Spaces:
Sleeping
Sleeping
Dekel Cohen
commited on
Commit
·
db347cc
1
Parent(s):
3050102
Project is working!
Browse files1) Added gpt-4o azure support
- .gitignore +1 -0
- app.py +12 -3
- azure_openai_gpt4o.py +92 -0
- vlms.py +25 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.env
|
app.py
CHANGED
@@ -3,7 +3,15 @@
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
from vip_runner import vip_runner
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Adjust radius of annotations based on size of the image
|
9 |
radius_per_pixel = 0.05
|
@@ -20,7 +28,7 @@ def run_vip(
|
|
20 |
progress=gr.Progress(track_tqdm=False),
|
21 |
):
|
22 |
|
23 |
-
if not openai_api_key:
|
24 |
return [], 'Must provide OpenAI API Key'
|
25 |
if im is None:
|
26 |
return [], 'Must specify image'
|
@@ -52,7 +60,8 @@ def run_vip(
|
|
52 |
'robot': None,
|
53 |
}
|
54 |
|
55 |
-
|
|
|
56 |
vip_gen = vip_runner(
|
57 |
vlm,
|
58 |
im,
|
|
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
from vip_runner import vip_runner
|
6 |
+
|
7 |
+
USE_AZURE = True # Set to False to use GPT-4V (OpenAI API)
|
8 |
+
if USE_AZURE:
|
9 |
+
from vlms import GPT4Azure
|
10 |
+
GPT_WRAPPER_CLASSNAME = GPT4Azure
|
11 |
+
else:
|
12 |
+
from vlms import GPT4V
|
13 |
+
GPT_WRAPPER_CLASSNAME = GPT4V
|
14 |
+
|
15 |
|
16 |
# Adjust radius of annotations based on size of the image
|
17 |
radius_per_pixel = 0.05
|
|
|
28 |
progress=gr.Progress(track_tqdm=False),
|
29 |
):
|
30 |
|
31 |
+
if not openai_api_key and not USE_AZURE:
|
32 |
return [], 'Must provide OpenAI API Key'
|
33 |
if im is None:
|
34 |
return [], 'Must specify image'
|
|
|
60 |
'robot': None,
|
61 |
}
|
62 |
|
63 |
+
# GPT4Azure or GPT4V - depend on flag USE_AZURE default to True
|
64 |
+
vlm = GPT_WRAPPER_CLASSNAME(openai_api_key=openai_api_key)
|
65 |
vip_gen = vip_runner(
|
66 |
vlm,
|
67 |
im,
|
azure_openai_gpt4o.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
# azure_openai.py
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
+
# Load environment variables from .env
|
10 |
+
load_dotenv()
|
11 |
+
|
12 |
+
def call_llm(messages, azure_deployment_model = None, max_tokens=2048, temperature=0.1):
|
13 |
+
"""
|
14 |
+
Call Azure OpenAI's chat completion endpoint with the given messages and max_tokens.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
azure_deployment_model - name of azure model deployment (not always gpt-4 as in openai)
|
18 |
+
messages (list): List of message objects for the conversation.
|
19 |
+
max_tokens (int): Maximum tokens for the response.
|
20 |
+
temperature : 0-1
|
21 |
+
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
dict: The parsed JSON response from the LLM.
|
25 |
+
"""
|
26 |
+
# Retrieve configuration variables from the environment
|
27 |
+
api_key = os.environ['AZURE_OPENAI_API_KEY']
|
28 |
+
azure_endpoint = os.environ['AZURE_OPENAI_ENDPOINT']
|
29 |
+
api_version = os.environ['AZURE_OPENAI_API_VERSION']
|
30 |
+
if azure_deployment_model is None:
|
31 |
+
azure_deployment_model = os.environ['AZURE_DEPLOYMENT_MODEL'] # default model
|
32 |
+
|
33 |
+
|
34 |
+
headers = {
|
35 |
+
"Content-Type": "application/json",
|
36 |
+
"api-key": api_key,
|
37 |
+
}
|
38 |
+
|
39 |
+
# Build the payload
|
40 |
+
payload = {
|
41 |
+
"messages": messages,
|
42 |
+
"max_tokens": max_tokens,
|
43 |
+
"temperature" : temperature,
|
44 |
+
}
|
45 |
+
|
46 |
+
# Construct the Azure OpenAI endpoint URL
|
47 |
+
GPT_ENDPOINT_URL = (
|
48 |
+
f"{azure_endpoint}/openai/deployments/{azure_deployment_model}"
|
49 |
+
f"/chat/completions?api-version={api_version}"
|
50 |
+
)
|
51 |
+
|
52 |
+
# Make the POST request
|
53 |
+
try:
|
54 |
+
response = requests.post(GPT_ENDPOINT_URL, headers=headers, json=payload)
|
55 |
+
response.raise_for_status() # Raise an error for non-2xx responses
|
56 |
+
except requests.RequestException as e:
|
57 |
+
raise SystemExit(f"Failed to make the request. Error: {e}")
|
58 |
+
|
59 |
+
|
60 |
+
# Parse the JSON response
|
61 |
+
response_json = response.json()
|
62 |
+
|
63 |
+
# Extract the message content from the first choice
|
64 |
+
message_content = response_json["choices"][0]["message"]["content"]
|
65 |
+
|
66 |
+
# Convert the content string to a JSON object (if necessary)
|
67 |
+
#final_response = json.loads(message_content)
|
68 |
+
|
69 |
+
return message_content
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
messages = [
|
73 |
+
{
|
74 |
+
"role": "system",
|
75 |
+
"content": [
|
76 |
+
{
|
77 |
+
"type": "text",
|
78 |
+
"text": "You are an expert NLP and Search AI assistant that helps people summarize and search for information"
|
79 |
+
}
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"role": "user",
|
84 |
+
"content": "<prompt - instructions + context text + first few shot example>",
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"role": "assistant",
|
88 |
+
"content": "<expected answer for first few shot example>",
|
89 |
+
}]
|
90 |
+
response = call_llm(messages)
|
91 |
+
# Handle the response as needed (e.g., print or process)
|
92 |
+
print(response.json())
|
vlms.py
CHANGED
@@ -31,3 +31,28 @@ class GPT4V:
|
|
31 |
)
|
32 |
|
33 |
return response.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
return response.choices[0].message.content
|
34 |
+
|
35 |
+
from azure_openai_gpt4o import call_llm
|
36 |
+
class GPT4Azure:
|
37 |
+
"""GPT4V VLM via Azure API"""
|
38 |
+
|
39 |
+
def __init__(self, openai_api_key):
|
40 |
+
"""
|
41 |
+
Dummy inteface: azure api_key is read from .env file - no need to pass it here
|
42 |
+
"""
|
43 |
+
|
44 |
+
def query(self, prompt_seq, temperature=0, max_tokens=512):
|
45 |
+
"""Queries GPT-4V."""
|
46 |
+
content = []
|
47 |
+
for elem in prompt_seq:
|
48 |
+
if isinstance(elem, str):
|
49 |
+
content.append({'type': 'text', 'text': elem})
|
50 |
+
elif isinstance(elem, np.ndarray):
|
51 |
+
base64_image_str = base64.b64encode(elem).decode('utf-8')
|
52 |
+
image_url = f'data:image/jpeg;base64,{base64_image_str}'
|
53 |
+
content.append({'type': 'image_url', 'image_url': {'url': image_url}})
|
54 |
+
|
55 |
+
messages = [{'role': 'user', 'content': content}]
|
56 |
+
|
57 |
+
response = call_llm(messages, azure_deployment_model = None, max_tokens=max_tokens, temperature=temperature)
|
58 |
+
return response
|