
120 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
121 |
+
sequence_length)`.
|
122 |
+
|
123 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
124 |
+
heads.
|
125 |
+
"""
|
126 |
+
|
127 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
128 |
+
last_hidden_state: torch.FloatTensor = None
|
129 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
130 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
131 |
+
|
132 |
+
|
133 |
+
@dataclass
|
134 |
+
class CLIPOutput(ModelOutput):
|
135 |
+
"""
|
136 |
+
Args:
|
137 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
138 |
+
Contrastive loss for image-text similarity.
|
139 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
140 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
141 |
+
similarity scores.
|
142 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
143 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
144 |
+
similarity scores.
|
145 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
146 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`CLIPTextModel`].
|
147 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
148 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
149 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
150 |
+
The output of the [`CLIPTextModel`].
|
151 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
152 |
+
The output of the [`CLIPVisionModel`].
|
153 |
+
"""
|
154 |
+
|
155 |
+
loss: Optional[torch.FloatTensor] = None
|
156 |
+
logits_per_image: torch.FloatTensor = None
|
157 |
+
logits_per_text: torch.FloatTensor = None
|
158 |
+
text_embeds: torch.FloatTensor = None
|
159 |
+
image_embeds: torch.FloatTensor = None
|
160 |
+
text_model_output: BaseModelOutputWithPooling = None
|
161 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
162 |
+
|
163 |
+
def to_tuple(self) -> Tuple[Any]:
|
164 |
+
return tuple(
|
165 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
166 |
+
for k in self.keys()
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
class CLIPVisionEmbeddings(nn.Module):
|
171 |
+
def __init__(self, config: CLIPVisionConfig):
|
172 |
+
super().__init__()
|
173 |
+
self.config = config
|
174 |
+
self.embed_dim = config.hidden_size
|
175 |
+
self.image_size = config.image_size
|
176 |
+
self.patch_size = config.patch_size
|
177 |
+
|
178 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
179 |
+
|
180 |
+
self.patch_embedding = nn.Conv2d(
|
181 |
+
in_channels=config.num_channels,
|
182 |
+
out_channels=self.embed_dim,
|
183 |
+
kernel_size=self.patch_size,
|
184 |
+
stride=self.patch_size,
|
185 |
+
bias=False,
|
186 |
+
)
|
187 |
+
|
188 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
189 |
+
self.num_positions = self.num_patches + 1
|
190 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
191 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
192 |
+
|
193 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
194 |
+
batch_size = pixel_values.shape[0]
|
195 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
196 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
197 |
+
|
198 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
199 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
200 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
201 |
+
return embeddings
|
202 |
+
|
203 |
+
|
204 |
+
class CLIPTextEmbeddings(nn.Module):
|
205 |
+
def __init__(self, config: CLIPTextConfig):
|
206 |
+
super().__init__()
|
207 |
+
embed_dim = config.hidden_size
|
208 |
+
|
209 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
210 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
211 |
+
|
212 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
213 |
+
self.register_buffer(
|
214 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
215 |
+
)
|
216 |
+
|
217 |
+
def forward(
|
218 |
+
self,
|
219 |
+
input_ids: Optional[torch.LongTensor] = None,
|
220 |
+
position_ids: Optional[torch.LongTensor] = None,
|
221 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
222 |
+
) -> torch.Tensor:
|
223 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
224 |
+
|
225 |
+
if position_ids is None:
|
226 |
+
position_ids = self.position_ids[:, :seq_length]
|
227 |
+
|
228 |
+
if inputs_embeds is None:
|
229 |
+
inputs_embeds = self.token_embedding(input_ids)
|
230 |
+
|
231 |
+
position_embeddings = self.position_embedding(position_ids)
|
232 |
+
embeddings = inputs_embeds + position_embeddings
|
233 |
+
|
234 |
+
return embeddings
|
235 |
+
|
236 |
+
|
237 |
+
class CLIPAttention(nn.Module):
|
238 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
239 |
+
|
240 |
+
def __init__(self, config):
|
241 |
+
super().__init__()
|
242 |
+
self.config = config
|
243 |
+
self.embed_dim = config.hidden_size
|
244 |
+
self.num_heads = config.num_attention_heads
|
245 |
+
self.head_dim = self.embed_dim // self.num_heads
|
246 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
247 |
+
raise ValueError(
|
248 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
249 |
+
f" {self.num_heads})."
|
250 |
+
)
|
251 |
+
self.scale = self.head_dim**-0.5
|
252 |
+
self.dropout = config.attention_dropout
|
253 |
+
|
254 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
255 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
256 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
257 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
258 |
+
|
259 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
260 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
261 |
+
|
262 |
+
def forward(
|
263 |
+
self,
|
264 |
+
hidden_states: torch.Tensor,
|
265 |
+
attention_mask: Optional[torch.Tensor] = None,
|
266 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
267 |
+
output_attentions: Optional[bool] = False,
|
268 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
269 |
+
"""Input shape: Batch x Time x Channel"""
|
270 |
+
|
271 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
272 |
+
|
273 |
+
# get query proj
|
274 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
275 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
276 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
277 |
+
|
278 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
279 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
280 |
+
key_states = key_states.view(*proj_shape)
|
281 |
+
value_states = value_states.view(*proj_shape)
|
282 |
+
|
283 |
+
src_len = key_states.size(1)
|
284 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
285 |
+
|
286 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
287 |
+
raise ValueError(
|
288 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
289 |
+
f" {attn_weights.size()}"
|
290 |
+
)
|
291 |
+
|
292 |
+
# apply the causal_attention_mask first
|
293 |
+
if causal_attention_mask is not None:
|
294 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
295 |
+
raise ValueError(
|
296 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
297 |
+
f" {causal_attention_mask.size()}"
|
298 |
+
)
|
299 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
300 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
301 |
+
|
302 |
+
if attention_mask is not None:
|
303 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
304 |
+
raise ValueError(
|
305 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
306 |
+
)
|
307 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
308 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
309 |
+
|
310 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
311 |
+
|
312 |
+
if output_attentions:
|
313 |
+
# this operation is a bit akward, but it's required to
|
314 |
+
# make sure that attn_weights keeps its gradient.
|
315 |
+
# In order to do so, attn_weights have to reshaped
|
316 |
+
# twice and have to be reused in the following
|
317 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
318 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
319 |
+
else:
|
320 |
+
attn_weights_reshaped = None
|
321 |
+
|
322 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
323 |
+
|
324 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
325 |
+
|
326 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
327 |
+
raise ValueError(
|
328 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
329 |
+
f" {attn_output.size()}"
|
330 |
+
)
|
331 |
+
|
332 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
333 |
+
attn_output = attn_output.transpose(1, 2)
|
334 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
335 |
+
|
336 |
+
attn_output = self.out_proj(attn_output)
|
337 |
+
|
338 |
+
return attn_output, attn_weights_reshaped
|
339 |
+
|
340 |
+
|
341 |
+
class CLIPMLP(nn.Module):
|
342 |
+
def __init__(self, config):
|
343 |
+
super().__init__()
|
344 |
+
self.config = config
|
345 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
346 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
347 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
348 |
+
|
349 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
350 |
+
hidden_states = self.fc1(hidden_states)
|
351 |
+
hidden_states = self.activation_fn(hidden_states)
|
352 |
+
hidden_states = self.fc2(hidden_states)
|
353 |
+
return hidden_states
|
354 |
+
|
355 |
+
|
356 |
+
class CLIPEncoderLayer(nn.Module):
|
357 |
+
def __init__(self, config: CLIPConfig):
|
358 |
+
super().__init__()
|
359 |
+
self.embed_dim = config.hidden_size
|
360 |
+
self.self_attn = CLIPAttention(config)
|
361 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
362 |
+
self.mlp = CLIPMLP(config)
|
363 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
364 |
+
|
365 |
+
def forward(
|
366 |
+
self,
|
367 |
+
hidden_states: torch.Tensor,
|
368 |
+
attention_mask: torch.Tensor,
|
369 |
+
causal_attention_mask: torch.Tensor,
|
370 |
+
output_attentions: Optional[bool] = False,
|
371 |
+
) -> Tuple[torch.FloatTensor]:
|
372 |
+
"""
|
373 |
+
Args:
|
374 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
375 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
376 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
377 |
+
`(config.encoder_attention_heads,)`.
|
378 |
+
output_attentions (`bool`, *optional*):
|
379 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
380 |
+
returned tensors for more detail.
|
381 |
+
"""
|
382 |
+
residual = hidden_states
|
383 |
+
|
384 |
+
hidden_states = self.layer_norm1(hidden_states)
|
385 |
+
hidden_states, attn_weights = self.self_attn(
|
386 |
+
hidden_states=hidden_states,
|
387 |
+
attention_mask=attention_mask,
|
388 |
+
causal_attention_mask=causal_attention_mask,
|
389 |
+
output_attentions=output_attentions,
|
390 |
+
)
|
391 |
+
hidden_states = residual + hidden_states
|
392 |
+
|
393 |
+
residual = hidden_states
|
394 |
+
hidden_states = self.layer_norm2(hidden_states)
|
395 |
+
hidden_states = self.mlp(hidden_states)
|
396 |
+
hidden_states = residual + hidden_states
|
397 |
+
|
398 |
+
outputs = (hidden_states,)
|
399 |
+
|
400 |
+
if output_attentions:
|
401 |
+
outputs += (attn_weights,)
|
402 |
+
|
403 |
+
return outputs
|
404 |
+
|
405 |
+
|
406 |
+
class CLIPPreTrainedModel(PreTrainedModel):
|
407 |
+
"""
|
408 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
409 |
+
models.
|
410 |
+
"""
|
411 |
+
|
412 |
+
config_class = CLIPConfig
|
413 |
+
base_model_prefix = "clip"
|
414 |
+
supports_gradient_checkpointing = True
|
415 |
+
|
416 |
+
def _init_weights(self, module):
|
417 |
+
"""Initialize the weights"""
|
418 |
+
factor = self.config.initializer_factor
|
419 |
+
if isinstance(module, CLIPTextEmbeddings):
|
420 |
+
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
421 |
+
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
|
422 |
+
elif isinstance(module, CLIPVisionEmbeddings):
|
423 |
+
factor = self.config.initializer_factor
|
424 |
+
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
|
425 |
+
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
|
426 |
+
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
|
427 |
+
elif isinstance(module, CLIPAttention):
|
428 |
+
factor = self.config.initializer_factor
|
429 |
+
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
430 |
+
out_proj_std = (module.embed_dim**-0.5) * factor
|
431 |
+
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
|
432 |
+
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
|
433 |
+
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
|
434 |
+
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
|
435 |
+
elif isinstance(module, CLIPMLP):
|
436 |
+
factor = self.config.initializer_factor
|
437 |
+
in_proj_std = (
|
438 |
+
(module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
|
439 |
+
)
|
440 |
+
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
|
441 |
+
nn.init.normal_(module.fc1.weight, std=fc_std)
|
442 |
+
nn.init.normal_(module.fc2.weight, std=in_proj_std)
|
443 |
+
elif isinstance(module, CLIPModel):
|
444 |
+
nn.init.normal_(
|
445 |
+
module.text_projection.weight,
|
446 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
447 |
+
)
|
448 |
+
nn.init.normal_(
|
449 |
+
module.visual_projection.weight,
|
450 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
451 |
+
)
|
452 |
+
elif isinstance(module, CLIPVisionModelWithProjection):
|
453 |
+
nn.init.normal_(
|
454 |
+
module.visual_projection.weight,
|
455 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
456 |
+
)
|
457 |
+
elif isinstance(module, CLIPTextModelWithProjection):
|
458 |
+
nn.init.normal_(
|
459 |
+
module.text_projection.weight,
|
460 |
+
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
|
461 |
+
)
|
462 |
+
|
463 |
+
if isinstance(module, nn.LayerNorm):
|
464 |
+
module.bias.data.zero_()
|
465 |
+
module.weight.data.fill_(1.0)
|
466 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
467 |
+
module.bias.data.zero_()
|
468 |
+
|
469 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
470 |
+
if isinstance(module, CLIPEncoder):
|
471 |
+
module.gradient_checkpointing = value
|
472 |
+
|
473 |
+
|
474 |
+
CLIP_START_DOCSTRING = r"""
|
475 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
476 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
477 |
+
etc.)
|
478 |
+
|
479 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
480 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
481 |
+
and behavior.
|
482 |
+
|
483 |
+
Parameters:
|
484 |
+
config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
|
485 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
486 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
487 |
+
"""
|
488 |
+
|
489 |
+
CLIP_TEXT_INPUTS_DOCSTRING = r"""
|
490 |
+
Args:
|
491 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
492 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
493 |
+
it.
|
494 |
+
|
495 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
496 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
497 |
+
|
498 |
+
[What are input IDs?](../glossary#input-ids)
|
499 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
500 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
501 |
+
|
502 |
+
- 1 for tokens that are **not masked**,
|
503 |
+
- 0 for tokens that are **masked**.
|
504 |
+
|
505 |
+
[What are attention masks?](../glossary#attention-mask)
|
506 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
507 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
508 |
+
config.max_position_embeddings - 1]`.
|
509 |
+
|
510 |
+
[What are position IDs?](../glossary#position-ids)
|
511 |
+
output_attentions (`bool`, *optional*):
|
512 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
513 |
+
tensors for more detail.
|
514 |
+
output_hidden_states (`bool`, *optional*):
|
515 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
516 |
+
more detail.
|
517 |
+
return_dict (`bool`, *optional*):
|
518 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
519 |
+
"""
|
520 |
+
|
521 |
+
CLIP_VISION_INPUTS_DOCSTRING = r"""
|
522 |
+
Args:
|
523 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
524 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
525 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
526 |
+
output_attentions (`bool`, *optional*):
|
527 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
528 |
+
tensors for more detail.
|
529 |
+
output_hidden_states (`bool`, *optional*):
|
530 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
531 |
+
more detail.
|
532 |
+
return_dict (`bool`, *optional*):
|
533 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
534 |
+
"""
|
535 |
+
|
536 |
+
CLIP_INPUTS_DOCSTRING = r"""
|
537 |
+
Args:
|
538 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
539 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
540 |
+
it.
|
541 |
+
|
542 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
543 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
544 |
+
|
545 |
+
[What are input IDs?](../glossary#input-ids)
|
546 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
547 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
548 |
+
|
549 |
+
- 1 for tokens that are **not masked**,
|
550 |
+
- 0 for tokens that are **masked**.
|
551 |
+
|
552 |
+
[What are attention masks?](../glossary#attention-mask)
|
553 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
554 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
555 |
+
config.max_position_embeddings - 1]`.
|
556 |
+
|
557 |
+
[What are position IDs?](../glossary#position-ids)
|
558 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
559 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
560 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
561 |
+
return_loss (`bool`, *optional*):
|
562 |
+
Whether or not to return the contrastive loss.
|
563 |
+
output_attentions (`bool`, *optional*):
|
564 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
565 |
+
tensors for more detail.
|
566 |
+
output_hidden_states (`bool`, *optional*):
|
567 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
568 |
+
more detail.
|
569 |
+
return_dict (`bool`, *optional*):
|
570 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
571 |
+
"""
|
572 |
+
|
573 |
+
|
574 |
+
class CLIPEncoder(nn.Module):
|
575 |
+
"""
|
576 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
577 |
+
[`CLIPEncoderLayer`].
|
578 |
+
|
579 |
+
Args:
|
580 |
+
config: CLIPConfig
|
581 |
+
"""
|
582 |
+
|
583 |
+
def __init__(self, config: CLIPConfig, PT_len):
|
584 |
+
super().__init__()
|
585 |
+
self.config = config
|
586 |
+
self.prompts = []
|
587 |
+
self.prompts_token_len = PT_len #PT_len
|
588 |
+
import torch.nn.init as init
|
589 |
+
if self.prompts_token_len > 0:
|
590 |
+
for i in range(config.num_hidden_layers):
|
591 |
+
self.prompts.append(init.xavier_uniform_(nn.Parameter(torch.randn(1,PT_len,config.hidden_size))))
|
592 |
+
self.prompts = nn.ParameterList(self.prompts)
|
593 |
+
self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
594 |
+
# for check parameter
|
595 |
+
self.debug_weights = 0
|
596 |
+
self.index = 0
|
597 |
+
self.gradient_checkpointing = False
|
598 |
+
|
599 |
+
def forward(
|
600 |
+
self,
|
601 |
+
inputs_embeds,
|
602 |
+
attention_mask: Optional[torch.Tensor] = None,
|
603 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
604 |
+
output_attentions: Optional[bool] = None,
|
605 |
+
output_hidden_states: Optional[bool] = None,
|
606 |
+
return_dict: Optional[bool] = None,
|
607 |
+
) -> Union[Tuple, BaseModelOutput]:
|
608 |
+
r"""
|
609 |
+
Args:
|
610 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
611 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
612 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
613 |
+
than the model's internal embedding lookup matrix.
|
614 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
615 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
616 |
+
|
617 |
+
- 1 for tokens that are **not masked**,
|
618 |
+
- 0 for tokens that are **masked**.
|
619 |
+
|
620 |
+
[What are attention masks?](../glossary#attention-mask)
|
621 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
622 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
623 |
+
|
624 |
+
- 1 for tokens that are **not masked**,
|
625 |
+
- 0 for tokens that are **masked**.
|
626 |
+
|
627 |
+
[What are attention masks?](../glossary#attention-mask)
|
628 |
+
output_attentions (`bool`, *optional*):
|
629 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
630 |
+
returned tensors for more detail.
|
631 |
+
output_hidden_states (`bool`, *optional*):
|
632 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
633 |
+
for more detail.
|
634 |
+
return_dict (`bool`, *optional*):
|
635 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
636 |
+
"""
|
637 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
638 |
+
output_hidden_states = (
|
639 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
640 |
+
)
|
641 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
642 |
+
|
643 |
+
encoder_states = () if output_hidden_states else None
|
644 |
+
all_attentions = () if output_attentions else None
|
645 |
+
|
646 |
+
# hidden_states = inputs_embeds
|
647 |
+
if self.prompts_token_len > 0:
|
648 |
+
inputs_PT = self.prompts[0].repeat(inputs_embeds.size(0), 1, 1).to(inputs_embeds.device).to(inputs_embeds.dtype)
|
649 |
+
hidden_states = torch.cat((inputs_PT,inputs_embeds), dim=1)
|
650 |
+
# if self.index > 2:
|
651 |
+
# print(f"CLIP sanity check:.Sum differ:{torch.sum(self.debug_weights - self.prompts[-5])},Require_grad?:{self.prompts[-5].requires_grad},Grad?:{self.prompts[-5].grad}")
|
652 |
+
self.debug_weights = self.prompts[-5].data.clone().detach()
|
653 |
+
self.index += 1
|
654 |
+
# print(F"CLIP VIT-before:{inputs_embeds.shape},after add Turnable Prompt:{hidden_states.shape}")
|
655 |
+
else:
|
656 |
+
hidden_states = inputs_embeds
|
657 |
+
# print("No ClipViT learnable Prompt added")
|
658 |
+
|
659 |
+
for idx, encoder_layer in enumerate(self.layers):
|
660 |
+
if self.prompts_token_len > 0:
|
661 |
+
# [1,257,1024]
|
662 |
+
hidden_states[:, :self.prompts_token_len, :] = self.prompts[idx].repeat(inputs_embeds.size(0),1, 1).to(hidden_states.device).to(hidden_states.dtype)
|
663 |
+
if output_hidden_states:
|
664 |
+
encoder_states = encoder_states + (hidden_states,)
|
665 |
+
if self.gradient_checkpointing and self.training:
|
666 |
+
|
667 |
+
def create_custom_forward(module):
|
668 |
+
def custom_forward(*inputs):
|
669 |
+
return module(*inputs, output_attentions)
|
670 |
+
|
671 |
+
return custom_forward
|
672 |
+
|
673 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
674 |
+
create_custom_forward(encoder_layer),
|
675 |
+
hidden_states,
|
676 |
+
attention_mask,
|
677 |
+
causal_attention_mask,
|
678 |
+
)
|
679 |
+
else:
|
680 |
+
layer_outputs = encoder_layer(
|
681 |
+
hidden_states,
|
682 |
+
attention_mask,
|
683 |
+
causal_attention_mask,
|
684 |
+
output_attentions=output_attentions,
|
685 |
+
)
|
686 |
+
|
687 |
+
hidden_states = layer_outputs[0]
|
688 |
+
|
689 |
+
if output_attentions:
|
690 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
691 |
+
|
692 |
+
if output_hidden_states:
|
693 |
+
encoder_states = encoder_states + (hidden_states,)
|
694 |
+
|
695 |
+
if not return_dict:
|
696 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
697 |
+
return BaseModelOutput(
|
698 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
699 |
+
)
|
700 |
+
|
701 |
+
|
702 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
703 |
+
def _make_causal_mask(
|
704 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
705 |
+
):
|
706 |
+
"""
|
707 |
+
Make causal mask used for bi-directional self-attention.
|
708 |
+
"""
|
709 |
+
bsz, tgt_len = input_ids_shape
|
710 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
711 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
712 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
713 |
+
mask = mask.to(dtype)
|
714 |
+
|
715 |
+
if past_key_values_length > 0:
|
716 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
717 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
718 |
+
|
719 |
+
# [batch_size,seq_len,hidden_dim]
|
720 |
+
# img -》 Conv -> |Prompt token| VIT [batch_size,seq_len,hidden_dim]
|
721 |
+
# [batch_size,seq_len + X, hidden_dim]
|
722 |
+
class CLIPTextTransformer(nn.Module):
|
723 |
+
def __init__(self, config: CLIPTextConfig):
|
724 |
+
super().__init__()
|
725 |
+
self.config = config
|
726 |
+
embed_dim = config.hidden_size
|
727 |
+
self.embeddings = CLIPTextEmbeddings(config)
|
728 |
+
self.encoder = CLIPEncoder(config)
|
729 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
730 |
+
|
731 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
732 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
733 |
+
def forward(
|
734 |
+
self,
|
735 |
+
input_ids: Optional[torch.Tensor] = None,
|
736 |
+
attention_mask: Optional[torch.Tensor] = None,
|
737 |
+
position_ids: Optional[torch.Tensor] = None,
|
738 |
+
output_attentions: Optional[bool] = None,
|
739 |
+
output_hidden_states: Optional[bool] = None,
|
740 |
+
return_dict: Optional[bool] = None,
|
741 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
742 |
+
r"""
|
743 |
+
Returns:
|
744 |
+
|
745 |
+
"""
|
746 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
747 |
+
output_hidden_states = (
|
748 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
749 |
+
)
|
750 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
751 |
+
|
752 |
+
if input_ids is None:
|
753 |
+
raise ValueError("You have to specify input_ids")
|
754 |
+
|
755 |
+
input_shape = input_ids.size()
|
756 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
757 |
+
|
758 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
759 |
+
|
760 |
+
# CLIP's text model uses causal mask, prepare it here.
|
761 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
762 |
+
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
|
763 |
+
# expand attention_mask
|
764 |
+
if attention_mask is not None:
|
765 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
766 |
+
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
767 |
+
|
768 |
+
encoder_outputs = self.encoder(
|
769 |
+
inputs_embeds=hidden_states,
|
770 |
+
attention_mask=attention_mask,
|
771 |
+
causal_attention_mask=causal_attention_mask,
|
772 |
+
output_attentions=output_attentions,
|
773 |
+
output_hidden_states=output_hidden_states,
|
774 |
+
return_dict=return_dict,
|
775 |
+
)
|
776 |
+
|
777 |
+
last_hidden_state = encoder_outputs[0]
|
778 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
779 |
+
|
780 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
781 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
782 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
783 |
+
pooled_output = last_hidden_state[
|
784 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
785 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
|
786 |
+
]
|
787 |
+
|
788 |
+
if not return_dict:
|
789 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
790 |
+
|
791 |
+
return BaseModelOutputWithPooling(
|
792 |
+
last_hidden_state=last_hidden_state,
|
793 |
+
pooler_output=pooled_output,
|
794 |
+
hidden_states=encoder_outputs.hidden_states,
|
795 |
+
attentions=encoder_outputs.attentions,
|
796 |
+
)
|
797 |
+
|
798 |
+
|
799 |
+
@add_start_docstrings(
|
800 |
+
"""The text model from CLIP without any head or projection on top.""",
|
801 |
+
CLIP_START_DOCSTRING,
|
802 |
+
)
|
803 |
+
class CLIPTextModel(CLIPPreTrainedModel):
|
804 |
+
config_class = CLIPTextConfig
|
805 |
+
|
806 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
807 |
+
|
808 |
+
def __init__(self, config: CLIPTextConfig):
|
809 |
+
super().__init__(config)
|
810 |
+
self.text_model = CLIPTextTransformer(config)
|
811 |
+
# Initialize weights and apply final processing
|
812 |
+
self.post_init()
|
813 |
+
|
814 |
+
def get_input_embeddings(self) -> nn.Module:
|
815 |
+
return self.text_model.embeddings.token_embedding
|
816 |
+
|
817 |
+
def set_input_embeddings(self, value):
|
818 |
+
self.text_model.embeddings.token_embedding = value
|
819 |
+
|
820 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
821 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPTextConfig)
|
822 |
+
def forward(
|
823 |
+
self,
|
824 |
+
input_ids: Optional[torch.Tensor] = None,
|
825 |
+
attention_mask: Optional[torch.Tensor] = None,
|
826 |
+
position_ids: Optional[torch.Tensor] = None,
|
827 |
+
output_attentions: Optional[bool] = None,
|
828 |
+
output_hidden_states: Optional[bool] = None,
|
829 |
+
return_dict: Optional[bool] = None,
|
830 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
831 |
+
r"""
|
832 |
+
Returns:
|
833 |
+
|
834 |
+
Examples:
|
835 |
+
|
836 |
+
```python
|
837 |
+
>>> from transformers import AutoTokenizer, CLIPTextModel
|
838 |
+
|
839 |
+
>>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
|
840 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
841 |
+
|
842 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
843 |
+
|
844 |
+
>>> outputs = model(**inputs)
|
845 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
846 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
847 |
+
```"""
|
848 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
849 |
+
|
850 |
+
return self.text_model(
|
851 |
+
input_ids=input_ids,
|
852 |
+
attention_mask=attention_mask,
|
853 |
+
position_ids=position_ids,
|
854 |
+
output_attentions=output_attentions,
|
855 |
+
output_hidden_states=output_hidden_states,
|
856 |
+
return_dict=return_dict,
|
857 |
+
)
|
858 |
+
|
859 |
+
|
860 |
+
class CLIPVisionTransformer(nn.Module):
|
861 |
+
def __init__(self, config: CLIPVisionConfig, PT_len):
|
862 |
+
super().__init__()
|
863 |
+
self.config = config
|
864 |
+
embed_dim = config.hidden_size
|
865 |
+
|
866 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
867 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
868 |
+
self.encoder = CLIPEncoder(config,PT_len)
|
869 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
870 |
+
def make_prompt_learnable(self):
|
871 |
+
# go through all prompts and make them learnable
|
872 |
+
for pt in self.encoder.prompts:
|
873 |
+
for p in pt.parameters():
|
874 |
+
p.requires_grad = True
|
875 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
876 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
|
877 |
+
def forward(
|
878 |
+
self,
|
879 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
880 |
+
output_attentions: Optional[bool] = None,
|
881 |
+
output_hidden_states: Optional[bool] = None,
|
882 |
+
return_dict: Optional[bool] = None,
|
883 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
884 |
+
r"""
|
885 |
+
Returns:
|
886 |
+
|
887 |
+
"""
|
888 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
889 |
+
output_hidden_states = (
|
890 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
891 |
+
)
|
892 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
893 |
+
|
894 |
+
if pixel_values is None:
|
895 |
+
raise ValueError("You have to specify pixel_values")
|
896 |
+
|
897 |
+
hidden_states = self.embeddings(pixel_values)
|
898 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
899 |
+
# add prompt tokens here?
|
900 |
+
|
901 |
+
encoder_outputs = self.encoder(
|
902 |
+
inputs_embeds=hidden_states,
|
903 |
+
output_attentions=output_attentions,
|
904 |
+
output_hidden_states=output_hidden_states,
|
905 |
+
return_dict=return_dict,
|
906 |
+
)
|
907 |
+
|
908 |
+
last_hidden_state = encoder_outputs[0]
|
909 |
+
pooled_output = last_hidden_state[:, 0, :]
|
910 |
+
pooled_output = self.post_layernorm(pooled_output)
|
911 |
+
|
912 |
+
if not return_dict:
|
913 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
914 |
+
|
915 |
+
return BaseModelOutputWithPooling(
|
916 |
+
last_hidden_state=last_hidden_state,
|
917 |
+
pooler_output=pooled_output,
|
918 |
+
hidden_states=encoder_outputs.hidden_states,
|
919 |
+
attentions=encoder_outputs.attentions,
|
920 |
+
)
|
921 |
+
|
922 |
+
|
923 |
+
@add_start_docstrings(
|
924 |
+
"""The vision model from CLIP without any head or projection on top.""",
|
925 |
+
CLIP_START_DOCSTRING,
|
926 |
+
)
|
927 |
+
class CLIPVisionModel(CLIPPreTrainedModel):
|
928 |
+
config_class = CLIPVisionConfig
|
929 |
+
main_input_name = "pixel_values"
|
930 |
+
|
931 |
+
def __init__(self, config: CLIPVisionConfig, PT_len):
|
932 |
+
super().__init__(config)
|
933 |
+
self.vision_model = CLIPVisionTransformer(config,PT_len)
|
934 |
+
self.vision_model.eval()
|
935 |
+
# Initialize weights and apply final processing
|
936 |
+
self.post_init()
|
937 |
+
def get_prompt_embeddings(self):
|
938 |
+
return self.vision_model.encoder.prompts
|
939 |
+
def make_prompt_learnable(self):
|
940 |
+
for p in self.vision_model.encoder.parameters():
|
941 |
+
p.requires_grad = False
|
942 |
+
self.vision_model.encoder.prompts.requires_grad_(True)
|
943 |
+
def make_prompt_unlearnable(self):
|
944 |
+
for p in self.vision_model.encoder.parameters():
|
945 |
+
p.requires_grad = False
|
946 |
+
self.vision_model.encoder.prompts.requires_grad_(False)
|
947 |
+
|
948 |
+
def get_input_embeddings(self) -> nn.Module:
|
949 |
+
return self.vision_model.embeddings.patch_embedding
|
950 |
+
|
951 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
952 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=CLIPVisionConfig)
|
953 |
+
def forward(
|
954 |
+
self,
|
955 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
956 |
+
output_attentions: Optional[bool] = None,
|
957 |
+
output_hidden_states: Optional[bool] = None,
|
958 |
+
return_dict: Optional[bool] = None,
|
959 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
960 |
+
r"""
|
961 |
+
Returns:
|
962 |
+
|
963 |
+
Examples:
|
964 |
+
|
965 |
+
```python
|
966 |
+
>>> from PIL import Image
|
967 |
+
>>> import requests
|
968 |
+
>>> from transformers import AutoProcessor, CLIPVisionModel
|
969 |
+
|
970 |
+
>>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
|
971 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
972 |
+
|
973 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
974 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
975 |
+
|
976 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
977 |
+
|
978 |
+
>>> outputs = model(**inputs)
|
979 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
980 |
+
>>> pooled_output = outputs.pooler_output # pooled CLS states
|
981 |
+
```"""
|
982 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
983 |
+
|
984 |
+
return self.vision_model(
|
985 |
+
pixel_values=pixel_values,
|
986 |
+
output_attentions=output_attentions,
|
987 |
+
output_hidden_states=output_hidden_states,
|
988 |
+
return_dict=return_dict,
|
989 |
+
)
|
990 |
+
|
991 |
+
|
992 |
+
@add_start_docstrings(CLIP_START_DOCSTRING)
|
993 |
+
class CLIPModel(CLIPPreTrainedModel):
|
994 |
+
config_class = CLIPConfig
|
995 |
+
|
996 |
+
def __init__(self, config: CLIPConfig):
|
997 |
+
super().__init__(config)
|
998 |
+
|
999 |
+
if not isinstance(config.text_config, CLIPTextConfig):
|
1000 |
+
raise ValueError(
|
1001 |
+
"config.text_config is expected to be of type CLIPTextConfig but is of type"
|
1002 |
+
f" {type(config.text_config)}."
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
if not isinstance(config.vision_config, CLIPVisionConfig):
|
1006 |
+
raise ValueError(
|
1007 |
+
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
|
1008 |
+
f" {type(config.vision_config)}."
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
text_config = config.text_config
|
1012 |
+
vision_config = config.vision_config
|
1013 |
+
|
1014 |
+
self.projection_dim = config.projection_dim
|
1015 |
+
self.text_embed_dim = text_config.hidden_size
|
1016 |
+
self.vision_embed_dim = vision_config.hidden_size
|
1017 |
+
|
1018 |
+
self.text_model = CLIPTextTransformer(text_config)
|
1019 |
+
self.vision_model = CLIPVisionTransformer(vision_config)
|
1020 |
+
|
1021 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
|
1022 |
+
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
|
1023 |
+
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
|
1024 |
+
|
1025 |
+
# Initialize weights and apply final processing
|
1026 |
+
self.post_init()
|
1027 |
+
|
1028 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
1029 |
+
def get_text_features(
|
1030 |
+
self,
|
1031 |
+
input_ids: Optional[torch.Tensor] = None,
|
1032 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1033 |
+
position_ids: Optional[torch.Tensor] = None,
|
1034 |
+
output_attentions: Optional[bool] = None,
|
1035 |
+
output_hidden_states: Optional[bool] = None,
|
1036 |
+
return_dict: Optional[bool] = None,
|
1037 |
+
) -> torch.FloatTensor:
|
1038 |
+
r"""
|
1039 |
+
Returns:
|
1040 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
1041 |
+
applying the projection layer to the pooled output of [`CLIPTextModel`].
|
1042 |
+
|
1043 |
+
Examples:
|
1044 |
+
|
1045 |
+
```python
|
1046 |
+
>>> from transformers import AutoTokenizer, CLIPModel
|
1047 |
+
|
1048 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1049 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
1050 |
+
|
1051 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1052 |
+
>>> text_features = model.get_text_features(**inputs)
|
1053 |
+
```"""
|
1054 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1055 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1056 |
+
output_hidden_states = (
|
1057 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1058 |
+
)
|
1059 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1060 |
+
|
1061 |
+
text_outputs = self.text_model(
|
1062 |
+
input_ids=input_ids,
|
1063 |
+
attention_mask=attention_mask,
|
1064 |
+
position_ids=position_ids,
|
1065 |
+
output_attentions=output_attentions,
|
1066 |
+
output_hidden_states=output_hidden_states,
|
1067 |
+
return_dict=return_dict,
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
pooled_output = text_outputs[1]
|
1071 |
+
text_features = self.text_projection(pooled_output)
|
1072 |
+
|
1073 |
+
return text_features
|
1074 |
+
|
1075 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1076 |
+
def get_image_features(
|
1077 |
+
self,
|
1078 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1079 |
+
output_attentions: Optional[bool] = None,
|
1080 |
+
output_hidden_states: Optional[bool] = None,
|
1081 |
+
return_dict: Optional[bool] = None,
|
1082 |
+
) -> torch.FloatTensor:
|
1083 |
+
r"""
|
1084 |
+
Returns:
|
1085 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
1086 |
+
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
1087 |
+
|
1088 |
+
Examples:
|
1089 |
+
|
1090 |
+
```python
|
1091 |
+
>>> from PIL import Image
|
1092 |
+
>>> import requests
|
1093 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1094 |
+
|
1095 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1096 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1097 |
+
|
1098 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1099 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1100 |
+
|
1101 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1102 |
+
|
1103 |
+
>>> image_features = model.get_image_features(**inputs)
|
1104 |
+
```"""
|
1105 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1106 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1107 |
+
output_hidden_states = (
|
1108 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1109 |
+
)
|
1110 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1111 |
+
|
1112 |
+
vision_outputs = self.vision_model(
|
1113 |
+
pixel_values=pixel_values,
|
1114 |
+
output_attentions=output_attentions,
|
1115 |
+
output_hidden_states=output_hidden_states,
|
1116 |
+
return_dict=return_dict,
|
1117 |
+
)
|
1118 |
+
|
1119 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1120 |
+
image_features = self.visual_projection(pooled_output)
|
1121 |
+
|
1122 |
+
return image_features
|
1123 |
+
|
1124 |
+
@add_start_docstrings_to_model_forward(CLIP_INPUTS_DOCSTRING)
|
1125 |
+
@replace_return_docstrings(output_type=CLIPOutput, config_class=CLIPConfig)
|
1126 |
+
def forward(
|
1127 |
+
self,
|
1128 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1129 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1130 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1131 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1132 |
+
return_loss: Optional[bool] = None,
|
1133 |
+
output_attentions: Optional[bool] = None,
|
1134 |
+
output_hidden_states: Optional[bool] = None,
|
1135 |
+
return_dict: Optional[bool] = None,
|
1136 |
+
) -> Union[Tuple, CLIPOutput]:
|
1137 |
+
r"""
|
1138 |
+
Returns:
|
1139 |
+
|
1140 |
+
Examples:
|
1141 |
+
|
1142 |
+
```python
|
1143 |
+
>>> from PIL import Image
|
1144 |
+
>>> import requests
|
1145 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
1146 |
+
|
1147 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
1148 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1149 |
+
|
1150 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1151 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1152 |
+
|
1153 |
+
>>> inputs = processor(
|
1154 |
+
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
|
1155 |
+
... )
|
1156 |
+
|
1157 |
+
>>> outputs = model(**inputs)
|
1158 |
+
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
|
1159 |
+
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
|
1160 |
+
```"""
|
1161 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
1162 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1163 |
+
output_hidden_states = (
|
1164 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1165 |
+
)
|
1166 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1167 |
+
|
1168 |
+
vision_outputs = self.vision_model(
|
1169 |
+
pixel_values=pixel_values,
|
1170 |
+
output_attentions=output_attentions,
|
1171 |
+
output_hidden_states=output_hidden_states,
|
1172 |
+
return_dict=return_dict,
|
1173 |
+
)
|
1174 |
+
|
1175 |
+
text_outputs = self.text_model(
|
1176 |
+
input_ids=input_ids,
|
1177 |
+
attention_mask=attention_mask,
|
1178 |
+
position_ids=position_ids,
|
1179 |
+
output_attentions=output_attentions,
|
1180 |
+
output_hidden_states=output_hidden_states,
|
1181 |
+
return_dict=return_dict,
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
image_embeds = vision_outputs[1]
|
1185 |
+
image_embeds = self.visual_projection(image_embeds)
|
1186 |
+
|
1187 |
+
text_embeds = text_outputs[1]
|
1188 |
+
text_embeds = self.text_projection(text_embeds)
|
1189 |
+
|
1190 |
+
# normalized features
|
1191 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
1192 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
1193 |
+
|
1194 |
+
# cosine similarity as logits
|
1195 |
+
logit_scale = self.logit_scale.exp()
|
1196 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
1197 |
+
logits_per_image = logits_per_text.t()
|
1198 |
+
|
1199 |
+
loss = None
|
1200 |
+
if return_loss:
|
1201 |
+
loss = clip_loss(logits_per_text)
|
1202 |
+
|
1203 |
+
if not return_dict:
|
1204 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
1205 |
+
return ((loss,) + output) if loss is not None else output
|
1206 |
+
|
1207 |
+
return CLIPOutput(
|
1208 |
+
loss=loss,
|
1209 |
+
logits_per_image=logits_per_image,
|
1210 |
+
logits_per_text=logits_per_text,
|
1211 |
+
text_embeds=text_embeds,
|
1212 |
+
image_embeds=image_embeds,
|
1213 |
+
text_model_output=text_outputs,
|
1214 |
+
vision_model_output=vision_outputs,
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
|
1218 |
+
@add_start_docstrings(
|
1219 |
+
"""
|
1220 |
+
CLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
|
1221 |
+
""",
|
1222 |
+
CLIP_START_DOCSTRING,
|
1223 |
+
)
|
1224 |
+
class CLIPTextModelWithProjection(CLIPPreTrainedModel):
|
1225 |
+
config_class = CLIPTextConfig
|
1226 |
+
|
1227 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
1228 |
+
|
1229 |
+
def __init__(self, config: CLIPTextConfig):
|
1230 |
+
super().__init__(config)
|
1231 |
+
|
1232 |
+
self.text_model = CLIPTextTransformer(config)
|
1233 |
+
|
1234 |
+
self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
1235 |
+
|
1236 |
+
# Initialize weights and apply final processing
|
1237 |
+
self.post_init()
|
1238 |
+
|
1239 |
+
def get_input_embeddings(self) -> nn.Module:
|
1240 |
+
return self.text_model.embeddings.token_embedding
|
1241 |
+
|
1242 |
+
def set_input_embeddings(self, value):
|
1243 |
+
self.text_model.embeddings.token_embedding = value
|
1244 |
+
|
1245 |
+
@add_start_docstrings_to_model_forward(CLIP_TEXT_INPUTS_DOCSTRING)
|
1246 |
+
@replace_return_docstrings(output_type=CLIPTextModelOutput, config_class=CLIPTextConfig)
|
1247 |
+
def forward(
|
1248 |
+
self,
|
1249 |
+
input_ids: Optional[torch.Tensor] = None,
|
1250 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1251 |
+
position_ids: Optional[torch.Tensor] = None,
|
1252 |
+
output_attentions: Optional[bool] = None,
|
1253 |
+
output_hidden_states: Optional[bool] = None,
|
1254 |
+
return_dict: Optional[bool] = None,
|
1255 |
+
) -> Union[Tuple, CLIPTextModelOutput]:
|
1256 |
+
r"""
|
1257 |
+
Returns:
|
1258 |
+
|
1259 |
+
Examples:
|
1260 |
+
|
1261 |
+
```python
|
1262 |
+
>>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
|
1263 |
+
|
1264 |
+
>>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
1265 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
1266 |
+
|
1267 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
|
1268 |
+
|
1269 |
+
>>> outputs = model(**inputs)
|
1270 |
+
>>> text_embeds = outputs.text_embeds
|
1271 |
+
```"""
|
1272 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1273 |
+
|
1274 |
+
text_outputs = self.text_model(
|
1275 |
+
input_ids=input_ids,
|
1276 |
+
attention_mask=attention_mask,
|
1277 |
+
position_ids=position_ids,
|
1278 |
+
output_attentions=output_attentions,
|
1279 |
+
output_hidden_states=output_hidden_states,
|
1280 |
+
return_dict=return_dict,
|
1281 |
+
)
|
1282 |
+
|
1283 |
+
pooled_output = text_outputs[1]
|
1284 |
+
|
1285 |
+
text_embeds = self.text_projection(pooled_output)
|
1286 |
+
|
1287 |
+
if not return_dict:
|
1288 |
+
outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
|
1289 |
+
return tuple(output for output in outputs if output is not None)
|
1290 |
+
|
1291 |
+
return CLIPTextModelOutput(
|
1292 |
+
text_embeds=text_embeds,
|
1293 |
+
last_hidden_state=text_outputs.last_hidden_state,
|
1294 |
+
hidden_states=text_outputs.hidden_states,
|
1295 |
+
attentions=text_outputs.attentions,
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
|
1299 |
+
@add_start_docstrings(
|
1300 |
+
"""
|
1301 |
+
CLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
|
1302 |
+
""",
|
1303 |
+
CLIP_START_DOCSTRING,
|
1304 |
+
)
|
1305 |
+
class CLIPVisionModelWithProjection(CLIPPreTrainedModel):
|
1306 |
+
config_class = CLIPVisionConfig
|
1307 |
+
main_input_name = "pixel_values"
|
1308 |
+
|
1309 |
+
def __init__(self, config: CLIPVisionConfig):
|
1310 |
+
super().__init__(config)
|
1311 |
+
|
1312 |
+
self.vision_model = CLIPVisionTransformer(config)
|
1313 |
+
|
1314 |
+
self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
|
1315 |
+
|
1316 |
+
# Initialize weights and apply final processing
|
1317 |
+
self.post_init()
|
1318 |
+
|
1319 |
+
def get_input_embeddings(self) -> nn.Module:
|
1320 |
+
return self.vision_model.embeddings.patch_embedding
|
1321 |
+
|
1322 |
+
@add_start_docstrings_to_model_forward(CLIP_VISION_INPUTS_DOCSTRING)
|
1323 |
+
@replace_return_docstrings(output_type=CLIPVisionModelOutput, config_class=CLIPVisionConfig)
|
1324 |
+
def forward(
|
1325 |
+
self,
|
1326 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1327 |
+
output_attentions: Optional[bool] = None,
|
1328 |
+
output_hidden_states: Optional[bool] = None,
|
1329 |
+
return_dict: Optional[bool] = None,
|
1330 |
+
) -> Union[Tuple, CLIPVisionModelOutput]:
|
1331 |
+
r"""
|
1332 |
+
Returns:
|
1333 |
+
|
1334 |
+
Examples:
|
1335 |
+
|
1336 |
+
```python
|
1337 |
+
>>> from PIL import Image
|
1338 |
+
>>> import requests
|
1339 |
+
>>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
|
1340 |
+
|
1341 |
+
>>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
|
1342 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
1343 |
+
|
1344 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
1345 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1346 |
+
|
1347 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
1348 |
+
|
1349 |
+
>>> outputs = model(**inputs)
|
1350 |
+
>>> image_embeds = outputs.image_embeds
|
1351 |
+
```"""
|
1352 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1353 |
+
|
1354 |
+
vision_outputs = self.vision_model(
|
1355 |
+
pixel_values=pixel_values,
|
1356 |
+
output_attentions=output_attentions,
|
1357 |
+
output_hidden_states=output_hidden_states,
|
1358 |
+
return_dict=return_dict,
|
1359 |
+
)
|
1360 |
+
|
1361 |
+
pooled_output = vision_outputs[1] # pooled_output
|
1362 |
+
|
1363 |
+
image_embeds = self.visual_projection(pooled_output)
|
1364 |
+
|
1365 |
+
if not return_dict:
|
1366 |
+
outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
|
1367 |
+
return tuple(output for output in outputs if output is not None)
|
1368 |
+
|
1369 |
+
return CLIPVisionModelOutput(
|
1370 |
+
image_embeds=image_embeds,
|
1371 |
+
last_hidden_state=vision_outputs.last_hidden_state,
|
1372 |
+
hidden_states=vision_outputs.hidden_states,
|
1373 |
+
attentions=vision_outputs.attentions,
|
1374 |
+
)
|
models/modeling_qwen2.py
ADDED
@@ -0,0 +1,1416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Qwen2 model."""
|
21 |
+
import inspect
|
22 |
+
import math
|
23 |
+
import warnings
|
24 |
+
from typing import List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, DynamicCache
|
34 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa
|
35 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
36 |
+
from transformers.modeling_utils import PreTrainedModel
|
37 |
+
from transformers.utils import (
|
38 |
+
add_start_docstrings,
|
39 |
+
add_start_docstrings_to_model_forward,
|
40 |
+
is_flash_attn_2_available,
|
41 |
+
is_flash_attn_greater_or_equal_2_10,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
|
58 |
+
_CHECKPOINT_FOR_DOC = "Qwen/Qwen2-7B-beta"
|
59 |
+
_CONFIG_FOR_DOC = "Qwen2Config"
|
60 |
+
|
61 |
+
|
62 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
63 |
+
def _get_unpad_data(attention_mask):
|
64 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
65 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
66 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
67 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
68 |
+
return (
|
69 |
+
indices,
|
70 |
+
cu_seqlens,
|
71 |
+
max_seqlen_in_batch,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Qwen2
|
76 |
+
class Qwen2RMSNorm(nn.Module):
|
77 |
+
def __init__(self, hidden_size, eps=1e-6):
|
78 |
+
"""
|
79 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
80 |
+
"""
|
81 |
+
super().__init__()
|
82 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
83 |
+
self.variance_epsilon = eps
|
84 |
+
|
85 |
+
def forward(self, hidden_states):
|
86 |
+
input_dtype = hidden_states.dtype
|
87 |
+
hidden_states = hidden_states.to(torch.float32)
|
88 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
89 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
90 |
+
return self.weight * hidden_states.to(input_dtype)
|
91 |
+
|
92 |
+
|
93 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->Qwen2
|
94 |
+
class Qwen2RotaryEmbedding(nn.Module):
|
95 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.dim = dim
|
99 |
+
self.max_position_embeddings = max_position_embeddings
|
100 |
+
self.base = base
|
101 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
102 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
103 |
+
|
104 |
+
# Build here to make `torch.jit.trace` work.
|
105 |
+
self._set_cos_sin_cache(
|
106 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
107 |
+
)
|
108 |
+
|
109 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
110 |
+
self.max_seq_len_cached = seq_len
|
111 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
|
112 |
+
|
113 |
+
freqs = torch.outer(t, self.inv_freq)
|
114 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
115 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
116 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
117 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
118 |
+
|
119 |
+
def forward(self, x, seq_len=None):
|
120 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
121 |
+
if seq_len > self.max_seq_len_cached:
|
122 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
123 |
+
|
124 |
+
return (
|
125 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
126 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
131 |
+
def rotate_half(x):
|
132 |
+
"""Rotates half the hidden dims of the input."""
|
133 |
+
x1 = x[..., : x.shape[-1] // 2]
|
134 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
135 |
+
return torch.cat((-x2, x1), dim=-1)
|
136 |
+
|
137 |
+
|
138 |
+
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
|
139 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
140 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
q (`torch.Tensor`): The query tensor.
|
144 |
+
k (`torch.Tensor`): The key tensor.
|
145 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
146 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
147 |
+
position_ids (`torch.Tensor`):
|
148 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
149 |
+
used to pass offsetted position ids when working with a KV-cache.
|
150 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
151 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
152 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
153 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
154 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
155 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
156 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
157 |
+
Returns:
|
158 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
159 |
+
"""
|
160 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
161 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
162 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
163 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
164 |
+
return q_embed, k_embed
|
165 |
+
|
166 |
+
|
167 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Qwen2
|
168 |
+
class Qwen2MLP(nn.Module):
|
169 |
+
def __init__(self, config):
|
170 |
+
super().__init__()
|
171 |
+
self.config = config
|
172 |
+
self.hidden_size = config.hidden_size
|
173 |
+
self.intermediate_size = config.intermediate_size
|
174 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
175 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
176 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
177 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
181 |
+
|
182 |
+
|
183 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
184 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
185 |
+
"""
|
186 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
187 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
188 |
+
"""
|
189 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
190 |
+
if n_rep == 1:
|
191 |
+
return hidden_states
|
192 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
193 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
194 |
+
|
195 |
+
|
196 |
+
class Qwen2Attention(nn.Module):
|
197 |
+
"""
|
198 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
199 |
+
and "Generating Long Sequences with Sparse Transformers".
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self, config: Qwen2Config, layer_idx: Optional[int] = None):
|
203 |
+
super().__init__()
|
204 |
+
self.config = config
|
205 |
+
self.layer_idx = layer_idx
|
206 |
+
if layer_idx is None:
|
207 |
+
logger.warning_once(
|
208 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
209 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
210 |
+
"when creating this class."
|
211 |
+
)
|
212 |
+
|
213 |
+
self.hidden_size = config.hidden_size
|
214 |
+
self.num_heads = config.num_attention_heads
|
215 |
+
self.head_dim = self.hidden_size // self.num_heads
|
216 |
+
self.num_key_value_heads = config.num_key_value_heads
|
217 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
218 |
+
self.max_position_embeddings = config.max_position_embeddings
|
219 |
+
self.rope_theta = config.rope_theta
|
220 |
+
self.is_causal = True
|
221 |
+
self.attention_dropout = config.attention_dropout
|
222 |
+
|
223 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
224 |
+
raise ValueError(
|
225 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
226 |
+
f" and `num_heads`: {self.num_heads})."
|
227 |
+
)
|
228 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
229 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
230 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
231 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
232 |
+
|
233 |
+
self.rotary_emb = Qwen2RotaryEmbedding(
|
234 |
+
self.head_dim,
|
235 |
+
max_position_embeddings=self.max_position_embeddings,
|
236 |
+
base=self.rope_theta,
|
237 |
+
)
|
238 |
+
|
239 |
+
def forward(
|
240 |
+
self,
|
241 |
+
hidden_states: torch.Tensor,
|
242 |
+
attention_mask: Optional[torch.Tensor] = None,
|
243 |
+
position_ids: Optional[torch.LongTensor] = None,
|
244 |
+
past_key_value: Optional[Cache] = None,
|
245 |
+
output_attentions: bool = False,
|
246 |
+
use_cache: bool = False,
|
247 |
+
**kwargs,
|
248 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
249 |
+
if "padding_mask" in kwargs:
|
250 |
+
warnings.warn(
|
251 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
252 |
+
)
|
253 |
+
bsz, q_len, _ = hidden_states.size()
|
254 |
+
|
255 |
+
query_states = self.q_proj(hidden_states)
|
256 |
+
key_states = self.k_proj(hidden_states)
|
257 |
+
value_states = self.v_proj(hidden_states)
|
258 |
+
|
259 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
260 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
261 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
262 |
+
|
263 |
+
kv_seq_len = key_states.shape[-2]
|
264 |
+
if past_key_value is not None:
|
265 |
+
if self.layer_idx is None:
|
266 |
+
raise ValueError(
|
267 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
268 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
269 |
+
"with a layer index."
|
270 |
+
)
|
271 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
272 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
273 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
274 |
+
|
275 |
+
if past_key_value is not None:
|
276 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
277 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
278 |
+
|
279 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
280 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
281 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
282 |
+
|
283 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
284 |
+
|
285 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
286 |
+
raise ValueError(
|
287 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
288 |
+
f" {attn_weights.size()}"
|
289 |
+
)
|
290 |
+
|
291 |
+
if attention_mask is not None:
|
292 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
293 |
+
raise ValueError(
|
294 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
295 |
+
)
|
296 |
+
|
297 |
+
attn_weights = attn_weights + attention_mask
|
298 |
+
|
299 |
+
# upcast attention to fp32
|
300 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
301 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
302 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
303 |
+
|
304 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
305 |
+
raise ValueError(
|
306 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
307 |
+
f" {attn_output.size()}"
|
308 |
+
)
|
309 |
+
|
310 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
311 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
312 |
+
|
313 |
+
attn_output = self.o_proj(attn_output)
|
314 |
+
|
315 |
+
if not output_attentions:
|
316 |
+
attn_weights = None
|
317 |
+
|
318 |
+
return attn_output, attn_weights, past_key_value
|
319 |
+
|
320 |
+
|
321 |
+
class Qwen2FlashAttention2(Qwen2Attention):
|
322 |
+
"""
|
323 |
+
Qwen2 flash attention module, following Qwen2 attention module. This module inherits from `Qwen2Attention`
|
324 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
325 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
326 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
327 |
+
config.max_window_layers layers.
|
328 |
+
"""
|
329 |
+
|
330 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
331 |
+
def __init__(self, *args, **kwargs):
|
332 |
+
super().__init__(*args, **kwargs)
|
333 |
+
|
334 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
335 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
336 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
337 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
338 |
+
|
339 |
+
def forward(
|
340 |
+
self,
|
341 |
+
hidden_states: torch.Tensor,
|
342 |
+
attention_mask: Optional[torch.Tensor] = None,
|
343 |
+
position_ids: Optional[torch.LongTensor] = None,
|
344 |
+
past_key_value: Optional[Cache] = None,
|
345 |
+
output_attentions: bool = False,
|
346 |
+
use_cache: bool = False,
|
347 |
+
**kwargs,
|
348 |
+
):
|
349 |
+
if "padding_mask" in kwargs:
|
350 |
+
warnings.warn(
|
351 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
352 |
+
)
|
353 |
+
|
354 |
+
# overwrite attention_mask with padding_mask
|
355 |
+
attention_mask = kwargs.pop("padding_mask")
|
356 |
+
bsz, q_len, _ = hidden_states.size()
|
357 |
+
|
358 |
+
query_states = self.q_proj(hidden_states)
|
359 |
+
key_states = self.k_proj(hidden_states)
|
360 |
+
value_states = self.v_proj(hidden_states)
|
361 |
+
|
362 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
363 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
364 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
365 |
+
|
366 |
+
kv_seq_len = key_states.shape[-2]
|
367 |
+
if past_key_value is not None:
|
368 |
+
if self.layer_idx is None:
|
369 |
+
raise ValueError(
|
370 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
371 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
372 |
+
"with a layer index."
|
373 |
+
)
|
374 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
375 |
+
|
376 |
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
377 |
+
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
378 |
+
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
379 |
+
|
380 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
381 |
+
|
382 |
+
use_sliding_windows = (
|
383 |
+
_flash_supports_window_size
|
384 |
+
and getattr(self.config, "sliding_window", None) is not None
|
385 |
+
and kv_seq_len > self.config.sliding_window
|
386 |
+
and self.config.use_sliding_window
|
387 |
+
)
|
388 |
+
|
389 |
+
if not _flash_supports_window_size:
|
390 |
+
logger.warning_once(
|
391 |
+
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
392 |
+
" make sure to upgrade flash-attn library."
|
393 |
+
)
|
394 |
+
|
395 |
+
if past_key_value is not None:
|
396 |
+
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
397 |
+
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
398 |
+
if (
|
399 |
+
getattr(self.config, "sliding_window", None) is not None
|
400 |
+
and kv_seq_len > self.config.sliding_window
|
401 |
+
and cache_has_contents
|
402 |
+
):
|
403 |
+
slicing_tokens = 1 - self.config.sliding_window
|
404 |
+
|
405 |
+
past_key = past_key_value[self.layer_idx][0]
|
406 |
+
past_value = past_key_value[self.layer_idx][1]
|
407 |
+
|
408 |
+
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
409 |
+
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
410 |
+
|
411 |
+
if past_key.shape[-2] != self.config.sliding_window - 1:
|
412 |
+
raise ValueError(
|
413 |
+
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
414 |
+
f" {past_key.shape}"
|
415 |
+
)
|
416 |
+
|
417 |
+
if attention_mask is not None:
|
418 |
+
attention_mask = attention_mask[:, slicing_tokens:]
|
419 |
+
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
420 |
+
|
421 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
422 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
423 |
+
|
424 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
425 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
426 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
427 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
428 |
+
|
429 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
430 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
431 |
+
# cast them back in float16 just to be sure everything works as expected.
|
432 |
+
input_dtype = query_states.dtype
|
433 |
+
if input_dtype == torch.float32:
|
434 |
+
if torch.is_autocast_enabled():
|
435 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
436 |
+
# Handle the case where the model is quantized
|
437 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
438 |
+
target_dtype = self.config._pre_quantization_dtype
|
439 |
+
else:
|
440 |
+
target_dtype = self.q_proj.weight.dtype
|
441 |
+
|
442 |
+
logger.warning_once(
|
443 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
444 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
445 |
+
f" {target_dtype}."
|
446 |
+
)
|
447 |
+
|
448 |
+
query_states = query_states.to(target_dtype)
|
449 |
+
key_states = key_states.to(target_dtype)
|
450 |
+
value_states = value_states.to(target_dtype)
|
451 |
+
|
452 |
+
# Reashape to the expected shape for Flash Attention
|
453 |
+
query_states = query_states.transpose(1, 2)
|
454 |
+
key_states = key_states.transpose(1, 2)
|
455 |
+
value_states = value_states.transpose(1, 2)
|
456 |
+
|
457 |
+
attn_output = self._flash_attention_forward(
|
458 |
+
query_states,
|
459 |
+
key_states,
|
460 |
+
value_states,
|
461 |
+
attention_mask,
|
462 |
+
q_len,
|
463 |
+
dropout=dropout_rate,
|
464 |
+
use_sliding_windows=use_sliding_windows,
|
465 |
+
)
|
466 |
+
|
467 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
468 |
+
attn_output = self.o_proj(attn_output)
|
469 |
+
|
470 |
+
if not output_attentions:
|
471 |
+
attn_weights = None
|
472 |
+
|
473 |
+
return attn_output, attn_weights, past_key_value
|
474 |
+
|
475 |
+
def _flash_attention_forward(
|
476 |
+
self,
|
477 |
+
query_states,
|
478 |
+
key_states,
|
479 |
+
value_states,
|
480 |
+
attention_mask,
|
481 |
+
query_length,
|
482 |
+
dropout=0.0,
|
483 |
+
softmax_scale=None,
|
484 |
+
use_sliding_windows=False,
|
485 |
+
):
|
486 |
+
"""
|
487 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
488 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
489 |
+
|
490 |
+
Args:
|
491 |
+
query_states (`torch.Tensor`):
|
492 |
+
Input query states to be passed to Flash Attention API
|
493 |
+
key_states (`torch.Tensor`):
|
494 |
+
Input key states to be passed to Flash Attention API
|
495 |
+
value_states (`torch.Tensor`):
|
496 |
+
Input value states to be passed to Flash Attention API
|
497 |
+
attention_mask (`torch.Tensor`):
|
498 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
499 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
500 |
+
dropout (`float`):
|
501 |
+
Attention dropout
|
502 |
+
softmax_scale (`float`, *optional*):
|
503 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
504 |
+
use_sliding_windows (`bool`, *optional*):
|
505 |
+
Whether to activate sliding window attention.
|
506 |
+
"""
|
507 |
+
if not self._flash_attn_uses_top_left_mask:
|
508 |
+
causal = self.is_causal
|
509 |
+
else:
|
510 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
511 |
+
causal = self.is_causal and query_length != 1
|
512 |
+
|
513 |
+
# Decide whether to use SWA or not by layer index.
|
514 |
+
if use_sliding_windows and self.layer_idx >= self.config.max_window_layers:
|
515 |
+
use_sliding_windows = False
|
516 |
+
|
517 |
+
# Contains at least one padding token in the sequence
|
518 |
+
if attention_mask is not None:
|
519 |
+
batch_size = query_states.shape[0]
|
520 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
521 |
+
query_states, key_states, value_states, attention_mask, query_length
|
522 |
+
)
|
523 |
+
|
524 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
525 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
526 |
+
|
527 |
+
if not use_sliding_windows:
|
528 |
+
attn_output_unpad = flash_attn_varlen_func(
|
529 |
+
query_states,
|
530 |
+
key_states,
|
531 |
+
value_states,
|
532 |
+
cu_seqlens_q=cu_seqlens_q,
|
533 |
+
cu_seqlens_k=cu_seqlens_k,
|
534 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
535 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
536 |
+
dropout_p=dropout,
|
537 |
+
softmax_scale=softmax_scale,
|
538 |
+
causal=causal,
|
539 |
+
)
|
540 |
+
else:
|
541 |
+
attn_output_unpad = flash_attn_varlen_func(
|
542 |
+
query_states,
|
543 |
+
key_states,
|
544 |
+
value_states,
|
545 |
+
cu_seqlens_q=cu_seqlens_q,
|
546 |
+
cu_seqlens_k=cu_seqlens_k,
|
547 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
548 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
549 |
+
dropout_p=dropout,
|
550 |
+
softmax_scale=softmax_scale,
|
551 |
+
causal=causal,
|
552 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
553 |
+
)
|
554 |
+
|
555 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
556 |
+
else:
|
557 |
+
if not use_sliding_windows:
|
558 |
+
attn_output = flash_attn_func(
|
559 |
+
query_states,
|
560 |
+
key_states,
|
561 |
+
value_states,
|
562 |
+
dropout,
|
563 |
+
softmax_scale=softmax_scale,
|
564 |
+
causal=causal,
|
565 |
+
)
|
566 |
+
else:
|
567 |
+
attn_output = flash_attn_func(
|
568 |
+
query_states,
|
569 |
+
key_states,
|
570 |
+
value_states,
|
571 |
+
dropout,
|
572 |
+
softmax_scale=softmax_scale,
|
573 |
+
causal=causal,
|
574 |
+
window_size=(self.config.sliding_window, self.config.sliding_window),
|
575 |
+
)
|
576 |
+
|
577 |
+
return attn_output
|
578 |
+
|
579 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
|
580 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
581 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
582 |
+
|
583 |
+
# On the first iteration we need to properly re-create the padding mask
|
584 |
+
# by slicing it on the proper place
|
585 |
+
if kv_seq_len != attention_mask.shape[-1]:
|
586 |
+
attention_mask_num_tokens = attention_mask.shape[-1]
|
587 |
+
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
|
588 |
+
|
589 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
590 |
+
|
591 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
592 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
593 |
+
|
594 |
+
if query_length == kv_seq_len:
|
595 |
+
query_layer = index_first_axis(
|
596 |
+
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
|
597 |
+
)
|
598 |
+
cu_seqlens_q = cu_seqlens_k
|
599 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
600 |
+
indices_q = indices_k
|
601 |
+
elif query_length == 1:
|
602 |
+
max_seqlen_in_batch_q = 1
|
603 |
+
cu_seqlens_q = torch.arange(
|
604 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
605 |
+
) # There is a memcpy here, that is very bad.
|
606 |
+
indices_q = cu_seqlens_q[:-1]
|
607 |
+
query_layer = query_layer.squeeze(1)
|
608 |
+
else:
|
609 |
+
# The -q_len: slice assumes left padding.
|
610 |
+
attention_mask = attention_mask[:, -query_length:]
|
611 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
612 |
+
|
613 |
+
return (
|
614 |
+
query_layer,
|
615 |
+
key_layer,
|
616 |
+
value_layer,
|
617 |
+
indices_q,
|
618 |
+
(cu_seqlens_q, cu_seqlens_k),
|
619 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
620 |
+
)
|
621 |
+
|
622 |
+
|
623 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Qwen2
|
624 |
+
class Qwen2SdpaAttention(Qwen2Attention):
|
625 |
+
"""
|
626 |
+
Qwen2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
627 |
+
`Qwen2Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
628 |
+
SDPA API.
|
629 |
+
"""
|
630 |
+
|
631 |
+
# Adapted from Qwen2Attention.forward
|
632 |
+
def forward(
|
633 |
+
self,
|
634 |
+
hidden_states: torch.Tensor,
|
635 |
+
attention_mask: Optional[torch.Tensor] = None,
|
636 |
+
position_ids: Optional[torch.LongTensor] = None,
|
637 |
+
past_key_value: Optional[Cache] = None,
|
638 |
+
output_attentions: bool = False,
|
639 |
+
use_cache: bool = False,
|
640 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
641 |
+
if output_attentions:
|
642 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
643 |
+
logger.warning_once(
|
644 |
+
"Qwen2Model is using Qwen2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
645 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
646 |
+
)
|
647 |
+
return super().forward(
|
648 |
+
hidden_states=hidden_states,
|
649 |
+
attention_mask=attention_mask,
|
650 |
+
position_ids=position_ids,
|
651 |
+
past_key_value=past_key_value,
|
652 |
+
output_attentions=output_attentions,
|
653 |
+
use_cache=use_cache,
|
654 |
+
)
|
655 |
+
|
656 |
+
bsz, q_len, _ = hidden_states.size()
|
657 |
+
|
658 |
+
query_states = self.q_proj(hidden_states)
|
659 |
+
key_states = self.k_proj(hidden_states)
|
660 |
+
value_states = self.v_proj(hidden_states)
|
661 |
+
|
662 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
663 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
664 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
665 |
+
|
666 |
+
kv_seq_len = key_states.shape[-2]
|
667 |
+
if past_key_value is not None:
|
668 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
669 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
670 |
+
|
671 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
672 |
+
|
673 |
+
if past_key_value is not None:
|
674 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
675 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
676 |
+
|
677 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
678 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
679 |
+
|
680 |
+
if attention_mask is not None:
|
681 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
682 |
+
raise ValueError(
|
683 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
684 |
+
)
|
685 |
+
|
686 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
687 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
688 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
689 |
+
query_states = query_states.contiguous()
|
690 |
+
key_states = key_states.contiguous()
|
691 |
+
value_states = value_states.contiguous()
|
692 |
+
|
693 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
694 |
+
query_states,
|
695 |
+
key_states,
|
696 |
+
value_states,
|
697 |
+
attn_mask=attention_mask,
|
698 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
699 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
700 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
701 |
+
)
|
702 |
+
|
703 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
704 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
705 |
+
|
706 |
+
attn_output = self.o_proj(attn_output)
|
707 |
+
|
708 |
+
return attn_output, None, past_key_value
|
709 |
+
|
710 |
+
|
711 |
+
QWEN2_ATTENTION_CLASSES = {
|
712 |
+
"eager": Qwen2Attention,
|
713 |
+
"flash_attention_2": Qwen2FlashAttention2,
|
714 |
+
"sdpa": Qwen2SdpaAttention,
|
715 |
+
}
|
716 |
+
|
717 |
+
|
718 |
+
class Qwen2DecoderLayer(nn.Module):
|
719 |
+
def __init__(self, config: Qwen2Config, layer_idx: int):
|
720 |
+
super().__init__()
|
721 |
+
self.hidden_size = config.hidden_size
|
722 |
+
|
723 |
+
if config.use_sliding_window and config._attn_implementation != "flash_attention_2":
|
724 |
+
logger.warning_once(
|
725 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
726 |
+
"unexpected results may be encountered."
|
727 |
+
)
|
728 |
+
self.self_attn = QWEN2_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
729 |
+
|
730 |
+
self.mlp = Qwen2MLP(config)
|
731 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
732 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
733 |
+
|
734 |
+
def forward(
|
735 |
+
self,
|
736 |
+
hidden_states: torch.Tensor,
|
737 |
+
attention_mask: Optional[torch.Tensor] = None,
|
738 |
+
position_ids: Optional[torch.LongTensor] = None,
|
739 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
740 |
+
output_attentions: Optional[bool] = False,
|
741 |
+
use_cache: Optional[bool] = False,
|
742 |
+
**kwargs,
|
743 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
744 |
+
if "padding_mask" in kwargs:
|
745 |
+
warnings.warn(
|
746 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
747 |
+
"Please make sure use `attention_mask` instead.`"
|
748 |
+
)
|
749 |
+
"""
|
750 |
+
Args:
|
751 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
752 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
753 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
754 |
+
output_attentions (`bool`, *optional*):
|
755 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
756 |
+
returned tensors for more detail.
|
757 |
+
use_cache (`bool`, *optional*):
|
758 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
759 |
+
(see `past_key_values`).
|
760 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
761 |
+
"""
|
762 |
+
|
763 |
+
residual = hidden_states
|
764 |
+
|
765 |
+
hidden_states = self.input_layernorm(hidden_states)
|
766 |
+
|
767 |
+
# Self Attention
|
768 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
769 |
+
hidden_states=hidden_states,
|
770 |
+
attention_mask=attention_mask,
|
771 |
+
position_ids=position_ids,
|
772 |
+
past_key_value=past_key_value,
|
773 |
+
output_attentions=output_attentions,
|
774 |
+
use_cache=use_cache,
|
775 |
+
)
|
776 |
+
hidden_states = residual + hidden_states
|
777 |
+
|
778 |
+
# Fully Connected
|
779 |
+
residual = hidden_states
|
780 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
781 |
+
hidden_states = self.mlp(hidden_states)
|
782 |
+
hidden_states = residual + hidden_states
|
783 |
+
|
784 |
+
outputs = (hidden_states,)
|
785 |
+
|
786 |
+
if output_attentions:
|
787 |
+
outputs += (self_attn_weights,)
|
788 |
+
|
789 |
+
if use_cache:
|
790 |
+
outputs += (present_key_value,)
|
791 |
+
|
792 |
+
return outputs
|
793 |
+
|
794 |
+
|
795 |
+
QWEN2_START_DOCSTRING = r"""
|
796 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
797 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
798 |
+
etc.)
|
799 |
+
|
800 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
801 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
802 |
+
and behavior.
|
803 |
+
|
804 |
+
Parameters:
|
805 |
+
config ([`Qwen2Config`]):
|
806 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
807 |
+
load the weights associated with the model, only the configuration. Check out the
|
808 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
809 |
+
"""
|
810 |
+
|
811 |
+
|
812 |
+
@add_start_docstrings(
|
813 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
814 |
+
QWEN2_START_DOCSTRING,
|
815 |
+
)
|
816 |
+
class Qwen2PreTrainedModel(PreTrainedModel):
|
817 |
+
config_class = Qwen2Config
|
818 |
+
base_model_prefix = "model"
|
819 |
+
supports_gradient_checkpointing = True
|
820 |
+
_no_split_modules = ["Qwen2DecoderLayer"]
|
821 |
+
_skip_keys_device_placement = "past_key_values"
|
822 |
+
_supports_flash_attn_2 = True
|
823 |
+
_supports_sdpa = True
|
824 |
+
_supports_cache_class = True
|
825 |
+
|
826 |
+
def _init_weights(self, module):
|
827 |
+
std = self.config.initializer_range
|
828 |
+
if isinstance(module, nn.Linear):
|
829 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
830 |
+
if module.bias is not None:
|
831 |
+
module.bias.data.zero_()
|
832 |
+
elif isinstance(module, nn.Embedding):
|
833 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
834 |
+
if module.padding_idx is not None:
|
835 |
+
module.weight.data[module.padding_idx].zero_()
|
836 |
+
|
837 |
+
|
838 |
+
QWEN2_INPUTS_DOCSTRING = r"""
|
839 |
+
Args:
|
840 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
841 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
842 |
+
it.
|
843 |
+
|
844 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
845 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
846 |
+
|
847 |
+
[What are input IDs?](../glossary#input-ids)
|
848 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
849 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
850 |
+
|
851 |
+
- 1 for tokens that are **not masked**,
|
852 |
+
- 0 for tokens that are **masked**.
|
853 |
+
|
854 |
+
[What are attention masks?](../glossary#attention-mask)
|
855 |
+
|
856 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
857 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
858 |
+
|
859 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
860 |
+
`past_key_values`).
|
861 |
+
|
862 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
863 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
864 |
+
information on the default strategy.
|
865 |
+
|
866 |
+
- 1 indicates the head is **not masked**,
|
867 |
+
- 0 indicates the head is **masked**.
|
868 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
869 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
870 |
+
config.n_positions - 1]`.
|
871 |
+
|
872 |
+
[What are position IDs?](../glossary#position-ids)
|
873 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
874 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
875 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
876 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
877 |
+
|
878 |
+
Two formats are allowed:
|
879 |
+
- a [`~cache_utils.Cache`] instance;
|
880 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
881 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
882 |
+
cache format.
|
883 |
+
|
884 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
885 |
+
legacy cache format will be returned.
|
886 |
+
|
887 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
888 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
889 |
+
of shape `(batch_size, sequence_length)`.
|
890 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
891 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
892 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
893 |
+
model's internal embedding lookup matrix.
|
894 |
+
use_cache (`bool`, *optional*):
|
895 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
896 |
+
`past_key_values`).
|
897 |
+
output_attentions (`bool`, *optional*):
|
898 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
899 |
+
tensors for more detail.
|
900 |
+
output_hidden_states (`bool`, *optional*):
|
901 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
902 |
+
more detail.
|
903 |
+
return_dict (`bool`, *optional*):
|
904 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
905 |
+
"""
|
906 |
+
|
907 |
+
|
908 |
+
@add_start_docstrings(
|
909 |
+
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
910 |
+
QWEN2_START_DOCSTRING,
|
911 |
+
)
|
912 |
+
class Qwen2Model(Qwen2PreTrainedModel):
|
913 |
+
"""
|
914 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
915 |
+
|
916 |
+
Args:
|
917 |
+
config: Qwen2Config
|
918 |
+
"""
|
919 |
+
|
920 |
+
def __init__(self, config: Qwen2Config, PT_len):
|
921 |
+
super().__init__(config)
|
922 |
+
self.padding_idx = config.pad_token_id
|
923 |
+
self.vocab_size = config.vocab_size
|
924 |
+
|
925 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
926 |
+
|
927 |
+
self.prompts = []
|
928 |
+
self.prompts_token_len = PT_len
|
929 |
+
import torch.nn.init as init
|
930 |
+
if self.prompts_token_len > 0:
|
931 |
+
for i in range(config.num_hidden_layers):
|
932 |
+
self.prompts.append(init.xavier_uniform_(nn.Parameter(torch.randn(1,PT_len,config.hidden_size))))
|
933 |
+
self.prompts = nn.ParameterList(self.prompts)
|
934 |
+
self.layers = nn.ModuleList(
|
935 |
+
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
936 |
+
)
|
937 |
+
self._attn_implementation = config._attn_implementation
|
938 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
939 |
+
|
940 |
+
self.gradient_checkpointing = False
|
941 |
+
# Initialize weights and apply final processing
|
942 |
+
self.post_init()
|
943 |
+
|
944 |
+
def get_input_embeddings(self):
|
945 |
+
return self.embed_tokens
|
946 |
+
|
947 |
+
def set_input_embeddings(self, value):
|
948 |
+
self.embed_tokens = value
|
949 |
+
|
950 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
951 |
+
def forward(
|
952 |
+
self,
|
953 |
+
input_ids: torch.LongTensor = None,
|
954 |
+
attention_mask: Optional[torch.Tensor] = None,
|
955 |
+
position_ids: Optional[torch.LongTensor] = None,
|
956 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
957 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
958 |
+
use_cache: Optional[bool] = None,
|
959 |
+
output_attentions: Optional[bool] = None,
|
960 |
+
output_hidden_states: Optional[bool] = None,
|
961 |
+
return_dict: Optional[bool] = None,
|
962 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
963 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
964 |
+
output_hidden_states = (
|
965 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
966 |
+
)
|
967 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
968 |
+
|
969 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
970 |
+
|
971 |
+
# retrieve input_ids and inputs_embeds
|
972 |
+
if input_ids is not None and inputs_embeds is not None:
|
973 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
974 |
+
elif input_ids is not None:
|
975 |
+
batch_size, seq_length = input_ids.shape
|
976 |
+
elif inputs_embeds is not None:
|
977 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
978 |
+
else:
|
979 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
980 |
+
|
981 |
+
if self.prompts_token_len > 0:
|
982 |
+
seq_length += self.prompts_token_len
|
983 |
+
|
984 |
+
if self.gradient_checkpointing and self.training:
|
985 |
+
if use_cache:
|
986 |
+
logger.warning_once(
|
987 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
988 |
+
)
|
989 |
+
use_cache = False
|
990 |
+
|
991 |
+
past_key_values_length = 0
|
992 |
+
|
993 |
+
if use_cache:
|
994 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
995 |
+
if use_legacy_cache:
|
996 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
997 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
998 |
+
|
999 |
+
if position_ids is None:
|
1000 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1001 |
+
position_ids = torch.arange(
|
1002 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1003 |
+
)
|
1004 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1005 |
+
else:
|
1006 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1007 |
+
|
1008 |
+
if inputs_embeds is None:
|
1009 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1010 |
+
|
1011 |
+
# prompt token
|
1012 |
+
if self.prompts_token_len > 0:
|
1013 |
+
inputs_PT = self.prompts[0].repeat(inputs_embeds.size(0), 1, 1).to(inputs_embeds.device).to(inputs_embeds.dtype)
|
1014 |
+
inputs_embeds = torch.cat((inputs_PT,inputs_embeds), dim=1)
|
1015 |
+
|
1016 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
1017 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
1018 |
+
if is_padding_right:
|
1019 |
+
raise ValueError(
|
1020 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
1021 |
+
" this may lead to unexpected behaviour for Flash Attention version of Qwen2. Make sure to "
|
1022 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
if self._attn_implementation == "flash_attention_2":
|
1026 |
+
# 2d mask is passed through the layers
|
1027 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1028 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
1029 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1030 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1031 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1032 |
+
attention_mask,
|
1033 |
+
(batch_size, seq_length),
|
1034 |
+
inputs_embeds,
|
1035 |
+
past_key_values_length,
|
1036 |
+
sliding_window=self.config.sliding_window,
|
1037 |
+
)
|
1038 |
+
else:
|
1039 |
+
# 4d mask is passed through the layers
|
1040 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1041 |
+
attention_mask,
|
1042 |
+
(batch_size, seq_length),
|
1043 |
+
inputs_embeds,
|
1044 |
+
past_key_values_length,
|
1045 |
+
sliding_window=self.config.sliding_window,
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
hidden_states = inputs_embeds
|
1049 |
+
|
1050 |
+
# decoder layers
|
1051 |
+
all_hidden_states = () if output_hidden_states else None
|
1052 |
+
all_self_attns = () if output_attentions else None
|
1053 |
+
next_decoder_cache = None
|
1054 |
+
|
1055 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1056 |
+
if self.prompts_token_len > 0:
|
1057 |
+
# hidden_states[:, :self.prompts_token_len, :] = self.prompts[idx].repeat(inputs_embeds.size(0),1, 1).to(hidden_states.device).to(hidden_states.dtype)
|
1058 |
+
hidden_states[:, :self.prompts_token_len, :] = self.prompts[idx].repeat(inputs_embeds.size(0),1, 1)
|
1059 |
+
if output_hidden_states:
|
1060 |
+
all_hidden_states += (hidden_states,)
|
1061 |
+
|
1062 |
+
if self.gradient_checkpointing and self.training:
|
1063 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1064 |
+
decoder_layer.__call__,
|
1065 |
+
hidden_states,
|
1066 |
+
attention_mask,
|
1067 |
+
position_ids,
|
1068 |
+
past_key_values,
|
1069 |
+
output_attentions,
|
1070 |
+
use_cache,
|
1071 |
+
)
|
1072 |
+
else:
|
1073 |
+
layer_outputs = decoder_layer(
|
1074 |
+
hidden_states,
|
1075 |
+
attention_mask=attention_mask,
|
1076 |
+
position_ids=position_ids,
|
1077 |
+
past_key_value=past_key_values,
|
1078 |
+
output_attentions=output_attentions,
|
1079 |
+
use_cache=use_cache,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
hidden_states = layer_outputs[0]
|
1083 |
+
|
1084 |
+
if use_cache:
|
1085 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1086 |
+
|
1087 |
+
if output_attentions:
|
1088 |
+
all_self_attns += (layer_outputs[1],)
|
1089 |
+
|
1090 |
+
hidden_states = self.norm(hidden_states)
|
1091 |
+
|
1092 |
+
# add hidden states from the last decoder layer
|
1093 |
+
if output_hidden_states:
|
1094 |
+
all_hidden_states += (hidden_states,)
|
1095 |
+
|
1096 |
+
next_cache = None
|
1097 |
+
if use_cache:
|
1098 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1099 |
+
|
1100 |
+
if not return_dict:
|
1101 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1102 |
+
return BaseModelOutputWithPast(
|
1103 |
+
last_hidden_state=hidden_states,
|
1104 |
+
past_key_values=next_cache,
|
1105 |
+
hidden_states=all_hidden_states,
|
1106 |
+
attentions=all_self_attns,
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
|
1110 |
+
class Qwen2ForCausalLM(Qwen2PreTrainedModel):
|
1111 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1112 |
+
|
1113 |
+
def __init__(self, config):
|
1114 |
+
super().__init__(config)
|
1115 |
+
self.model = Qwen2Model(config)
|
1116 |
+
self.vocab_size = config.vocab_size
|
1117 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1118 |
+
|
1119 |
+
# Initialize weights and apply final processing
|
1120 |
+
self.post_init()
|
1121 |
+
|
1122 |
+
def get_input_embeddings(self):
|
1123 |
+
return self.model.embed_tokens
|
1124 |
+
|
1125 |
+
def set_input_embeddings(self, value):
|
1126 |
+
self.model.embed_tokens = value
|
1127 |
+
|
1128 |
+
def get_output_embeddings(self):
|
1129 |
+
return self.lm_head
|
1130 |
+
|
1131 |
+
def set_output_embeddings(self, new_embeddings):
|
1132 |
+
self.lm_head = new_embeddings
|
1133 |
+
|
1134 |
+
def set_decoder(self, decoder):
|
1135 |
+
self.model = decoder
|
1136 |
+
|
1137 |
+
def get_decoder(self):
|
1138 |
+
return self.model
|
1139 |
+
|
1140 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
1141 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1142 |
+
def forward(
|
1143 |
+
self,
|
1144 |
+
input_ids: torch.LongTensor = None,
|
1145 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1146 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1147 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1148 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1149 |
+
labels: Optional[torch.LongTensor] = None,
|
1150 |
+
use_cache: Optional[bool] = None,
|
1151 |
+
output_attentions: Optional[bool] = None,
|
1152 |
+
output_hidden_states: Optional[bool] = None,
|
1153 |
+
return_dict: Optional[bool] = None,
|
1154 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1155 |
+
r"""
|
1156 |
+
Args:
|
1157 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1158 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1159 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1160 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1161 |
+
|
1162 |
+
Returns:
|
1163 |
+
|
1164 |
+
Example:
|
1165 |
+
|
1166 |
+
```python
|
1167 |
+
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM
|
1168 |
+
|
1169 |
+
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1170 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1171 |
+
|
1172 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1173 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1174 |
+
|
1175 |
+
>>> # Generate
|
1176 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1177 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1178 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1179 |
+
```"""
|
1180 |
+
|
1181 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1182 |
+
output_hidden_states = (
|
1183 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1184 |
+
)
|
1185 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1186 |
+
|
1187 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1188 |
+
outputs = self.model(
|
1189 |
+
input_ids=input_ids,
|
1190 |
+
attention_mask=attention_mask,
|
1191 |
+
position_ids=position_ids,
|
1192 |
+
past_key_values=past_key_values,
|
1193 |
+
inputs_embeds=inputs_embeds,
|
1194 |
+
use_cache=use_cache,
|
1195 |
+
output_attentions=output_attentions,
|
1196 |
+
output_hidden_states=output_hidden_states,
|
1197 |
+
return_dict=return_dict,
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
hidden_states = outputs[0]
|
1201 |
+
logits = self.lm_head(hidden_states)
|
1202 |
+
logits = logits.float()
|
1203 |
+
|
1204 |
+
loss = None
|
1205 |
+
if labels is not None:
|
1206 |
+
# Shift so that tokens < n predict n
|
1207 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1208 |
+
shift_labels = labels[..., 1:].contiguous()
|
1209 |
+
# Flatten the tokens
|
1210 |
+
loss_fct = CrossEntropyLoss()
|
1211 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1212 |
+
shift_labels = shift_labels.view(-1)
|
1213 |
+
# Enable model parallelism
|
1214 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1215 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1216 |
+
|
1217 |
+
if not return_dict:
|
1218 |
+
output = (logits,) + outputs[1:]
|
1219 |
+
return (loss,) + output if loss is not None else output
|
1220 |
+
|
1221 |
+
return CausalLMOutputWithPast(
|
1222 |
+
loss=loss,
|
1223 |
+
logits=logits,
|
1224 |
+
past_key_values=outputs.past_key_values,
|
1225 |
+
hidden_states=outputs.hidden_states,
|
1226 |
+
attentions=outputs.attentions,
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
def prepare_inputs_for_generation(
|
1230 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1231 |
+
):
|
1232 |
+
# Omit tokens covered by past_key_values
|
1233 |
+
if past_key_values is not None:
|
1234 |
+
if isinstance(past_key_values, Cache):
|
1235 |
+
cache_length = past_key_values.get_seq_length()
|
1236 |
+
past_length = past_key_values.seen_tokens
|
1237 |
+
max_cache_length = past_key_values.get_max_length()
|
1238 |
+
else:
|
1239 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1240 |
+
max_cache_length = None
|
1241 |
+
|
1242 |
+
# Keep only the unprocessed tokens:
|
1243 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1244 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1245 |
+
# input)
|
1246 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1247 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1248 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1249 |
+
# input_ids based on the past_length.
|
1250 |
+
elif past_length < input_ids.shape[1]:
|
1251 |
+
input_ids = input_ids[:, past_length:]
|
1252 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1253 |
+
|
1254 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1255 |
+
if (
|
1256 |
+
max_cache_length is not None
|
1257 |
+
and attention_mask is not None
|
1258 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1259 |
+
):
|
1260 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1261 |
+
|
1262 |
+
position_ids = kwargs.get("position_ids", None)
|
1263 |
+
if attention_mask is not None and position_ids is None:
|
1264 |
+
# create position_ids on the fly for batch generation
|
1265 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1266 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1267 |
+
if past_key_values:
|
1268 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1269 |
+
|
1270 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1271 |
+
if inputs_embeds is not None and past_key_values is None:
|
1272 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1273 |
+
else:
|
1274 |
+
model_inputs = {"input_ids": input_ids}
|
1275 |
+
|
1276 |
+
model_inputs.update(
|
1277 |
+
{
|
1278 |
+
"position_ids": position_ids,
|
1279 |
+
"past_key_values": past_key_values,
|
1280 |
+
"use_cache": kwargs.get("use_cache"),
|
1281 |
+
"attention_mask": attention_mask,
|
1282 |
+
}
|
1283 |
+
)
|
1284 |
+
return model_inputs
|
1285 |
+
|
1286 |
+
@staticmethod
|
1287 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1288 |
+
reordered_past = ()
|
1289 |
+
for layer_past in past_key_values:
|
1290 |
+
reordered_past += (
|
1291 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1292 |
+
)
|
1293 |
+
return reordered_past
|
1294 |
+
|
1295 |
+
|
1296 |
+
@add_start_docstrings(
|
1297 |
+
"""
|
1298 |
+
The Qwen2 Model transformer with a sequence classification head on top (linear layer).
|
1299 |
+
|
1300 |
+
[`Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1301 |
+
(e.g. GPT-2) do.
|
1302 |
+
|
1303 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1304 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1305 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1306 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1307 |
+
each row of the batch).
|
1308 |
+
""",
|
1309 |
+
QWEN2_START_DOCSTRING,
|
1310 |
+
)
|
1311 |
+
class Qwen2ForSequenceClassification(Qwen2PreTrainedModel):
|
1312 |
+
def __init__(self, config):
|
1313 |
+
super().__init__(config)
|
1314 |
+
self.num_labels = config.num_labels
|
1315 |
+
self.model = Qwen2Model(config)
|
1316 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1317 |
+
|
1318 |
+
# Initialize weights and apply final processing
|
1319 |
+
self.post_init()
|
1320 |
+
|
1321 |
+
def get_input_embeddings(self):
|
1322 |
+
return self.model.embed_tokens
|
1323 |
+
|
1324 |
+
def set_input_embeddings(self, value):
|
1325 |
+
self.model.embed_tokens = value
|
1326 |
+
|
1327 |
+
@add_start_docstrings_to_model_forward(QWEN2_INPUTS_DOCSTRING)
|
1328 |
+
def forward(
|
1329 |
+
self,
|
1330 |
+
input_ids: torch.LongTensor = None,
|
1331 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1332 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1333 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1334 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1335 |
+
labels: Optional[torch.LongTensor] = None,
|
1336 |
+
use_cache: Optional[bool] = None,
|
1337 |
+
output_attentions: Optional[bool] = None,
|
1338 |
+
output_hidden_states: Optional[bool] = None,
|
1339 |
+
return_dict: Optional[bool] = None,
|
1340 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1341 |
+
r"""
|
1342 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1343 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1344 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1345 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1346 |
+
"""
|
1347 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1348 |
+
|
1349 |
+
transformer_outputs = self.model(
|
1350 |
+
input_ids,
|
1351 |
+
attention_mask=attention_mask,
|
1352 |
+
position_ids=position_ids,
|
1353 |
+
past_key_values=past_key_values,
|
1354 |
+
inputs_embeds=inputs_embeds,
|
1355 |
+
use_cache=use_cache,
|
1356 |
+
output_attentions=output_attentions,
|
1357 |
+
output_hidden_states=output_hidden_states,
|
1358 |
+
return_dict=return_dict,
|
1359 |
+
)
|
1360 |
+
hidden_states = transformer_outputs[0]
|
1361 |
+
logits = self.score(hidden_states)
|
1362 |
+
|
1363 |
+
if input_ids is not None:
|
1364 |
+
batch_size = input_ids.shape[0]
|
1365 |
+
else:
|
1366 |
+
batch_size = inputs_embeds.shape[0]
|
1367 |
+
|
1368 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1369 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1370 |
+
if self.config.pad_token_id is None:
|
1371 |
+
sequence_lengths = -1
|
1372 |
+
else:
|
1373 |
+
if input_ids is not None:
|
1374 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1375 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1376 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1377 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1378 |
+
else:
|
1379 |
+
sequence_lengths = -1
|
1380 |
+
|
1381 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1382 |
+
|
1383 |
+
loss = None
|
1384 |
+
if labels is not None:
|
1385 |
+
labels = labels.to(logits.device)
|
1386 |
+
if self.config.problem_type is None:
|
1387 |
+
if self.num_labels == 1:
|
1388 |
+
self.config.problem_type = "regression"
|
1389 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1390 |
+
self.config.problem_type = "single_label_classification"
|
1391 |
+
else:
|
1392 |
+
self.config.problem_type = "multi_label_classification"
|
1393 |
+
|
1394 |
+
if self.config.problem_type == "regression":
|
1395 |
+
loss_fct = MSELoss()
|
1396 |
+
if self.num_labels == 1:
|
1397 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1398 |
+
else:
|
1399 |
+
loss = loss_fct(pooled_logits, labels)
|
1400 |
+
elif self.config.problem_type == "single_label_classification":
|
1401 |
+
loss_fct = CrossEntropyLoss()
|
1402 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1403 |
+
elif self.config.problem_type == "multi_label_classification":
|
1404 |
+
loss_fct = BCEWithLogitsLoss()
|
1405 |
+
loss = loss_fct(pooled_logits, labels)
|
1406 |
+
if not return_dict:
|
1407 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1408 |
+
return ((loss,) + output) if loss is not None else output
|
1409 |
+
|
1410 |
+
return SequenceClassifierOutputWithPast(
|
1411 |
+
loss=loss,
|
1412 |
+
logits=pooled_logits,
|
1413 |
+
past_key_values=transformer_outputs.past_key_values,
|
1414 |
+
hidden_states=transformer_outputs.hidden_states,
|
1415 |
+
attentions=transformer_outputs.attentions,
|
1416 |
+
)
|
models/modeling_timer.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, List, Union
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import PreTrainedModel, Cache, DynamicCache
|
6 |
+
from transformers.activations import ACT2FN
|
7 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
8 |
+
from transformers.modeling_outputs import MoeModelOutputWithPast, MoeCausalLMOutputWithPast
|
9 |
+
from .configuration_timer import TimerConfig
|
10 |
+
from .ts_generation_mixin import TSGenerationMixin
|
11 |
+
|
12 |
+
|
13 |
+
def rotate_half(x):
|
14 |
+
x1 = x[..., : x.shape[-1] // 2]
|
15 |
+
x2 = x[..., x.shape[-1] // 2:]
|
16 |
+
return torch.cat((-x2, x1), dim=-1)
|
17 |
+
|
18 |
+
|
19 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
20 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
21 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
22 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
23 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
24 |
+
return q_embed, k_embed
|
25 |
+
|
26 |
+
|
27 |
+
class TimerPatchEmbedding(nn.Module):
|
28 |
+
def __init__(self, config: TimerConfig):
|
29 |
+
super().__init__()
|
30 |
+
self.input_token_len = config.input_token_len
|
31 |
+
self.emb = nn.Linear(config.input_token_len,
|
32 |
+
config.hidden_size, bias=False)
|
33 |
+
|
34 |
+
def forward(self, hidden_state: torch.Tensor):
|
35 |
+
batch_size, input_length = hidden_state.shape
|
36 |
+
if input_length < self.input_token_len: # Padding
|
37 |
+
pad = torch.full((batch_size, self.input_token_len-input_length), fill_value=0, dtype=hidden_state.dtype, device=hidden_state.device)
|
38 |
+
hidden_state = torch.cat((pad, hidden_state), -1)
|
39 |
+
hidden_state = hidden_state.unfold(
|
40 |
+
dimension=-1, size=self.input_token_len, step=self.input_token_len)
|
41 |
+
return self.emb(hidden_state)
|
42 |
+
|
43 |
+
|
44 |
+
class TimerPointEmbedding(nn.Module):
|
45 |
+
def __init__(self, config: TimerConfig):
|
46 |
+
super().__init__()
|
47 |
+
self.emb_layer = nn.Linear(
|
48 |
+
config.input_token_len, config.hidden_size, bias=False)
|
49 |
+
self.gate_layer = nn.Linear(
|
50 |
+
config.input_token_len, config.hidden_size, bias=False)
|
51 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
emb = self.act_fn(self.gate_layer(x)) * self.emb_layer(x)
|
55 |
+
return emb
|
56 |
+
|
57 |
+
|
58 |
+
class TimeMoeRotaryEmbedding(torch.nn.Module):
|
59 |
+
def __init__(self, dim, max_position_embeddings=10000, base=10000, device=None):
|
60 |
+
super().__init__()
|
61 |
+
self.dim = dim
|
62 |
+
self.max_position_embeddings = max_position_embeddings
|
63 |
+
self.base = base
|
64 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim,
|
65 |
+
2, dtype=torch.int64).float().to(device) / self.dim))
|
66 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
67 |
+
|
68 |
+
# Build here to make `torch.jit.trace` work.
|
69 |
+
self._set_cos_sin_cache(
|
70 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
71 |
+
)
|
72 |
+
|
73 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
74 |
+
self.max_seq_len_cached = seq_len
|
75 |
+
t = torch.arange(self.max_seq_len_cached, device=device,
|
76 |
+
dtype=torch.int64).type_as(self.inv_freq)
|
77 |
+
|
78 |
+
freqs = torch.outer(t, self.inv_freq)
|
79 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
80 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
81 |
+
self.register_buffer(
|
82 |
+
"cos_cached", emb.cos().to(dtype), persistent=False)
|
83 |
+
self.register_buffer(
|
84 |
+
"sin_cached", emb.sin().to(dtype), persistent=False)
|
85 |
+
|
86 |
+
def forward(self, x, seq_len=None):
|
87 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
88 |
+
if seq_len > self.max_seq_len_cached:
|
89 |
+
self._set_cos_sin_cache(
|
90 |
+
seq_len=seq_len, device=x.device, dtype=x.dtype)
|
91 |
+
|
92 |
+
return (
|
93 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
94 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
class TimerAttention(nn.Module):
|
99 |
+
def __init__(self, config: TimerConfig, layer_idx: Optional[int] = None):
|
100 |
+
super().__init__()
|
101 |
+
self.layer_idx = layer_idx
|
102 |
+
self.hidden_size = config.hidden_size
|
103 |
+
self.num_heads = config.num_attention_heads
|
104 |
+
self.head_dim = self.hidden_size // self.num_heads
|
105 |
+
self.attention_dropout = config.attention_dropout
|
106 |
+
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
107 |
+
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
108 |
+
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
|
109 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
110 |
+
self.rotary_emb = TimeMoeRotaryEmbedding(
|
111 |
+
self.head_dim, max_position_embeddings=config.max_position_embeddings)
|
112 |
+
|
113 |
+
def forward(
|
114 |
+
self,
|
115 |
+
hidden_states: torch.Tensor,
|
116 |
+
attention_mask: Optional[torch.Tensor] = None,
|
117 |
+
position_ids: Optional[torch.LongTensor] = None,
|
118 |
+
past_key_value: Optional[Cache] = None,
|
119 |
+
output_attentions: bool = False,
|
120 |
+
**kwargs,
|
121 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
122 |
+
bsz, q_len, _ = hidden_states.size()
|
123 |
+
|
124 |
+
query_states = self.q_proj(hidden_states)
|
125 |
+
key_states = self.k_proj(hidden_states)
|
126 |
+
value_states = self.v_proj(hidden_states)
|
127 |
+
|
128 |
+
query_states = query_states.view(
|
129 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
130 |
+
key_states = key_states.view(
|
131 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
132 |
+
value_states = value_states.view(
|
133 |
+
bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
134 |
+
|
135 |
+
kv_seq_len = key_states.shape[-2]
|
136 |
+
if past_key_value is not None:
|
137 |
+
kv_seq_len += past_key_value.get_usable_length(
|
138 |
+
kv_seq_len, self.layer_idx)
|
139 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
140 |
+
query_states, key_states = apply_rotary_pos_emb(
|
141 |
+
query_states, key_states, cos, sin, position_ids)
|
142 |
+
|
143 |
+
if past_key_value is not None:
|
144 |
+
key_states, value_states = past_key_value.update(
|
145 |
+
key_states, value_states, self.layer_idx)
|
146 |
+
|
147 |
+
attn_output = F.scaled_dot_product_attention(
|
148 |
+
query_states, key_states, value_states, attention_mask, dropout_p=self.attention_dropout)
|
149 |
+
|
150 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
151 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
152 |
+
attn_output = self.o_proj(attn_output)
|
153 |
+
|
154 |
+
if not output_attentions:
|
155 |
+
attn_weights = None
|
156 |
+
|
157 |
+
return attn_output, attn_weights, past_key_value
|
158 |
+
|
159 |
+
|
160 |
+
class TimerMLP(nn.Module):
|
161 |
+
def __init__(self, hidden_size: int, intermediate_size: int, hidden_act: str):
|
162 |
+
super().__init__()
|
163 |
+
self.hidden_size = hidden_size
|
164 |
+
self.intermediate_size = intermediate_size
|
165 |
+
self.gate_proj = nn.Linear(
|
166 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
167 |
+
self.up_proj = nn.Linear(
|
168 |
+
self.hidden_size, self.intermediate_size, bias=False)
|
169 |
+
self.down_proj = nn.Linear(
|
170 |
+
self.intermediate_size, self.hidden_size, bias=False)
|
171 |
+
self.act_fn = ACT2FN[hidden_act]
|
172 |
+
|
173 |
+
def forward(self, hidden_state):
|
174 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
175 |
+
|
176 |
+
|
177 |
+
class TimerDecoderLayer(nn.Module):
|
178 |
+
def __init__(self, config: TimerConfig, layer_idx: int):
|
179 |
+
super().__init__()
|
180 |
+
self.self_attn = TimerAttention(config, layer_idx)
|
181 |
+
|
182 |
+
self.ffn_layer = TimerMLP(
|
183 |
+
hidden_size=config.hidden_size,
|
184 |
+
intermediate_size=config.intermediate_size,
|
185 |
+
hidden_act=config.hidden_act,
|
186 |
+
)
|
187 |
+
self.norm1 = torch.nn.LayerNorm(config.hidden_size)
|
188 |
+
self.norm2 = torch.nn.LayerNorm(config.hidden_size)
|
189 |
+
|
190 |
+
def forward(
|
191 |
+
self,
|
192 |
+
hidden_states: torch.Tensor,
|
193 |
+
attention_mask: Optional[torch.Tensor] = None,
|
194 |
+
position_ids: Optional[torch.LongTensor] = None,
|
195 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
196 |
+
output_attentions: Optional[bool] = False,
|
197 |
+
use_cache: Optional[bool] = False,
|
198 |
+
**kwargs,
|
199 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor], Optional[torch.FloatTensor]]:
|
200 |
+
residual = hidden_states
|
201 |
+
|
202 |
+
# Self Attention
|
203 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
204 |
+
hidden_states=hidden_states,
|
205 |
+
attention_mask=attention_mask,
|
206 |
+
position_ids=position_ids,
|
207 |
+
past_key_value=past_key_value,
|
208 |
+
output_attentions=output_attentions,
|
209 |
+
use_cache=use_cache,
|
210 |
+
)
|
211 |
+
hidden_states = residual + hidden_states
|
212 |
+
hidden_states = self.norm1(hidden_states)
|
213 |
+
|
214 |
+
# Fully Connected
|
215 |
+
residual = hidden_states
|
216 |
+
hidden_states = self.ffn_layer(hidden_states)
|
217 |
+
hidden_states = residual + hidden_states
|
218 |
+
hidden_states = self.norm2(hidden_states)
|
219 |
+
|
220 |
+
if not output_attentions:
|
221 |
+
self_attn_weights = None
|
222 |
+
|
223 |
+
if not use_cache:
|
224 |
+
present_key_value = None
|
225 |
+
return hidden_states, self_attn_weights, present_key_value
|
226 |
+
|
227 |
+
|
228 |
+
class TimerPreTrainedModel(PreTrainedModel):
|
229 |
+
config_class = TimerConfig
|
230 |
+
base_model_prefix = "model"
|
231 |
+
supports_gradient_checkpointing = True
|
232 |
+
_no_split_modules = ["TimeMoeDecoderLayer"]
|
233 |
+
_skip_keys_device_placement = "past_key_values"
|
234 |
+
_supports_flash_attn_2 = True
|
235 |
+
_supports_sdpa = False
|
236 |
+
_supports_cache_class = True
|
237 |
+
|
238 |
+
def _init_weights(self, module):
|
239 |
+
std = self.config.initializer_range
|
240 |
+
if isinstance(module, torch.nn.Linear):
|
241 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
242 |
+
if module.bias is not None:
|
243 |
+
module.bias.data.zero_()
|
244 |
+
elif isinstance(module, torch.nn.Embedding):
|
245 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
246 |
+
if module.padding_idx is not None:
|
247 |
+
module.weight.data[module.padding_idx].zero_()
|
248 |
+
|
249 |
+
|
250 |
+
class TimerModel(TimerPreTrainedModel):
|
251 |
+
def __init__(self, config: TimerConfig, PT_len: int):
|
252 |
+
super().__init__(config)
|
253 |
+
self.embed_layer = TimerPatchEmbedding(config)
|
254 |
+
self.prompts = []
|
255 |
+
self.prompts_token_len = PT_len
|
256 |
+
if self.prompts_token_len > 0:
|
257 |
+
for i in range(self.config.num_hidden_layers):
|
258 |
+
self.prompts.append(nn.init.xavier_uniform_(nn.Parameter(torch.randn(1, PT_len, config.hidden_size))))
|
259 |
+
self.prompts = nn.ParameterList(self.prompts)
|
260 |
+
self.layers = nn.ModuleList(
|
261 |
+
[TimerDecoderLayer(config, layer_idx)
|
262 |
+
for layer_idx in range(config.num_hidden_layers)]
|
263 |
+
)
|
264 |
+
self.norm = torch.nn.LayerNorm(config.hidden_size)
|
265 |
+
self.gradient_checkpointing = False
|
266 |
+
|
267 |
+
def forward(
|
268 |
+
self,
|
269 |
+
input_ids: torch.FloatTensor = None,
|
270 |
+
vision_embedding: torch.FloatTensor = None,
|
271 |
+
text_embedding: torch.FloatTensor = None,
|
272 |
+
attention_mask: Optional[torch.Tensor] = None,
|
273 |
+
position_ids: Optional[torch.LongTensor] = None,
|
274 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
275 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
276 |
+
use_cache: Optional[bool] = None,
|
277 |
+
output_attentions: Optional[bool] = None,
|
278 |
+
output_hidden_states: Optional[bool] = None,
|
279 |
+
return_dict: Optional[bool] = None,
|
280 |
+
) -> Union[Tuple, MoeModelOutputWithPast]:
|
281 |
+
# input_ids is the input of time series, its shape is [batch_size, seq_len]
|
282 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
283 |
+
output_hidden_states = (
|
284 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
285 |
+
)
|
286 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
287 |
+
|
288 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
289 |
+
|
290 |
+
# retrieve input_ids and inputs_embeds
|
291 |
+
if input_ids is not None and inputs_embeds is not None:
|
292 |
+
raise ValueError(
|
293 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
294 |
+
elif input_ids is not None:
|
295 |
+
batch_size, seq_length = input_ids.shape
|
296 |
+
elif inputs_embeds is not None:
|
297 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
298 |
+
else:
|
299 |
+
raise ValueError(
|
300 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
301 |
+
|
302 |
+
if inputs_embeds is None:
|
303 |
+
inputs_embeds = self.embed_layer(input_ids)
|
304 |
+
seq_length = inputs_embeds.shape[1]
|
305 |
+
|
306 |
+
if text_embedding is not None:
|
307 |
+
inputs_embeds = torch.cat((text_embedding.unsqueeze(dim=1), inputs_embeds), dim=1)
|
308 |
+
seq_length = inputs_embeds.shape[1]
|
309 |
+
|
310 |
+
if vision_embedding is not None:
|
311 |
+
inputs_embeds = torch.cat((vision_embedding.unsqueeze(dim=1), inputs_embeds), dim=1)
|
312 |
+
seq_length = inputs_embeds.shape[1]
|
313 |
+
|
314 |
+
if self.prompts_token_len > 0:
|
315 |
+
inputs_PT = self.prompts[0].repeat(inputs_embeds.size(0), 1, 1).to(inputs_embeds.device).to(inputs_embeds.dtype)
|
316 |
+
inputs_embeds = torch.cat((inputs_PT,inputs_embeds), dim=1)
|
317 |
+
seq_length = inputs_embeds.shape[1]
|
318 |
+
|
319 |
+
if self.gradient_checkpointing and self.training:
|
320 |
+
if use_cache:
|
321 |
+
use_cache = False
|
322 |
+
|
323 |
+
past_key_values_length = 0
|
324 |
+
|
325 |
+
if use_cache:
|
326 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
327 |
+
if use_legacy_cache:
|
328 |
+
past_key_values = DynamicCache.from_legacy_cache(
|
329 |
+
past_key_values)
|
330 |
+
past_key_values_length = past_key_values.get_usable_length(
|
331 |
+
seq_length)
|
332 |
+
|
333 |
+
if position_ids is None:
|
334 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
335 |
+
position_ids = torch.arange(
|
336 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
337 |
+
)
|
338 |
+
# position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
339 |
+
position_ids = position_ids.view(-1, seq_length)
|
340 |
+
else:
|
341 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
342 |
+
|
343 |
+
# 4d mask is passed through the layers
|
344 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
345 |
+
attention_mask,
|
346 |
+
(batch_size, seq_length),
|
347 |
+
inputs_embeds,
|
348 |
+
past_key_values_length,
|
349 |
+
sliding_window=None,
|
350 |
+
)
|
351 |
+
|
352 |
+
hidden_states = inputs_embeds
|
353 |
+
|
354 |
+
# decoder layers
|
355 |
+
all_hidden_states = () if output_hidden_states else None
|
356 |
+
all_self_attns = () if output_attentions else None
|
357 |
+
next_decoder_cache = None
|
358 |
+
|
359 |
+
for idx, decoder_layer in enumerate(self.layers):
|
360 |
+
if self.prompts_token_len > 0:
|
361 |
+
hidden_states[:, :self.prompts_token_len, :] = self.prompts[idx].repeat(inputs_embeds.size(0),1, 1).to(hidden_states.device).to(hidden_states.dtype)
|
362 |
+
|
363 |
+
if output_hidden_states:
|
364 |
+
all_hidden_states += (hidden_states,)
|
365 |
+
|
366 |
+
if self.gradient_checkpointing and self.training:
|
367 |
+
layer_outputs = self._gradient_checkpointing_func(
|
368 |
+
decoder_layer.__call__,
|
369 |
+
hidden_states,
|
370 |
+
attention_mask,
|
371 |
+
position_ids,
|
372 |
+
past_key_values,
|
373 |
+
output_attentions,
|
374 |
+
use_cache,
|
375 |
+
)
|
376 |
+
else:
|
377 |
+
layer_outputs = decoder_layer(
|
378 |
+
hidden_states,
|
379 |
+
attention_mask=attention_mask,
|
380 |
+
position_ids=position_ids,
|
381 |
+
past_key_value=past_key_values,
|
382 |
+
output_attentions=output_attentions,
|
383 |
+
use_cache=use_cache,
|
384 |
+
)
|
385 |
+
|
386 |
+
hidden_states = layer_outputs[0]
|
387 |
+
|
388 |
+
if output_attentions:
|
389 |
+
all_self_attns += (layer_outputs[1],)
|
390 |
+
|
391 |
+
if use_cache:
|
392 |
+
next_decoder_cache = layer_outputs[2]
|
393 |
+
|
394 |
+
hidden_states = self.norm(hidden_states)
|
395 |
+
# add hidden states from the last decoder layer
|
396 |
+
if output_hidden_states:
|
397 |
+
all_hidden_states += (hidden_states,)
|
398 |
+
|
399 |
+
next_cache = None
|
400 |
+
if use_cache:
|
401 |
+
next_cache = next_decoder_cache.to_legacy_cache(
|
402 |
+
) if use_legacy_cache else next_decoder_cache
|
403 |
+
|
404 |
+
if not return_dict:
|
405 |
+
return tuple(
|
406 |
+
v
|
407 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
408 |
+
if v is not None
|
409 |
+
)
|
410 |
+
return MoeModelOutputWithPast(
|
411 |
+
last_hidden_state=hidden_states,
|
412 |
+
past_key_values=next_cache,
|
413 |
+
hidden_states=all_hidden_states,
|
414 |
+
attentions=all_self_attns,
|
415 |
+
)
|
416 |
+
|
417 |
+
|
418 |
+
class TimerForPrediction(TimerPreTrainedModel, TSGenerationMixin):
|
419 |
+
def __init__(self, config: TimerConfig, PT_len: int):
|
420 |
+
super().__init__(config)
|
421 |
+
self.config = config
|
422 |
+
self.model = TimerModel(self.config, PT_len)
|
423 |
+
lm_head_list = []
|
424 |
+
self.output_token_len_map = {}
|
425 |
+
for i, output_token_len in enumerate(self.config.output_token_lens):
|
426 |
+
lm_head_list.append(
|
427 |
+
nn.Linear(self.config.hidden_size, output_token_len, bias=False))
|
428 |
+
self.output_token_len_map[output_token_len] = i
|
429 |
+
self.lm_heads = nn.ModuleList(lm_head_list)
|
430 |
+
self.loss_function = torch.nn.MSELoss(reduction='none')
|
431 |
+
self.post_init()
|
432 |
+
|
433 |
+
def set_decoder(self, decoder):
|
434 |
+
self.model = decoder
|
435 |
+
|
436 |
+
def get_decoder(self):
|
437 |
+
return self.model
|
438 |
+
|
439 |
+
def forward(
|
440 |
+
self,
|
441 |
+
input_ids: torch.FloatTensor = None,
|
442 |
+
vision_embedding: torch.FloatTensor = None,
|
443 |
+
text_embedding: torch.FloatTensor = None,
|
444 |
+
attention_mask: Optional[torch.Tensor] = None,
|
445 |
+
position_ids: Optional[torch.LongTensor] = None,
|
446 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
447 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
448 |
+
labels: Optional[torch.FloatTensor] = None,
|
449 |
+
loss_masks: Optional[torch.FloatTensor] = None,
|
450 |
+
use_cache: Optional[bool] = None,
|
451 |
+
output_attentions: Optional[bool] = None,
|
452 |
+
output_hidden_states: Optional[bool] = None,
|
453 |
+
return_dict: Optional[bool] = None,
|
454 |
+
max_output_length: Optional[int] = None,
|
455 |
+
revin: Optional[bool] = False,
|
456 |
+
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
|
457 |
+
|
458 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
459 |
+
output_hidden_states = (
|
460 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
461 |
+
)
|
462 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
463 |
+
|
464 |
+
if revin:
|
465 |
+
mean, std = input_ids.mean(dim=-1, keepdim=True), input_ids.std(dim=-1, keepdim=True)
|
466 |
+
input_ids = (input_ids - mean) / std
|
467 |
+
outputs = self.model(
|
468 |
+
input_ids=input_ids,
|
469 |
+
vision_embedding=vision_embedding,
|
470 |
+
text_embedding=text_embedding,
|
471 |
+
attention_mask=attention_mask,
|
472 |
+
position_ids=position_ids,
|
473 |
+
past_key_values=past_key_values,
|
474 |
+
inputs_embeds=inputs_embeds,
|
475 |
+
use_cache=use_cache,
|
476 |
+
output_attentions=output_attentions,
|
477 |
+
output_hidden_states=output_hidden_states,
|
478 |
+
return_dict=return_dict,
|
479 |
+
)
|
480 |
+
|
481 |
+
hidden_states = outputs[0] if not return_dict else outputs.last_hidden_state
|
482 |
+
predictions = None
|
483 |
+
|
484 |
+
loss = None
|
485 |
+
if labels is not None:
|
486 |
+
ar_loss = 0.0
|
487 |
+
for lm_head, output_token_len in zip(self.lm_heads, self.config.output_token_lens):
|
488 |
+
one_predictions = lm_head(hidden_states)
|
489 |
+
one_loss = self.calc_ar_loss(
|
490 |
+
one_predictions, labels, loss_masks, output_token_len)
|
491 |
+
ar_loss += one_loss
|
492 |
+
if predictions is None:
|
493 |
+
predictions = one_predictions
|
494 |
+
loss = ar_loss / len(self.config.output_token_lens)
|
495 |
+
else:
|
496 |
+
if max_output_length is None:
|
497 |
+
output_token_len = self.config.output_token_lens[0]
|
498 |
+
max_output_length = output_token_len
|
499 |
+
else:
|
500 |
+
output_token_len = self.config.output_token_lens[0]
|
501 |
+
for h in self.config.output_token_lens[1:]:
|
502 |
+
if h > max_output_length:
|
503 |
+
break
|
504 |
+
else:
|
505 |
+
output_token_len = h
|
506 |
+
lm_head = self.lm_heads[self.output_token_len_map[output_token_len]]
|
507 |
+
predictions = lm_head(hidden_states)[:, -1, :]
|
508 |
+
if output_token_len > max_output_length:
|
509 |
+
predictions = predictions[:, :max_output_length]
|
510 |
+
if revin:
|
511 |
+
predictions = predictions * std + mean
|
512 |
+
if not return_dict:
|
513 |
+
output = (predictions,) + outputs[1:]
|
514 |
+
return (loss) + output if loss is not None else output
|
515 |
+
|
516 |
+
return MoeCausalLMOutputWithPast(
|
517 |
+
loss=loss,
|
518 |
+
logits=predictions,
|
519 |
+
past_key_values=outputs.past_key_values,
|
520 |
+
hidden_states=outputs.hidden_states,
|
521 |
+
attentions=outputs.attentions,
|
522 |
+
)
|
523 |
+
|
524 |
+
def calc_ar_loss(self, predictions, labels, loss_masks, output_token_len):
|
525 |
+
seq_len = predictions.shape[1] * self.config.input_token_len
|
526 |
+
labels = labels[:, :seq_len -
|
527 |
+
self.config.input_token_len + output_token_len]
|
528 |
+
shift_labels = labels.unfold(
|
529 |
+
dimension=-1, size=output_token_len, step=self.config.input_token_len)
|
530 |
+
|
531 |
+
# Calculate loss with mask
|
532 |
+
losses = self.loss_function(predictions, shift_labels).mean(dim=-1)
|
533 |
+
if loss_masks is not None:
|
534 |
+
losses = losses * loss_masks
|
535 |
+
loss = losses.sum() / loss_masks.sum()
|
536 |
+
else:
|
537 |
+
loss = torch.mean(losses)
|
538 |
+
|
539 |
+
return loss
|
540 |
+
|
541 |
+
def prepare_inputs_for_generation(
|
542 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, revin=True, **kwargs
|
543 |
+
):
|
544 |
+
# Omit tokens covered by past_key_values
|
545 |
+
if past_key_values is not None:
|
546 |
+
if isinstance(past_key_values, Cache):
|
547 |
+
cache_length = past_key_values.get_seq_length()
|
548 |
+
if isinstance(past_key_values, DynamicCache):
|
549 |
+
past_length = past_key_values.seen_tokens
|
550 |
+
else:
|
551 |
+
past_length = cache_length
|
552 |
+
|
553 |
+
max_cache_length = past_key_values.get_max_length()
|
554 |
+
else:
|
555 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
556 |
+
max_cache_length = None
|
557 |
+
|
558 |
+
# Keep only the unprocessed tokens:
|
559 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
560 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
561 |
+
# input)
|
562 |
+
if attention_mask is not None and attention_mask.shape[1] > (input_ids.shape[1] // self.config.input_token_len):
|
563 |
+
input_ids = input_ids[:, -
|
564 |
+
(attention_mask.shape[1] - past_length):]
|
565 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
566 |
+
# input_ids based on the past_length.
|
567 |
+
elif past_length < (input_ids.shape[1] // self.config.input_token_len):
|
568 |
+
input_ids = input_ids[:, past_length *
|
569 |
+
self.config.input_token_len:]
|
570 |
+
# 3 - Otherwise (past_length >= (input_ids.shape[1] // self.config.input_token_len)), let's assume input_ids only has unprocessed tokens.
|
571 |
+
|
572 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
573 |
+
if (
|
574 |
+
max_cache_length is not None
|
575 |
+
and attention_mask is not None
|
576 |
+
and cache_length + (input_ids.shape[1] // self.config.input_token_len) > max_cache_length
|
577 |
+
):
|
578 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
579 |
+
|
580 |
+
position_ids = kwargs.get("position_ids", None)
|
581 |
+
if attention_mask is not None and position_ids is None:
|
582 |
+
# create position_ids on the fly for batch generation
|
583 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
584 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
585 |
+
if past_key_values:
|
586 |
+
position_ids = position_ids[:, -
|
587 |
+
(input_ids.shape[1] // self.config.input_token_len):]
|
588 |
+
|
589 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
590 |
+
if inputs_embeds is not None and past_key_values is None:
|
591 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
592 |
+
else:
|
593 |
+
model_inputs = {"input_ids": input_ids}
|
594 |
+
|
595 |
+
model_inputs.update(
|
596 |
+
{
|
597 |
+
"position_ids": position_ids,
|
598 |
+
"past_key_values": past_key_values,
|
599 |
+
"use_cache": kwargs.get("use_cache"),
|
600 |
+
"attention_mask": attention_mask,
|
601 |
+
"revin": revin
|
602 |
+
}
|
603 |
+
)
|
604 |
+
return model_inputs
|
models/ts_generation_mixin.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
from typing import Any, Dict, List, Optional, Union, Callable
|
3 |
+
import torch
|
4 |
+
from transformers import GenerationMixin, LogitsProcessorList, StoppingCriteriaList
|
5 |
+
from transformers.generation import validate_stopping_criteria, EosTokenCriteria
|
6 |
+
from transformers.generation.utils import GenerateNonBeamOutput, GenerateEncoderDecoderOutput, GenerateDecoderOnlyOutput, GenerationConfig, GenerateOutput
|
7 |
+
from transformers.utils import ModelOutput
|
8 |
+
|
9 |
+
|
10 |
+
class TSGenerationMixin(GenerationMixin):
|
11 |
+
|
12 |
+
@torch.no_grad()
|
13 |
+
def generate(
|
14 |
+
self,
|
15 |
+
inputs: Optional[torch.Tensor] = None,
|
16 |
+
generation_config: Optional[GenerationConfig] = None,
|
17 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
18 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
19 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
20 |
+
synced_gpus: Optional[bool] = None,
|
21 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
22 |
+
streamer: Optional["BaseStreamer"] = None,
|
23 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
24 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
25 |
+
**kwargs,
|
26 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
27 |
+
if len(inputs.shape) == 2:
|
28 |
+
batch_size, cur_len = inputs.shape
|
29 |
+
if cur_len < self.config.input_token_len:
|
30 |
+
raise ValueError(
|
31 |
+
f"Input length must be at least {self.config.input_token_len}")
|
32 |
+
elif cur_len % self.config.input_token_len != 0:
|
33 |
+
new_len = (cur_len // self.config.input_token_len) * \
|
34 |
+
self.config.input_token_len
|
35 |
+
inputs = inputs[:, -new_len:]
|
36 |
+
else:
|
37 |
+
raise ValueError('Input shape must be: [batch_size, seq_len]')
|
38 |
+
return super().generate(inputs=inputs, generation_config=generation_config, logits_processor=logits_processor, stopping_criteria=stopping_criteria, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, synced_gpus=synced_gpus, assistant_model=assistant_model, streamer=streamer, negative_prompt_ids=negative_prompt_ids, negative_prompt_attention_mask=negative_prompt_attention_mask, **kwargs)
|
39 |
+
|
40 |
+
|
41 |
+
def _greedy_search(
|
42 |
+
self,
|
43 |
+
input_ids: torch.Tensor,
|
44 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
45 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
46 |
+
max_length: Optional[int] = None,
|
47 |
+
pad_token_id: Optional[int] = None,
|
48 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
49 |
+
output_attentions: Optional[bool] = None,
|
50 |
+
output_hidden_states: Optional[bool] = None,
|
51 |
+
output_scores: Optional[bool] = None,
|
52 |
+
output_logits: Optional[bool] = None,
|
53 |
+
return_dict_in_generate: Optional[bool] = None,
|
54 |
+
synced_gpus: bool = False,
|
55 |
+
streamer: Optional["BaseStreamer"] = None,
|
56 |
+
**model_kwargs,
|
57 |
+
) -> Union[GenerateNonBeamOutput, torch.Tensor]:
|
58 |
+
input_ids = input_ids.to(self.device)
|
59 |
+
batch_size, cur_len = input_ids.shape
|
60 |
+
# init values
|
61 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
62 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
63 |
+
if max_length is not None:
|
64 |
+
warnings.warn(
|
65 |
+
"`max_length` is deprecated in this function, use"
|
66 |
+
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
67 |
+
UserWarning,
|
68 |
+
)
|
69 |
+
stopping_criteria = validate_stopping_criteria(
|
70 |
+
stopping_criteria, max_length)
|
71 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
72 |
+
if eos_token_id is not None:
|
73 |
+
stopping_criteria.append(
|
74 |
+
EosTokenCriteria(eos_token_id=eos_token_id))
|
75 |
+
else:
|
76 |
+
# remove when the method is totally private
|
77 |
+
# need to get `eos_token_id` and add stopping criteria, so that generation does not go forever
|
78 |
+
eos_token_id = [
|
79 |
+
criteria.eos_token_id.tolist() for criteria in stopping_criteria if hasattr(criteria, "eos_token_id")
|
80 |
+
]
|
81 |
+
eos_token_id = eos_token_id[0] if eos_token_id else None
|
82 |
+
if eos_token_id is None and self.generation_config.eos_token_id is not None:
|
83 |
+
eos_token_id = self.generation_config.eos_token_id
|
84 |
+
stopping_criteria.append(
|
85 |
+
EosTokenCriteria(eos_token_id=eos_token_id))
|
86 |
+
|
87 |
+
if isinstance(eos_token_id, int):
|
88 |
+
eos_token_id = [eos_token_id]
|
89 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
90 |
+
output_attentions = (
|
91 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
92 |
+
)
|
93 |
+
output_hidden_states = (
|
94 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
95 |
+
)
|
96 |
+
return_dict_in_generate = (
|
97 |
+
return_dict_in_generate
|
98 |
+
if return_dict_in_generate is not None
|
99 |
+
else self.generation_config.return_dict_in_generate
|
100 |
+
)
|
101 |
+
|
102 |
+
# init attention / hidden states / scores tuples
|
103 |
+
raw_logits = () if (return_dict_in_generate and output_logits) else None
|
104 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
105 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
106 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
107 |
+
decoder_hidden_states = () if (
|
108 |
+
return_dict_in_generate and output_hidden_states) else None
|
109 |
+
|
110 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
111 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
112 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get(
|
113 |
+
"attentions") if output_attentions else None
|
114 |
+
encoder_hidden_states = (
|
115 |
+
model_kwargs["encoder_outputs"].get(
|
116 |
+
"hidden_states") if output_hidden_states else None
|
117 |
+
)
|
118 |
+
|
119 |
+
# keep track of which sequences are already finished
|
120 |
+
if "inputs_embeds" in model_kwargs:
|
121 |
+
cur_len = model_kwargs["inputs_embeds"].shape[1]
|
122 |
+
this_peer_finished = False
|
123 |
+
unfinished_sequences = torch.ones(
|
124 |
+
batch_size, dtype=torch.long, device=input_ids.device)
|
125 |
+
model_kwargs["cache_position"] = torch.arange(
|
126 |
+
cur_len, device=input_ids.device)
|
127 |
+
true_seq_len = cur_len // self.config.input_token_len
|
128 |
+
model_kwargs["attention_mask"] = model_kwargs["attention_mask"][:, -true_seq_len:]
|
129 |
+
max_length = stopping_criteria.max_length
|
130 |
+
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
|
131 |
+
# prepare model inputs
|
132 |
+
model_inputs = self.prepare_inputs_for_generation(
|
133 |
+
input_ids, **model_kwargs)
|
134 |
+
|
135 |
+
input_length = input_ids.shape[1]
|
136 |
+
|
137 |
+
# forward pass to get next token
|
138 |
+
outputs = self(
|
139 |
+
**model_inputs,
|
140 |
+
return_dict=True,
|
141 |
+
output_attentions=output_attentions,
|
142 |
+
output_hidden_states=output_hidden_states,
|
143 |
+
max_output_length=max_length - input_length,
|
144 |
+
)
|
145 |
+
|
146 |
+
if synced_gpus and this_peer_finished:
|
147 |
+
continue # don't waste resources running the code we don't need
|
148 |
+
|
149 |
+
next_token_logits = outputs.logits
|
150 |
+
|
151 |
+
# pre-process distribution
|
152 |
+
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
153 |
+
|
154 |
+
# Store scores, attentions and hidden_states when required
|
155 |
+
if return_dict_in_generate:
|
156 |
+
if output_scores:
|
157 |
+
scores += (next_tokens_scores,)
|
158 |
+
if output_logits:
|
159 |
+
raw_logits += (next_token_logits,)
|
160 |
+
if output_attentions:
|
161 |
+
decoder_attentions += (
|
162 |
+
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (
|
163 |
+
outputs.attentions,)
|
164 |
+
)
|
165 |
+
if self.config.is_encoder_decoder:
|
166 |
+
cross_attentions += (outputs.cross_attentions,)
|
167 |
+
|
168 |
+
if output_hidden_states:
|
169 |
+
decoder_hidden_states += (
|
170 |
+
(outputs.decoder_hidden_states,)
|
171 |
+
if self.config.is_encoder_decoder
|
172 |
+
else (outputs.hidden_states,)
|
173 |
+
)
|
174 |
+
|
175 |
+
# argmax
|
176 |
+
# next_tokens = torch.argmax(next_tokens_scores, dim=-1)
|
177 |
+
next_tokens = next_tokens_scores
|
178 |
+
|
179 |
+
# finished sentences should have their next token be a padding token
|
180 |
+
if eos_token_id is not None:
|
181 |
+
if pad_token_id is None:
|
182 |
+
raise ValueError(
|
183 |
+
"If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
184 |
+
next_tokens = next_tokens * unfinished_sequences + \
|
185 |
+
pad_token_id * (1 - unfinished_sequences)
|
186 |
+
|
187 |
+
# update generated ids, model inputs, and length for next step
|
188 |
+
horizon_length = next_tokens.shape[1] // self.config.input_token_len
|
189 |
+
|
190 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
191 |
+
if streamer is not None:
|
192 |
+
streamer.put(next_tokens.cpu())
|
193 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
194 |
+
outputs,
|
195 |
+
model_kwargs,
|
196 |
+
horizon_length=horizon_length,
|
197 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
198 |
+
)
|
199 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
200 |
+
input_ids, scores)
|
201 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
202 |
+
|
203 |
+
if input_ids.shape[1] > max_length:
|
204 |
+
input_ids = input_ids[:, :max_length]
|
205 |
+
|
206 |
+
if streamer is not None:
|
207 |
+
streamer.end()
|
208 |
+
|
209 |
+
if return_dict_in_generate:
|
210 |
+
if self.config.is_encoder_decoder:
|
211 |
+
return GenerateEncoderDecoderOutput(
|
212 |
+
sequences=input_ids,
|
213 |
+
scores=scores,
|
214 |
+
logits=raw_logits,
|
215 |
+
encoder_attentions=encoder_attentions,
|
216 |
+
encoder_hidden_states=encoder_hidden_states,
|
217 |
+
decoder_attentions=decoder_attentions,
|
218 |
+
cross_attentions=cross_attentions,
|
219 |
+
decoder_hidden_states=decoder_hidden_states,
|
220 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
return GenerateDecoderOnlyOutput(
|
224 |
+
sequences=input_ids,
|
225 |
+
scores=scores,
|
226 |
+
logits=raw_logits,
|
227 |
+
attentions=decoder_attentions,
|
228 |
+
hidden_states=decoder_hidden_states,
|
229 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
return input_ids[:, -(max_length - cur_len):]
|
233 |
+
|
234 |
+
def _update_model_kwargs_for_generation(
|
235 |
+
self,
|
236 |
+
outputs: ModelOutput,
|
237 |
+
model_kwargs: Dict[str, Any],
|
238 |
+
horizon_length: int = 1,
|
239 |
+
is_encoder_decoder: bool = False,
|
240 |
+
standardize_cache_format: bool = False,
|
241 |
+
) -> Dict[str, Any]:
|
242 |
+
# update past_key_values
|
243 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
244 |
+
outputs, standardize_cache_format=standardize_cache_format
|
245 |
+
)
|
246 |
+
if getattr(outputs, "state", None) is not None:
|
247 |
+
model_kwargs["state"] = outputs.state
|
248 |
+
|
249 |
+
# update token_type_ids with last value
|
250 |
+
if "token_type_ids" in model_kwargs:
|
251 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
252 |
+
model_kwargs["token_type_ids"] = torch.cat(
|
253 |
+
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
254 |
+
|
255 |
+
if not is_encoder_decoder:
|
256 |
+
# update attention mask
|
257 |
+
if "attention_mask" in model_kwargs:
|
258 |
+
attention_mask = model_kwargs["attention_mask"]
|
259 |
+
model_kwargs["attention_mask"] = torch.cat(
|
260 |
+
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], horizon_length))], dim=-1
|
261 |
+
)
|
262 |
+
else:
|
263 |
+
# update decoder attention mask
|
264 |
+
if "decoder_attention_mask" in model_kwargs:
|
265 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
266 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
267 |
+
[decoder_attention_mask, decoder_attention_mask.new_ones(
|
268 |
+
(decoder_attention_mask.shape[0], horizon_length))],
|
269 |
+
dim=-1,
|
270 |
+
)
|
271 |
+
|
272 |
+
if "cache_position" in model_kwargs and model_kwargs["cache_position"] is not None:
|
273 |
+
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + horizon_length
|
274 |
+
|
275 |
+
return model_kwargs
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==5.42.0
|
2 |
+
accelerate==1.6.0
|
3 |
+
torch==2.6.0
|
4 |
+
numpy==2.2.4
|
5 |
+
transformers==4.40.1
|
6 |
+
matplotlib==3.10.1
|
7 |
+
safetensors==0.5.3
|
8 |
+
pillow==11.1.0
|
runtime.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-3.10.16
|