shaukat39 commited on
Commit
f4de580
·
1 Parent(s): 81917a3

adding files

Browse files
Files changed (3) hide show
  1. agent.py +134 -0
  2. requirements.txt +18 -1
  3. system_prompt.txt +33 -0
agent.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
+
19
+ load_dotenv()
20
+
21
+ # ------------------ Arithmetic Tools ------------------
22
+ @tool
23
+ def multiply(a: int, b: int) -> str:
24
+ return str(a * b)
25
+
26
+ @tool
27
+ def add(a: int, b: int) -> str:
28
+ return str(a + b)
29
+
30
+ @tool
31
+ def subtract(a: int, b: int) -> str:
32
+ return str(a - b)
33
+
34
+ @tool
35
+ def divide(a: int, b: int) -> str:
36
+ if b == 0:
37
+ return "Error: Cannot divide by zero."
38
+ return str(a / b)
39
+
40
+ @tool
41
+ def modulus(a: int, b: int) -> str:
42
+ return str(a % b)
43
+
44
+ # ------------------ Retrieval Tools ------------------
45
+ @tool
46
+ def wiki_search(query: str) -> str:
47
+ docs = WikipediaLoader(query=query, load_max_docs=2).load()
48
+ return "\n\n---\n\n".join(doc.page_content for doc in docs)
49
+
50
+ @tool
51
+ def web_search(query: str) -> str:
52
+ docs = TavilySearchResults(max_results=3).invoke(query)
53
+ return "\n\n---\n\n".join(doc.page_content for doc in docs)
54
+
55
+ @tool
56
+ def arvix_search(query: str) -> str:
57
+ docs = ArxivLoader(query=query, load_max_docs=3).load()
58
+ return "\n\n---\n\n".join(doc.page_content[:1000] for doc in docs)
59
+
60
+ # ------------------ System Setup ------------------
61
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
62
+ system_prompt = f.read()
63
+ sys_msg = SystemMessage(content=system_prompt)
64
+
65
+ # Vector Store Retrieval
66
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
67
+ supabase: Client = create_client(
68
+ os.environ["SUPABASE_URL"],
69
+ os.environ["SUPABASE_SERVICE_KEY"]
70
+ )
71
+ vector_store = SupabaseVectorStore(
72
+ client=supabase,
73
+ embedding=embeddings,
74
+ table_name="documents",
75
+ query_name="match_documents_langchain"
76
+ )
77
+
78
+ retriever_tool = create_retriever_tool(
79
+ retriever=vector_store.as_retriever(),
80
+ name="Question Search",
81
+ description="Retrieve similar questions from vector DB."
82
+ )
83
+
84
+ tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
85
+
86
+ # ------------------ Build Agent Graph ------------------
87
+ def build_graph(provider: str = "groq"):
88
+ if provider == "google":
89
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
90
+ elif provider == "groq":
91
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
92
+ elif provider == "huggingface":
93
+ llm = ChatHuggingFace(
94
+ llm=HuggingFaceEndpoint(
95
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
96
+ temperature=0
97
+ )
98
+ )
99
+ else:
100
+ raise ValueError("Invalid provider.")
101
+
102
+ llm_with_tools = llm.bind_tools(tools)
103
+
104
+ def retriever(state: MessagesState):
105
+ similar = vector_store.similarity_search(state["messages"][0].content)
106
+ example_msg = HumanMessage(
107
+ content=f"Here’s a similar QA pair for grounding:\n\n{similar[0].page_content}"
108
+ )
109
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
110
+
111
+ def assistant(state: MessagesState):
112
+ result = llm_with_tools.invoke(state["messages"])
113
+ # Extract only the raw string answer
114
+ final_response = result.content
115
+ return {"messages": [HumanMessage(content=final_response.strip())]}
116
+
117
+ builder = StateGraph(MessagesState)
118
+ builder.add_node("retriever", retriever)
119
+ builder.add_node("assistant", assistant)
120
+ builder.add_node("tools", ToolNode(tools))
121
+ builder.add_edge(START, "retriever")
122
+ builder.add_edge("retriever", "assistant")
123
+ builder.add_conditional_edges("assistant", tools_condition)
124
+ builder.add_edge("tools", "assistant")
125
+
126
+ return builder.compile()
127
+
128
+ # ------------------ Local Test Harness ------------------
129
+ if __name__ == "__main__":
130
+ graph = build_graph(provider="groq")
131
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
132
+ messages = [HumanMessage(content=question)]
133
+ result = graph.invoke({"messages": messages})
134
+ print(result["messages"][-1].content)
requirements.txt CHANGED
@@ -1,2 +1,19 @@
1
  gradio
2
- requests
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
19
+ sentence-transformers
system_prompt.txt ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+
3
+ You will receive one question at a time. Think step-by-step, use any relevant tools, and reason carefully before providing your final response.
4
+
5
+ When you're ready to answer, respond using the following exact format:
6
+
7
+ FINAL ANSWER: [YOUR FINAL ANSWER]
8
+
9
+ Your answer must follow these strict formatting rules:
10
+
11
+ If the answer is a number:
12
+
13
+ Do not include commas.
14
+
15
+ Do not include units (e.g., %, $, cm) unless the question explicitly asks for them.
16
+
17
+ If the answer is a string:
18
+
19
+ Avoid using articles (a, an, the).
20
+
21
+ Do not abbreviate (e.g., write "New York City", not "NYC").
22
+
23
+ Write all digits as words unless the question says otherwise.
24
+
25
+ If the answer is a comma-separated list:
26
+
27
+ Apply the above rules for each element based on its type (number or string).
28
+
29
+ Do not use brackets, bullet points, or extra formatting.
30
+
31
+ Always begin your final response with exactly: FINAL ANSWER:
32
+
33
+ Do not include anything else after that line—no thoughts, no commentary. Only the formatted answer.