Spaces:
Running
Running
Upload 7 files
Browse files- BLOG.md +1 -0
- DEMO_README.md +1 -0
- FEATURE_SUMMARY.md +178 -0
- README.md +4 -3
- SPACE_BLOG.md +1 -0
- app.py +196 -21
- requirements.txt +2 -1
BLOG.md
CHANGED
@@ -365,3 +365,4 @@ As enterprises generate ever more complex documents, the need for intelligent, a
|
|
365 |
### Q: What about languages other than English?
|
366 |
|
367 |
**A:** Currently optimized for English, with beta support for Spanish, French, and German. Multi-language support is on our roadmap based on customer demand.
|
|
|
|
365 |
### Q: What about languages other than English?
|
366 |
|
367 |
**A:** Currently optimized for English, with beta support for Spanish, French, and German. Multi-language support is on our roadmap based on customer demand.
|
368 |
+
|
DEMO_README.md
CHANGED
@@ -246,3 +246,4 @@ python -c "from transformers import AutoTokenizer; AutoTokenizer.from_pretrained
|
|
246 |
```
|
247 |
|
248 |
๐ **Your Active Reading demo will be live in minutes!**
|
|
|
|
246 |
```
|
247 |
|
248 |
๐ **Your Active Reading demo will be live in minutes!**
|
249 |
+
|
FEATURE_SUMMARY.md
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ๐ฏ New Features Added to Active Reading Demo
|
2 |
+
|
3 |
+
## ๐ **Category Selection Feature**
|
4 |
+
|
5 |
+
### What It Does
|
6 |
+
Users can now manually select or override the document category detection:
|
7 |
+
|
8 |
+
**Available Categories:**
|
9 |
+
- **Auto-Detect** (default) - AI detects domain automatically
|
10 |
+
- **Finance** - Financial reports, earnings, budgets
|
11 |
+
- **Legal** - Contracts, agreements, policies
|
12 |
+
- **Technical** - API docs, manuals, specifications
|
13 |
+
- **Medical** - Clinical trials, research, treatments
|
14 |
+
- **General** - Any other document type
|
15 |
+
|
16 |
+
### Category-Specific Extraction Patterns
|
17 |
+
|
18 |
+
#### ๐ Finance Category
|
19 |
+
- **Revenue**: `$150 million revenue`, `sales of $2.5B`
|
20 |
+
- **Profit**: `profit margin 25%`, `net profit $50M`
|
21 |
+
- **Growth**: `15% growth`, `increased by 20%`
|
22 |
+
- **Dates**: `Q3 2024`, `fiscal year 2023`
|
23 |
+
- **Employees**: `hire 200 engineers`, `workforce of 5000`
|
24 |
+
- **Market Cap**: `market cap $10B`
|
25 |
+
|
26 |
+
#### โ๏ธ Legal Category
|
27 |
+
- **Parties**: `between Company A and Company B`
|
28 |
+
- **Terms**: `term of 36 months`, `duration 3 years`
|
29 |
+
- **Liability**: `liability not to exceed $1M`
|
30 |
+
- **Termination**: `90 days written notice`
|
31 |
+
- **Governing Law**: `governed by laws of Delaware`
|
32 |
+
- **Effective Date**: `effective January 1, 2024`
|
33 |
+
|
34 |
+
#### ๐ง Technical Category
|
35 |
+
- **API Endpoints**: `GET /api/users`, `POST /auth/login`
|
36 |
+
- **Versions**: `version 2.1.0`, `v3.5`
|
37 |
+
- **Response Time**: `response time 150ms`
|
38 |
+
- **Rate Limits**: `1000 requests per minute`
|
39 |
+
- **Authentication**: `OAuth 2.0`, `JWT tokens`
|
40 |
+
- **Status Codes**: `HTTP 200`, `status code 404`
|
41 |
+
|
42 |
+
#### ๐ฅ Medical Category
|
43 |
+
- **Dosage**: `50mg daily`, `100ml twice daily`
|
44 |
+
- **Duration**: `treatment for 12 weeks`
|
45 |
+
- **Efficacy**: `85% efficacy rate`
|
46 |
+
- **Side Effects**: `side effects in 12% of patients`
|
47 |
+
- **Patient Count**: `500 patients enrolled`
|
48 |
+
- **P-Values**: `p<0.001`, `p=0.025`
|
49 |
+
|
50 |
+
## ๐ **Custom Keys Feature**
|
51 |
+
|
52 |
+
### What It Does
|
53 |
+
Users can specify their own extraction terms as comma-separated values:
|
54 |
+
|
55 |
+
**Example Inputs:**
|
56 |
+
```
|
57 |
+
CEO, budget, deadline, timeline
|
58 |
+
risk assessment, compliance, audit
|
59 |
+
performance, scalability, security
|
60 |
+
treatment, dosage, clinical trial
|
61 |
+
```
|
62 |
+
|
63 |
+
### How It Works
|
64 |
+
- **Smart Extraction**: Finds sentences containing the custom terms
|
65 |
+
- **Context Preservation**: Returns full sentences, not just keywords
|
66 |
+
- **Confidence Scoring**: Shows extraction confidence levels
|
67 |
+
- **JSON Output**: Structured data for easy integration
|
68 |
+
|
69 |
+
## ๐ฏ **New Strategy: Category-Specific Extraction**
|
70 |
+
|
71 |
+
### What's New
|
72 |
+
Added a specialized strategy that combines:
|
73 |
+
1. **Category-specific patterns** for targeted extraction
|
74 |
+
2. **Custom key extraction** for user-defined terms
|
75 |
+
3. **Structured output** with confidence scores
|
76 |
+
4. **Domain expertise** for each business category
|
77 |
+
|
78 |
+
### Example Output
|
79 |
+
```json
|
80 |
+
{
|
81 |
+
"category": "Finance",
|
82 |
+
"extracted_data": {
|
83 |
+
"revenue": ["$150 million", "$2.5 billion sales"],
|
84 |
+
"growth": ["15% increase", "20% growth rate"],
|
85 |
+
"date": ["Q3 2024", "fiscal year 2023"]
|
86 |
+
},
|
87 |
+
"custom_extractions": {
|
88 |
+
"CEO": ["CEO announced plans to expand", "CEO John Smith reported"],
|
89 |
+
"investment": ["$50M investment in AI", "investment in new markets"]
|
90 |
+
},
|
91 |
+
"confidence_scores": {
|
92 |
+
"revenue": 8.5,
|
93 |
+
"custom_CEO": 6.2
|
94 |
+
}
|
95 |
+
}
|
96 |
+
```
|
97 |
+
|
98 |
+
## ๐จ **Enhanced UI Elements**
|
99 |
+
|
100 |
+
### New Input Controls
|
101 |
+
- **๐ Category Dropdown**: Manual category selection
|
102 |
+
- **๐ Custom Keys Input**: Text field for custom extraction terms
|
103 |
+
- **๐ Enhanced Strategy Selection**: Added "Category-Specific Extraction"
|
104 |
+
|
105 |
+
### New Output Tabs
|
106 |
+
- **๐ฏ Category Analysis**: Dedicated tab for category-specific results
|
107 |
+
- **Enhanced JSON**: Structured category extraction data
|
108 |
+
- **Confidence Scores**: Shows extraction reliability
|
109 |
+
|
110 |
+
### Improved User Experience
|
111 |
+
- **Dynamic Help Text**: Context-aware guidance
|
112 |
+
- **Example Suggestions**: Sample custom keys for each category
|
113 |
+
- **Better Visual Organization**: Clearer result presentation
|
114 |
+
|
115 |
+
## ๐ **Usage Examples**
|
116 |
+
|
117 |
+
### Finance Document Analysis
|
118 |
+
```
|
119 |
+
Document Category: Finance
|
120 |
+
Custom Keys: CEO, quarterly results, investment
|
121 |
+
Strategy: Category-Specific Extraction
|
122 |
+
```
|
123 |
+
|
124 |
+
**Result**: Extracts revenue figures, profit margins, growth rates PLUS CEO mentions, quarterly data, and investment information.
|
125 |
+
|
126 |
+
### Legal Contract Review
|
127 |
+
```
|
128 |
+
Document Category: Legal
|
129 |
+
Custom Keys: liability, termination, governing law
|
130 |
+
Strategy: Category-Specific Extraction
|
131 |
+
```
|
132 |
+
|
133 |
+
**Result**: Finds contract parties, terms, dates PLUS specific liability clauses, termination conditions, and jurisdiction details.
|
134 |
+
|
135 |
+
### Technical Documentation
|
136 |
+
```
|
137 |
+
Document Category: Technical
|
138 |
+
Custom Keys: security, performance, scalability
|
139 |
+
Strategy: Category-Specific Extraction
|
140 |
+
```
|
141 |
+
|
142 |
+
**Result**: Extracts API endpoints, versions, rate limits PLUS security features, performance metrics, and scalability considerations.
|
143 |
+
|
144 |
+
## ๐ฏ **Why This Makes Active Reading Better**
|
145 |
+
|
146 |
+
### 1. **Adaptive Intelligence**
|
147 |
+
- AI now adapts not just to document type, but to user-specific needs
|
148 |
+
- Combines automated domain detection with custom requirements
|
149 |
+
|
150 |
+
### 2. **Enterprise Flexibility**
|
151 |
+
- Users can extract exactly what they need for their business case
|
152 |
+
- Supports diverse enterprise document analysis workflows
|
153 |
+
|
154 |
+
### 3. **Structured Output**
|
155 |
+
- Category-specific patterns ensure consistent extraction
|
156 |
+
- Custom keys add user-defined flexibility
|
157 |
+
- JSON format enables easy integration
|
158 |
+
|
159 |
+
### 4. **Demonstrable Value**
|
160 |
+
- Shows how Active Reading adapts to different business domains
|
161 |
+
- Proves the framework can handle real enterprise requirements
|
162 |
+
- Highlights the superiority over one-size-fits-all approaches
|
163 |
+
|
164 |
+
## ๐จ **Implementation Impact**
|
165 |
+
|
166 |
+
### What Changed in Code
|
167 |
+
- **Added**: `extract_category_specific_info()` method
|
168 |
+
- **Enhanced**: `process_document()` function with category/custom key parameters
|
169 |
+
- **New**: Category-specific regex patterns for each domain
|
170 |
+
- **Improved**: UI with additional input controls and output tabs
|
171 |
+
|
172 |
+
### Backward Compatibility
|
173 |
+
- โ
All existing strategies still work
|
174 |
+
- โ
Auto-detection remains the default
|
175 |
+
- โ
Original demo functionality preserved
|
176 |
+
- โ
Enhanced with new capabilities
|
177 |
+
|
178 |
+
This makes your Active Reading demo much more interactive and showcases the adaptive intelligence that makes it superior to traditional document processing approaches! ๐
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: ๐ง
|
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
@@ -63,7 +63,7 @@ This is a simplified demo. The complete Enterprise Active Reading Framework incl
|
|
63 |
- **Scalable Deployment**: Docker, Kubernetes, monitoring
|
64 |
- **Advanced Evaluation**: Custom benchmarks and performance metrics
|
65 |
|
66 |
-
|
67 |
|
68 |
## Citation
|
69 |
|
@@ -71,4 +71,5 @@ Based on the research paper:
|
|
71 |
```
|
72 |
Lin, J., Berges, V.P., Chen, X., Yih, W.T., Ghosh, G., & Oฤuz, B. (2024).
|
73 |
Learning Facts at Scale with Active Reading. arXiv:2508.09494.
|
74 |
-
```
|
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.0.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
63 |
- **Scalable Deployment**: Docker, Kubernetes, monitoring
|
64 |
- **Advanced Evaluation**: Custom benchmarks and performance metrics
|
65 |
|
66 |
+
For the full implementation, visit: [GitHub Repository](https://github.com/your-repo/active-reader)
|
67 |
|
68 |
## Citation
|
69 |
|
|
|
71 |
```
|
72 |
Lin, J., Berges, V.P., Chen, X., Yih, W.T., Ghosh, G., & Oฤuz, B. (2024).
|
73 |
Learning Facts at Scale with Active Reading. arXiv:2508.09494.
|
74 |
+
```
|
75 |
+
|
SPACE_BLOG.md
CHANGED
@@ -157,3 +157,4 @@ Contribute new reading strategies and domain adaptations!
|
|
157 |
*Built on cutting-edge research, optimized for real-world enterprise use.*
|
158 |
|
159 |
**Tags:** `#ActiveReading` `#AI` `#NLP` `#DocumentAnalysis` `#MachineLearning` `#Enterprise`
|
|
|
|
157 |
*Built on cutting-edge research, optimized for real-world enterprise use.*
|
158 |
|
159 |
**Tags:** `#ActiveReading` `#AI` `#NLP` `#DocumentAnalysis` `#MachineLearning` `#Enterprise`
|
160 |
+
|
app.py
CHANGED
@@ -122,6 +122,92 @@ class SimpleActiveReader:
|
|
122 |
return "Medical"
|
123 |
else:
|
124 |
return "General"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
# Initialize the model
|
127 |
try:
|
@@ -130,22 +216,31 @@ except Exception as e:
|
|
130 |
logger.error(f"Failed to initialize model: {e}")
|
131 |
active_reader = None
|
132 |
|
133 |
-
def process_document(text: str, strategy: str) -> tuple:
|
134 |
"""
|
135 |
-
Process document with selected strategy
|
136 |
|
137 |
-
Returns: (result_text, facts_json, questions_json, summary_text, domain)
|
138 |
"""
|
139 |
if not active_reader:
|
140 |
-
return "Error: Model not loaded", "", "", "", ""
|
141 |
|
142 |
if not text.strip():
|
143 |
-
return "Please enter some text to analyze.", "", "", "", ""
|
144 |
|
145 |
try:
|
146 |
# Detect domain
|
147 |
domain = active_reader.detect_domain(text)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
# Apply selected strategy
|
150 |
if strategy == "Fact Extraction":
|
151 |
facts = active_reader.extract_facts(text)
|
@@ -173,7 +268,7 @@ def process_document(text: str, strategy: str) -> tuple:
|
|
173 |
questions = active_reader.generate_questions(text)
|
174 |
summary = active_reader.generate_summary(text)
|
175 |
|
176 |
-
result = f"""**Domain:** {domain}
|
177 |
|
178 |
**Summary:**
|
179 |
{summary}
|
@@ -187,12 +282,45 @@ def process_document(text: str, strategy: str) -> tuple:
|
|
187 |
facts_json = json.dumps(facts, indent=2)
|
188 |
questions_json = json.dumps(questions, indent=2)
|
189 |
summary_text = summary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
-
return result, facts_json, questions_json, summary_text, domain
|
192 |
|
193 |
except Exception as e:
|
194 |
logger.error(f"Processing error: {e}")
|
195 |
-
return f"Error processing document: {str(e)}", "", "", "", ""
|
196 |
|
197 |
def create_demo():
|
198 |
"""Create the Gradio demo interface"""
|
@@ -255,11 +383,25 @@ def create_demo():
|
|
255 |
|
256 |
# Strategy selection
|
257 |
strategy_selector = gr.Radio(
|
258 |
-
choices=["Fact Extraction", "Question Generation", "Summarization", "Complete Analysis"],
|
259 |
value="Complete Analysis",
|
260 |
label="Active Reading Strategy"
|
261 |
)
|
262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
# Process button
|
264 |
process_btn = gr.Button("๐ Apply Active Reading", variant="primary", size="lg")
|
265 |
|
@@ -282,6 +424,9 @@ def create_demo():
|
|
282 |
|
283 |
with gr.Tab("๐ Summary"):
|
284 |
summary_output = gr.Textbox(lines=5, label="Document Summary")
|
|
|
|
|
|
|
285 |
|
286 |
# Event handlers
|
287 |
def load_sample_text(sample_choice):
|
@@ -297,8 +442,8 @@ def create_demo():
|
|
297 |
|
298 |
process_btn.click(
|
299 |
fn=process_document,
|
300 |
-
inputs=[text_input, strategy_selector],
|
301 |
-
outputs=[results_output, facts_output, questions_output, summary_output, domain_output]
|
302 |
)
|
303 |
|
304 |
# How it works and blog section
|
@@ -331,6 +476,35 @@ def create_demo():
|
|
331 |
- ๐ง **Technology**: API docs, technical specifications, system manuals
|
332 |
- ๐ฅ **Healthcare**: Clinical trials, research papers, treatment protocols
|
333 |
- ๐ข **General Business**: Proposals, memos, strategic documents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
""")
|
335 |
|
336 |
with gr.Tab("๐ About the Research"):
|
@@ -373,10 +547,11 @@ def create_demo():
|
|
373 |
|
374 |
**๐ฎ 5-Minute Demo:**
|
375 |
1. Select **"Financial Report"** from sample documents
|
376 |
-
2. Choose **"
|
377 |
-
3.
|
378 |
-
4.
|
379 |
-
5.
|
|
|
380 |
|
381 |
**๐ Advanced Exploration:**
|
382 |
1. **Upload your own document** (paste text up to 2000 words)
|
@@ -386,12 +561,12 @@ def create_demo():
|
|
386 |
|
387 |
### Sample Documents Available
|
388 |
|
389 |
-
| Document Type | What You'll Learn |
|
390 |
-
|
391 |
-
| ๐ **Financial Report** |
|
392 |
-
| โ๏ธ **Legal Contract** |
|
393 |
-
| ๐ง **Technical Manual** |
|
394 |
-
| ๐ฅ **Medical Research** |
|
395 |
|
396 |
### Next Steps
|
397 |
|
|
|
122 |
return "Medical"
|
123 |
else:
|
124 |
return "General"
|
125 |
+
|
126 |
+
def extract_category_specific_info(self, text: str, category: str, custom_keys: List[str]) -> Dict[str, Any]:
|
127 |
+
"""Extract information based on selected category and custom keys"""
|
128 |
+
results = {
|
129 |
+
"category": category,
|
130 |
+
"extracted_data": {},
|
131 |
+
"custom_extractions": {},
|
132 |
+
"confidence_scores": {}
|
133 |
+
}
|
134 |
+
|
135 |
+
# Category-specific extraction patterns
|
136 |
+
category_patterns = {
|
137 |
+
"Finance": {
|
138 |
+
"revenue": r'\$?[\d,]+\.?\d*\s*(?:million|billion|thousand|M|B|K)?\s*(?:revenue|sales|income)',
|
139 |
+
"profit": r'profit.*?\$?[\d,]+\.?\d*|margin.*?[\d,]+\.?\d*%',
|
140 |
+
"growth": r'(?:growth|increase|decrease).*?[\d,]+\.?\d*%',
|
141 |
+
"date": r'\b(?:Q[1-4]|quarter|fiscal|FY)\s*\d{4}|\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}',
|
142 |
+
"employees": r'(?:employees|staff|workforce).*?[\d,]+',
|
143 |
+
"market_cap": r'market\s*cap.*?\$?[\d,]+\.?\d*\s*(?:million|billion|M|B)'
|
144 |
+
},
|
145 |
+
"Legal": {
|
146 |
+
"parties": r'between\s+([^,]+)\s+and\s+([^,]+)|party.*?([A-Z][a-z]+\s+[A-Z][a-z]+)',
|
147 |
+
"term": r'term.*?(\d+)\s*(?:years?|months?|days?)',
|
148 |
+
"liability": r'liability.*?\$?[\d,]+\.?\d*',
|
149 |
+
"termination": r'terminat.*?(\d+)\s*days?\s*notice',
|
150 |
+
"governing_law": r'governed?\s*by.*?laws?\s*of\s*([^,.]+)',
|
151 |
+
"effective_date": r'effective.*?(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})'
|
152 |
+
},
|
153 |
+
"Technical": {
|
154 |
+
"api_endpoint": r'(?:GET|POST|PUT|DELETE)\s+[/\w-]+|endpoint.*?[/\w-]+',
|
155 |
+
"version": r'version\s*[\d.]+|v[\d.]+',
|
156 |
+
"response_time": r'response.*?(\d+).*?(?:ms|milliseconds|seconds)',
|
157 |
+
"rate_limit": r'rate.*?limit.*?(\d+).*?(?:per|/)\s*(?:minute|hour|second)',
|
158 |
+
"authentication": r'auth.*?(OAuth|JWT|API\s*key|token)',
|
159 |
+
"status_code": r'status.*?(\d{3})|HTTP.*?(\d{3})'
|
160 |
+
},
|
161 |
+
"Medical": {
|
162 |
+
"dosage": r'(\d+)\s*(?:mg|ml|units?)\s*(?:daily|twice|once)',
|
163 |
+
"duration": r'(?:for|duration).*?(\d+)\s*(?:days?|weeks?|months?)',
|
164 |
+
"efficacy": r'efficacy.*?(\d+)%|success.*?(\d+)%',
|
165 |
+
"side_effects": r'side\s*effects?.*?(\d+)%',
|
166 |
+
"patient_count": r'(?:patients?|subjects?).*?(\d+)',
|
167 |
+
"p_value": r'p[<>=]\s*([\d.]+)'
|
168 |
+
},
|
169 |
+
"General": {
|
170 |
+
"numbers": r'\b\d+(?:,\d{3})*(?:\.\d+)?\b',
|
171 |
+
"dates": r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b|\b\d{4}\b',
|
172 |
+
"percentages": r'\d+(?:\.\d+)?%',
|
173 |
+
"names": r'\b[A-Z][a-z]+\s+[A-Z][a-z]+\b',
|
174 |
+
"organizations": r'\b[A-Z][a-zA-Z\s&]+(?:Inc|LLC|Corp|Company|Ltd)\b'
|
175 |
+
}
|
176 |
+
}
|
177 |
+
|
178 |
+
# Extract category-specific information
|
179 |
+
patterns = category_patterns.get(category, category_patterns["General"])
|
180 |
+
|
181 |
+
for key, pattern in patterns.items():
|
182 |
+
matches = re.findall(pattern, text, re.IGNORECASE)
|
183 |
+
if matches:
|
184 |
+
# Clean up matches
|
185 |
+
cleaned_matches = []
|
186 |
+
for match in matches:
|
187 |
+
if isinstance(match, tuple):
|
188 |
+
# Handle tuple results from groups
|
189 |
+
match = ' '.join([m for m in match if m])
|
190 |
+
cleaned_matches.append(str(match).strip())
|
191 |
+
|
192 |
+
results["extracted_data"][key] = cleaned_matches
|
193 |
+
results["confidence_scores"][key] = len(cleaned_matches) / len(text.split()) * 100
|
194 |
+
|
195 |
+
# Extract custom keys if provided
|
196 |
+
if custom_keys:
|
197 |
+
for custom_key in custom_keys:
|
198 |
+
custom_key = custom_key.strip()
|
199 |
+
if not custom_key:
|
200 |
+
continue
|
201 |
+
|
202 |
+
# Create a pattern to find sentences containing the custom key
|
203 |
+
pattern = f'[^.]*{re.escape(custom_key)}[^.]*'
|
204 |
+
matches = re.findall(pattern, text, re.IGNORECASE)
|
205 |
+
|
206 |
+
if matches:
|
207 |
+
results["custom_extractions"][custom_key] = [match.strip() for match in matches]
|
208 |
+
results["confidence_scores"][f"custom_{custom_key}"] = len(matches) / len(text.split()) * 100
|
209 |
+
|
210 |
+
return results
|
211 |
|
212 |
# Initialize the model
|
213 |
try:
|
|
|
216 |
logger.error(f"Failed to initialize model: {e}")
|
217 |
active_reader = None
|
218 |
|
219 |
+
def process_document(text: str, strategy: str, category: str = None, custom_keys: str = "") -> tuple:
|
220 |
"""
|
221 |
+
Process document with selected strategy, category, and custom keys
|
222 |
|
223 |
+
Returns: (result_text, facts_json, questions_json, summary_text, domain, category_data)
|
224 |
"""
|
225 |
if not active_reader:
|
226 |
+
return "Error: Model not loaded", "", "", "", "", ""
|
227 |
|
228 |
if not text.strip():
|
229 |
+
return "Please enter some text to analyze.", "", "", "", "", ""
|
230 |
|
231 |
try:
|
232 |
# Detect domain
|
233 |
domain = active_reader.detect_domain(text)
|
234 |
|
235 |
+
# Use manual category if provided, otherwise use detected domain
|
236 |
+
selected_category = category if category and category != "Auto-Detect" else domain
|
237 |
+
|
238 |
+
# Parse custom keys
|
239 |
+
custom_keys_list = [key.strip() for key in custom_keys.split(",") if key.strip()] if custom_keys else []
|
240 |
+
|
241 |
+
# Extract category-specific information
|
242 |
+
category_data = active_reader.extract_category_specific_info(text, selected_category, custom_keys_list)
|
243 |
+
|
244 |
# Apply selected strategy
|
245 |
if strategy == "Fact Extraction":
|
246 |
facts = active_reader.extract_facts(text)
|
|
|
268 |
questions = active_reader.generate_questions(text)
|
269 |
summary = active_reader.generate_summary(text)
|
270 |
|
271 |
+
result = f"""**Domain:** {domain} | **Category:** {selected_category}
|
272 |
|
273 |
**Summary:**
|
274 |
{summary}
|
|
|
282 |
facts_json = json.dumps(facts, indent=2)
|
283 |
questions_json = json.dumps(questions, indent=2)
|
284 |
summary_text = summary
|
285 |
+
|
286 |
+
elif strategy == "Category-Specific Extraction":
|
287 |
+
# New strategy for category-specific extraction
|
288 |
+
extracted_data = category_data["extracted_data"]
|
289 |
+
custom_extractions = category_data["custom_extractions"]
|
290 |
+
|
291 |
+
result = f"""**Category:** {selected_category}
|
292 |
+
|
293 |
+
**Category-Specific Extractions:**
|
294 |
+
"""
|
295 |
+
|
296 |
+
for key, values in extracted_data.items():
|
297 |
+
if values:
|
298 |
+
result += f"\n**{key.replace('_', ' ').title()}:**\n"
|
299 |
+
for value in values[:3]: # Show first 3 matches
|
300 |
+
result += f"โข {value}\n"
|
301 |
+
if len(values) > 3:
|
302 |
+
result += f"โข ... and {len(values) - 3} more\n"
|
303 |
+
|
304 |
+
if custom_extractions:
|
305 |
+
result += f"\n**Custom Key Extractions:**\n"
|
306 |
+
for key, values in custom_extractions.items():
|
307 |
+
result += f"\n**{key}:**\n"
|
308 |
+
for value in values[:2]: # Show first 2 matches
|
309 |
+
result += f"โข {value}\n"
|
310 |
+
if len(values) > 2:
|
311 |
+
result += f"โข ... and {len(values) - 2} more\n"
|
312 |
+
|
313 |
+
facts_json = json.dumps(extracted_data, indent=2)
|
314 |
+
questions_json = json.dumps(custom_extractions, indent=2)
|
315 |
+
summary_text = f"Extracted {len(extracted_data)} category-specific fields and {len(custom_extractions)} custom fields"
|
316 |
+
|
317 |
+
category_json = json.dumps(category_data, indent=2)
|
318 |
|
319 |
+
return result, facts_json, questions_json, summary_text, domain, category_json
|
320 |
|
321 |
except Exception as e:
|
322 |
logger.error(f"Processing error: {e}")
|
323 |
+
return f"Error processing document: {str(e)}", "", "", "", "", ""
|
324 |
|
325 |
def create_demo():
|
326 |
"""Create the Gradio demo interface"""
|
|
|
383 |
|
384 |
# Strategy selection
|
385 |
strategy_selector = gr.Radio(
|
386 |
+
choices=["Fact Extraction", "Question Generation", "Summarization", "Complete Analysis", "Category-Specific Extraction"],
|
387 |
value="Complete Analysis",
|
388 |
label="Active Reading Strategy"
|
389 |
)
|
390 |
|
391 |
+
# Category selection
|
392 |
+
category_selector = gr.Dropdown(
|
393 |
+
choices=["Auto-Detect", "Finance", "Legal", "Technical", "Medical", "General"],
|
394 |
+
value="Auto-Detect",
|
395 |
+
label="๐ Document Category (overrides auto-detection)"
|
396 |
+
)
|
397 |
+
|
398 |
+
# Custom keys input
|
399 |
+
custom_keys_input = gr.Textbox(
|
400 |
+
placeholder="e.g., budget, deadline, CEO, risk assessment (comma-separated)",
|
401 |
+
label="๐ Custom Extraction Keys",
|
402 |
+
info="Enter specific terms you want to extract information about"
|
403 |
+
)
|
404 |
+
|
405 |
# Process button
|
406 |
process_btn = gr.Button("๐ Apply Active Reading", variant="primary", size="lg")
|
407 |
|
|
|
424 |
|
425 |
with gr.Tab("๐ Summary"):
|
426 |
summary_output = gr.Textbox(lines=5, label="Document Summary")
|
427 |
+
|
428 |
+
with gr.Tab("๐ฏ Category Analysis"):
|
429 |
+
category_output = gr.Code(language="json", label="Category-Specific Extractions")
|
430 |
|
431 |
# Event handlers
|
432 |
def load_sample_text(sample_choice):
|
|
|
442 |
|
443 |
process_btn.click(
|
444 |
fn=process_document,
|
445 |
+
inputs=[text_input, strategy_selector, category_selector, custom_keys_input],
|
446 |
+
outputs=[results_output, facts_output, questions_output, summary_output, domain_output, category_output]
|
447 |
)
|
448 |
|
449 |
# How it works and blog section
|
|
|
476 |
- ๐ง **Technology**: API docs, technical specifications, system manuals
|
477 |
- ๐ฅ **Healthcare**: Clinical trials, research papers, treatment protocols
|
478 |
- ๐ข **General Business**: Proposals, memos, strategic documents
|
479 |
+
|
480 |
+
### ๐ฏ Category-Specific Extraction
|
481 |
+
|
482 |
+
**Finance Category extracts:**
|
483 |
+
- Revenue, profit margins, growth rates
|
484 |
+
- Financial dates (Q1 2024, fiscal year)
|
485 |
+
- Employee counts, market cap
|
486 |
+
|
487 |
+
**Legal Category extracts:**
|
488 |
+
- Contract parties, terms, liability amounts
|
489 |
+
- Termination clauses, governing law
|
490 |
+
- Effective dates and obligations
|
491 |
+
|
492 |
+
**Technical Category extracts:**
|
493 |
+
- API endpoints, version numbers
|
494 |
+
- Response times, rate limits
|
495 |
+
- Authentication methods, status codes
|
496 |
+
|
497 |
+
**Medical Category extracts:**
|
498 |
+
- Dosages, treatment duration
|
499 |
+
- Efficacy rates, side effects
|
500 |
+
- Patient counts, statistical significance
|
501 |
+
|
502 |
+
### ๐ Custom Keys Feature
|
503 |
+
|
504 |
+
Add your own extraction terms like:
|
505 |
+
- `budget, timeline, deliverables` for project docs
|
506 |
+
- `CEO, board, shareholders` for corporate docs
|
507 |
+
- `security, compliance, audit` for IT policies
|
508 |
""")
|
509 |
|
510 |
with gr.Tab("๐ About the Research"):
|
|
|
547 |
|
548 |
**๐ฎ 5-Minute Demo:**
|
549 |
1. Select **"Financial Report"** from sample documents
|
550 |
+
2. Choose **"Category-Specific Extraction"** strategy
|
551 |
+
3. Set category to **"Finance"** (or leave as Auto-Detect)
|
552 |
+
4. Add custom keys: **"CEO, growth, investment"**
|
553 |
+
5. Click **"๐ Apply Active Reading"**
|
554 |
+
6. Check the **"๐ฏ Category Analysis"** tab to see targeted extraction!
|
555 |
|
556 |
**๐ Advanced Exploration:**
|
557 |
1. **Upload your own document** (paste text up to 2000 words)
|
|
|
561 |
|
562 |
### Sample Documents Available
|
563 |
|
564 |
+
| Document Type | Category | Example Custom Keys | What You'll Learn |
|
565 |
+
|---------------|----------|-------------------|-------------------|
|
566 |
+
| ๐ **Financial Report** | Finance | `CEO, growth, investment, Q3` | Revenue extraction, profit analysis, growth metrics |
|
567 |
+
| โ๏ธ **Legal Contract** | Legal | `termination, liability, governing law` | Contract terms, obligations, risk factors |
|
568 |
+
| ๐ง **Technical Manual** | Technical | `endpoint, authentication, rate limit` | API specs, system requirements, procedures |
|
569 |
+
| ๐ฅ **Medical Research** | Medical | `efficacy, patients, side effects` | Clinical data, statistical analysis, treatment outcomes |
|
570 |
|
571 |
### Next Steps
|
572 |
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# Minimal requirements for Hugging Face Spaces demo
|
2 |
torch>=2.0.0
|
3 |
transformers>=4.30.0
|
4 |
-
gradio
|
5 |
numpy>=1.24.0
|
|
|
|
1 |
# Minimal requirements for Hugging Face Spaces demo
|
2 |
torch>=2.0.0
|
3 |
transformers>=4.30.0
|
4 |
+
gradio>=4.0.0
|
5 |
numpy>=1.24.0
|
6 |
+
|