Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- .gitattributes +3 -0
- app.py +593 -0
- distorted/27_2 copy.png +3 -0
- distorted/42_2 copy.png +3 -0
- distorted/48_1 copy.png +3 -0
- hf_requirements.txt +6 -0
- model_pretrained/DocScanner-L.pth +3 -0
- model_pretrained/seg.pth +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
distorted/27_2[[:space:]]copy.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
distorted/42_2[[:space:]]copy.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
distorted/48_1[[:space:]]copy.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
import warnings
|
10 |
+
import sys # Added for PyInstaller
|
11 |
+
|
12 |
+
warnings.filterwarnings('ignore')
|
13 |
+
|
14 |
+
# --- PyInstaller Helper ---
|
15 |
+
# Determines the correct path for bundled data files (models)
|
16 |
+
def resource_path(relative_path):
|
17 |
+
""" Get absolute path to resource, works for dev and for PyInstaller """
|
18 |
+
try:
|
19 |
+
# PyInstaller creates a temp folder and stores path in _MEIPASS
|
20 |
+
base_path = sys._MEIPASS
|
21 |
+
except Exception:
|
22 |
+
base_path = os.path.abspath(".")
|
23 |
+
|
24 |
+
return os.path.join(base_path, relative_path)
|
25 |
+
|
26 |
+
# --- Model and Helper Class Definitions ---
|
27 |
+
# Most of these classes are copied directly from the project's files
|
28 |
+
# (extractor.py, update.py, seg.py, model.py, inference.py)
|
29 |
+
# to make this Gradio app a self-contained script.
|
30 |
+
|
31 |
+
# from extractor.py
|
32 |
+
class ResidualBlock(nn.Module):
|
33 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
34 |
+
super(ResidualBlock, self).__init__()
|
35 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
36 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
37 |
+
self.relu = nn.ReLU(inplace=True)
|
38 |
+
if norm_fn == 'batch':
|
39 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
40 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
41 |
+
if not stride == 1:
|
42 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
43 |
+
elif norm_fn == 'instance':
|
44 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
45 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
46 |
+
if not stride == 1:
|
47 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
48 |
+
if stride == 1:
|
49 |
+
self.downsample = None
|
50 |
+
else:
|
51 |
+
self.downsample = nn.Sequential(
|
52 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
53 |
+
def forward(self, x):
|
54 |
+
y = x
|
55 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
56 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
57 |
+
if self.downsample is not None:
|
58 |
+
x = self.downsample(x)
|
59 |
+
return self.relu(x + y)
|
60 |
+
|
61 |
+
class BasicEncoder(nn.Module):
|
62 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
63 |
+
super(BasicEncoder, self).__init__()
|
64 |
+
self.norm_fn = norm_fn
|
65 |
+
if self.norm_fn == 'batch':
|
66 |
+
self.norm1 = nn.BatchNorm2d(64)
|
67 |
+
elif self.norm_fn == 'instance':
|
68 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
69 |
+
self.conv1 = nn.Conv2d(3, 80, kernel_size=7, stride=2, padding=3)
|
70 |
+
self.relu1 = nn.ReLU(inplace=True)
|
71 |
+
self.in_planes = 80
|
72 |
+
self.layer1 = self._make_layer(80, stride=1)
|
73 |
+
self.layer2 = self._make_layer(160, stride=2)
|
74 |
+
self.layer3 = self._make_layer(240, stride=2)
|
75 |
+
self.conv2 = nn.Conv2d(240, output_dim, kernel_size=1)
|
76 |
+
for m in self.modules():
|
77 |
+
if isinstance(m, nn.Conv2d):
|
78 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
79 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
80 |
+
if m.weight is not None:
|
81 |
+
nn.init.constant_(m.weight, 1)
|
82 |
+
if m.bias is not None:
|
83 |
+
nn.init.constant_(m.bias, 0)
|
84 |
+
def _make_layer(self, dim, stride=1):
|
85 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
86 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
87 |
+
layers = (layer1, layer2)
|
88 |
+
self.in_planes = dim
|
89 |
+
return nn.Sequential(*layers)
|
90 |
+
def forward(self, x):
|
91 |
+
x = self.conv1(x)
|
92 |
+
x = self.norm1(x)
|
93 |
+
x = self.relu1(x)
|
94 |
+
x = self.layer1(x)
|
95 |
+
x = self.layer2(x)
|
96 |
+
x = self.layer3(x)
|
97 |
+
x = self.conv2(x)
|
98 |
+
return x
|
99 |
+
|
100 |
+
# from update.py
|
101 |
+
class FlowHead(nn.Module):
|
102 |
+
def __init__(self, input_dim=128, hidden_dim=256):
|
103 |
+
super(FlowHead, self).__init__()
|
104 |
+
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
|
105 |
+
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
|
106 |
+
self.relu = nn.ReLU(inplace=True)
|
107 |
+
def forward(self, x):
|
108 |
+
return self.conv2(self.relu(self.conv1(x)))
|
109 |
+
|
110 |
+
class SepConvGRU(nn.Module):
|
111 |
+
def __init__(self, hidden_dim=128, input_dim=192+128):
|
112 |
+
super(SepConvGRU, self).__init__()
|
113 |
+
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
114 |
+
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
115 |
+
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
116 |
+
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
117 |
+
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
118 |
+
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
119 |
+
def forward(self, h, x):
|
120 |
+
hx = torch.cat([h, x], dim=1)
|
121 |
+
z = torch.sigmoid(self.convz1(hx))
|
122 |
+
r = torch.sigmoid(self.convr1(hx))
|
123 |
+
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
|
124 |
+
h = (1-z) * h + z * q
|
125 |
+
hx = torch.cat([h, x], dim=1)
|
126 |
+
z = torch.sigmoid(self.convz2(hx))
|
127 |
+
r = torch.sigmoid(self.convr2(hx))
|
128 |
+
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
|
129 |
+
h = (1-z) * h + z * q
|
130 |
+
return h
|
131 |
+
|
132 |
+
class BasicMotionEncoder(nn.Module):
|
133 |
+
def __init__(self):
|
134 |
+
super(BasicMotionEncoder, self).__init__()
|
135 |
+
self.convc1 = nn.Conv2d(320, 240, 1, padding=0)
|
136 |
+
self.convc2 = nn.Conv2d(240, 160, 3, padding=1)
|
137 |
+
self.convf1 = nn.Conv2d(2, 160, 7, padding=3)
|
138 |
+
self.convf2 = nn.Conv2d(160, 80, 3, padding=1)
|
139 |
+
self.conv = nn.Conv2d(160+80, 160-2, 3, padding=1)
|
140 |
+
def forward(self, flow, corr):
|
141 |
+
cor = F.relu(self.convc1(corr))
|
142 |
+
cor = F.relu(self.convc2(cor))
|
143 |
+
flo = F.relu(self.convf1(flow))
|
144 |
+
flo = F.relu(self.convf2(flo))
|
145 |
+
cor_flo = torch.cat([cor, flo], dim=1)
|
146 |
+
out = F.relu(self.conv(cor_flo))
|
147 |
+
return torch.cat([out, flow], dim=1)
|
148 |
+
|
149 |
+
class BasicUpdateBlock(nn.Module):
|
150 |
+
def __init__(self, hidden_dim=128):
|
151 |
+
super(BasicUpdateBlock, self).__init__()
|
152 |
+
self.encoder = BasicMotionEncoder()
|
153 |
+
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=160+160)
|
154 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=320)
|
155 |
+
self.mask = nn.Sequential(
|
156 |
+
nn.Conv2d(hidden_dim, 288, 3, padding=1),
|
157 |
+
nn.ReLU(inplace=True),
|
158 |
+
nn.Conv2d(288, 64*9, 1, padding=0))
|
159 |
+
def forward(self, net, inp, corr, flow):
|
160 |
+
motion_features = self.encoder(flow, corr)
|
161 |
+
inp = torch.cat([inp, motion_features], dim=1)
|
162 |
+
net = self.gru(net, inp)
|
163 |
+
delta_flow = self.flow_head(net)
|
164 |
+
mask = .25 * self.mask(net)
|
165 |
+
return net, mask, delta_flow
|
166 |
+
|
167 |
+
# from seg.py
|
168 |
+
class REBNCONV(nn.Module):
|
169 |
+
def __init__(self, in_ch=3, out_ch=3, dirate=1):
|
170 |
+
super(REBNCONV, self).__init__()
|
171 |
+
self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate)
|
172 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
173 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
174 |
+
def forward(self, x):
|
175 |
+
return self.relu_s1(self.bn_s1(self.conv_s1(x)))
|
176 |
+
|
177 |
+
def _upsample_like(src, tar):
|
178 |
+
return F.interpolate(src, size=tar.shape[2:], mode='bilinear', align_corners=False)
|
179 |
+
|
180 |
+
class RSU7(nn.Module):
|
181 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
182 |
+
super(RSU7, self).__init__()
|
183 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
184 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
185 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
186 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
187 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
188 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
189 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
190 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
191 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
192 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
193 |
+
self.pool5 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
194 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
195 |
+
self.rebnconv7 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
196 |
+
self.rebnconv6d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
197 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
198 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
199 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
200 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
201 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
202 |
+
def forward(self, x):
|
203 |
+
hxin = self.rebnconvin(x)
|
204 |
+
hx1 = self.rebnconv1(hxin)
|
205 |
+
hx = self.pool1(hx1)
|
206 |
+
hx2 = self.rebnconv2(hx)
|
207 |
+
hx = self.pool2(hx2)
|
208 |
+
hx3 = self.rebnconv3(hx)
|
209 |
+
hx = self.pool3(hx3)
|
210 |
+
hx4 = self.rebnconv4(hx)
|
211 |
+
hx = self.pool4(hx4)
|
212 |
+
hx5 = self.rebnconv5(hx)
|
213 |
+
hx = self.pool5(hx5)
|
214 |
+
hx6 = self.rebnconv6(hx)
|
215 |
+
hx7 = self.rebnconv7(hx6)
|
216 |
+
hx6d = self.rebnconv6d(torch.cat((hx7, hx6), 1))
|
217 |
+
hx6dup = _upsample_like(hx6d, hx5)
|
218 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup, hx5), 1))
|
219 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
220 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
221 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
222 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
223 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
224 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
225 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
226 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
227 |
+
return hx1d + hxin
|
228 |
+
|
229 |
+
class RSU6(nn.Module):
|
230 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
231 |
+
super(RSU6, self).__init__()
|
232 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
233 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
234 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
235 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
236 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
237 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
238 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
239 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
240 |
+
self.pool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
241 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
242 |
+
self.rebnconv6 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
243 |
+
self.rebnconv5d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
244 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
245 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
246 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
247 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
248 |
+
def forward(self, x):
|
249 |
+
hxin = self.rebnconvin(x)
|
250 |
+
hx1 = self.rebnconv1(hxin)
|
251 |
+
hx = self.pool1(hx1)
|
252 |
+
hx2 = self.rebnconv2(hx)
|
253 |
+
hx = self.pool2(hx2)
|
254 |
+
hx3 = self.rebnconv3(hx)
|
255 |
+
hx = self.pool3(hx3)
|
256 |
+
hx4 = self.rebnconv4(hx)
|
257 |
+
hx = self.pool4(hx4)
|
258 |
+
hx5 = self.rebnconv5(hx)
|
259 |
+
hx6 = self.rebnconv6(hx5)
|
260 |
+
hx5d = self.rebnconv5d(torch.cat((hx6, hx5), 1))
|
261 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
262 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup, hx4), 1))
|
263 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
264 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
265 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
266 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
267 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
268 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
269 |
+
return hx1d + hxin
|
270 |
+
|
271 |
+
class RSU5(nn.Module):
|
272 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
273 |
+
super(RSU5, self).__init__()
|
274 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
275 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
276 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
277 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
278 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
279 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
280 |
+
self.pool3 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
281 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
282 |
+
self.rebnconv5 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
283 |
+
self.rebnconv4d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
284 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
285 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
286 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
287 |
+
def forward(self, x):
|
288 |
+
hxin = self.rebnconvin(x)
|
289 |
+
hx1 = self.rebnconv1(hxin)
|
290 |
+
hx = self.pool1(hx1)
|
291 |
+
hx2 = self.rebnconv2(hx)
|
292 |
+
hx = self.pool2(hx2)
|
293 |
+
hx3 = self.rebnconv3(hx)
|
294 |
+
hx = self.pool3(hx3)
|
295 |
+
hx4 = self.rebnconv4(hx)
|
296 |
+
hx5 = self.rebnconv5(hx4)
|
297 |
+
hx4d = self.rebnconv4d(torch.cat((hx5, hx4), 1))
|
298 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
299 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup, hx3), 1))
|
300 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
301 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
302 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
303 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
304 |
+
return hx1d + hxin
|
305 |
+
|
306 |
+
class RSU4(nn.Module):
|
307 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
308 |
+
super(RSU4, self).__init__()
|
309 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
310 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
311 |
+
self.pool1 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
312 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
313 |
+
self.pool2 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
314 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=1)
|
315 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
316 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
317 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=1)
|
318 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
319 |
+
def forward(self, x):
|
320 |
+
hxin = self.rebnconvin(x)
|
321 |
+
hx1 = self.rebnconv1(hxin)
|
322 |
+
hx = self.pool1(hx1)
|
323 |
+
hx2 = self.rebnconv2(hx)
|
324 |
+
hx = self.pool2(hx2)
|
325 |
+
hx3 = self.rebnconv3(hx)
|
326 |
+
hx4 = self.rebnconv4(hx3)
|
327 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
328 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
329 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup, hx2), 1))
|
330 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
331 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup, hx1), 1))
|
332 |
+
return hx1d + hxin
|
333 |
+
|
334 |
+
class RSU4F(nn.Module):
|
335 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
336 |
+
super(RSU4F, self).__init__()
|
337 |
+
self.rebnconvin = REBNCONV(in_ch, out_ch, dirate=1)
|
338 |
+
self.rebnconv1 = REBNCONV(out_ch, mid_ch, dirate=1)
|
339 |
+
self.rebnconv2 = REBNCONV(mid_ch, mid_ch, dirate=2)
|
340 |
+
self.rebnconv3 = REBNCONV(mid_ch, mid_ch, dirate=4)
|
341 |
+
self.rebnconv4 = REBNCONV(mid_ch, mid_ch, dirate=8)
|
342 |
+
self.rebnconv3d = REBNCONV(mid_ch * 2, mid_ch, dirate=4)
|
343 |
+
self.rebnconv2d = REBNCONV(mid_ch * 2, mid_ch, dirate=2)
|
344 |
+
self.rebnconv1d = REBNCONV(mid_ch * 2, out_ch, dirate=1)
|
345 |
+
def forward(self, x):
|
346 |
+
hxin = self.rebnconvin(x)
|
347 |
+
hx1 = self.rebnconv1(hxin)
|
348 |
+
hx2 = self.rebnconv2(hx1)
|
349 |
+
hx3 = self.rebnconv3(hx2)
|
350 |
+
hx4 = self.rebnconv4(hx3)
|
351 |
+
hx3d = self.rebnconv3d(torch.cat((hx4, hx3), 1))
|
352 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d, hx2), 1))
|
353 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d, hx1), 1))
|
354 |
+
return hx1d + hxin
|
355 |
+
|
356 |
+
class U2NETP(nn.Module):
|
357 |
+
def __init__(self, in_ch=3, out_ch=1):
|
358 |
+
super(U2NETP, self).__init__()
|
359 |
+
self.stage1 = RSU7(in_ch, 16, 64)
|
360 |
+
self.pool12 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
361 |
+
self.stage2 = RSU6(64, 16, 64)
|
362 |
+
self.pool23 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
363 |
+
self.stage3 = RSU5(64, 16, 64)
|
364 |
+
self.pool34 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
365 |
+
self.stage4 = RSU4(64, 16, 64)
|
366 |
+
self.pool45 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
367 |
+
self.stage5 = RSU4F(64, 16, 64)
|
368 |
+
self.pool56 = nn.MaxPool2d(2, stride=2, ceil_mode=True)
|
369 |
+
self.stage6 = RSU4F(64, 16, 64)
|
370 |
+
self.stage5d = RSU4F(128, 16, 64)
|
371 |
+
self.stage4d = RSU4(128, 16, 64)
|
372 |
+
self.stage3d = RSU5(128, 16, 64)
|
373 |
+
self.stage2d = RSU6(128, 16, 64)
|
374 |
+
self.stage1d = RSU7(128, 16, 64)
|
375 |
+
self.side1 = nn.Conv2d(64, out_ch, 3, padding=1)
|
376 |
+
self.side2 = nn.Conv2d(64, out_ch, 3, padding=1)
|
377 |
+
self.side3 = nn.Conv2d(64, out_ch, 3, padding=1)
|
378 |
+
self.side4 = nn.Conv2d(64, out_ch, 3, padding=1)
|
379 |
+
self.side5 = nn.Conv2d(64, out_ch, 3, padding=1)
|
380 |
+
self.side6 = nn.Conv2d(64, out_ch, 3, padding=1)
|
381 |
+
self.outconv = nn.Conv2d(6, out_ch, 1)
|
382 |
+
def forward(self, x):
|
383 |
+
hx = x
|
384 |
+
hx1 = self.stage1(hx)
|
385 |
+
hx = self.pool12(hx1)
|
386 |
+
hx2 = self.stage2(hx)
|
387 |
+
hx = self.pool23(hx2)
|
388 |
+
hx3 = self.stage3(hx)
|
389 |
+
hx = self.pool34(hx3)
|
390 |
+
hx4 = self.stage4(hx)
|
391 |
+
hx = self.pool45(hx4)
|
392 |
+
hx5 = self.stage5(hx)
|
393 |
+
hx = self.pool56(hx5)
|
394 |
+
hx6 = self.stage6(hx)
|
395 |
+
hx6up = _upsample_like(hx6, hx5)
|
396 |
+
hx5d = self.stage5d(torch.cat((hx6up, hx5), 1))
|
397 |
+
hx5dup = _upsample_like(hx5d, hx4)
|
398 |
+
hx4d = self.stage4d(torch.cat((hx5dup, hx4), 1))
|
399 |
+
hx4dup = _upsample_like(hx4d, hx3)
|
400 |
+
hx3d = self.stage3d(torch.cat((hx4dup, hx3), 1))
|
401 |
+
hx3dup = _upsample_like(hx3d, hx2)
|
402 |
+
hx2d = self.stage2d(torch.cat((hx3dup, hx2), 1))
|
403 |
+
hx2dup = _upsample_like(hx2d, hx1)
|
404 |
+
hx1d = self.stage1d(torch.cat((hx2dup, hx1), 1))
|
405 |
+
d1 = self.side1(hx1d)
|
406 |
+
d2 = self.side2(hx2d)
|
407 |
+
d2 = _upsample_like(d2, d1)
|
408 |
+
d3 = self.side3(hx3d)
|
409 |
+
d3 = _upsample_like(d3, d1)
|
410 |
+
d4 = self.side4(hx4d)
|
411 |
+
d4 = _upsample_like(d4, d1)
|
412 |
+
d5 = self.side5(hx5d)
|
413 |
+
d5 = _upsample_like(d5, d1)
|
414 |
+
d6 = self.side6(hx6)
|
415 |
+
d6 = _upsample_like(d6, d1)
|
416 |
+
d0 = self.outconv(torch.cat((d1, d2, d3, d4, d5, d6), 1))
|
417 |
+
return torch.sigmoid(d0), torch.sigmoid(d1), torch.sigmoid(d2), torch.sigmoid(d3), torch.sigmoid(d4), torch.sigmoid(d5), torch.sigmoid(d6)
|
418 |
+
|
419 |
+
# from model.py
|
420 |
+
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
|
421 |
+
H, W = img.shape[-2:]
|
422 |
+
xgrid, ygrid = coords.split([1, 1], dim=-1)
|
423 |
+
xgrid = 2 * xgrid / (W - 1) - 1
|
424 |
+
ygrid = 2 * ygrid / (H - 1) - 1
|
425 |
+
grid = torch.cat([xgrid, ygrid], dim=-1)
|
426 |
+
img = F.grid_sample(img, grid, align_corners=True)
|
427 |
+
if mask:
|
428 |
+
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
|
429 |
+
return img, mask.float()
|
430 |
+
return img
|
431 |
+
|
432 |
+
def coords_grid(batch, ht, wd):
|
433 |
+
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
|
434 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
435 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
436 |
+
|
437 |
+
class DocScanner(nn.Module):
|
438 |
+
def __init__(self):
|
439 |
+
super(DocScanner, self).__init__()
|
440 |
+
self.hidden_dim = hdim = 160
|
441 |
+
self.context_dim = 160
|
442 |
+
self.fnet = BasicEncoder(output_dim=320, norm_fn='instance')
|
443 |
+
self.update_block = BasicUpdateBlock(hidden_dim=hdim)
|
444 |
+
def forward(self, image1, iters=12, flow_init=None, test_mode=False):
|
445 |
+
image1 = image1.contiguous()
|
446 |
+
fmap1 = self.fnet(image1)
|
447 |
+
warpfea = fmap1
|
448 |
+
net, inp = torch.split(fmap1, [160, 160], dim=1)
|
449 |
+
net = torch.tanh(net)
|
450 |
+
inp = torch.relu(inp)
|
451 |
+
coodslar, coords0, coords1 = self.initialize_flow(image1)
|
452 |
+
if flow_init is not None:
|
453 |
+
coords1 = coords1 + flow_init
|
454 |
+
flow_predictions = []
|
455 |
+
for itr in range(iters):
|
456 |
+
coords1 = coords1.detach()
|
457 |
+
flow = coords1 - coords0
|
458 |
+
net, up_mask, delta_flow = self.update_block(net, inp, warpfea, flow)
|
459 |
+
coords1 = coords1 + delta_flow
|
460 |
+
flow_up = self.upsample_flow(coords1 - coords0, up_mask)
|
461 |
+
bm_up = coodslar + flow_up
|
462 |
+
warpfea = bilinear_sampler(fmap1, coords1.permute(0, 2, 3, 1))
|
463 |
+
flow_predictions.append(bm_up)
|
464 |
+
if test_mode:
|
465 |
+
return bm_up
|
466 |
+
return flow_predictions
|
467 |
+
def initialize_flow(self, img):
|
468 |
+
N, C, H, W = img.shape
|
469 |
+
coodslar = coords_grid(N, H, W).to(img.device)
|
470 |
+
coords0 = coords_grid(N, H // 8, W // 8).to(img.device)
|
471 |
+
coords1 = coords_grid(N, H // 8, W // 8).to(img.device)
|
472 |
+
return coodslar, coords0, coords1
|
473 |
+
def upsample_flow(self, flow, mask):
|
474 |
+
N, _, H, W = flow.shape
|
475 |
+
mask = mask.view(N, 1, 9, 8, 8, H, W)
|
476 |
+
mask = torch.softmax(mask, dim=2)
|
477 |
+
up_flow = F.unfold(8 * flow, [3, 3], padding=1)
|
478 |
+
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
|
479 |
+
up_flow = torch.sum(mask * up_flow, dim=2)
|
480 |
+
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
481 |
+
return up_flow.reshape(N, 2, 8 * H, 8 * W)
|
482 |
+
|
483 |
+
# from inference.py
|
484 |
+
class Net(nn.Module):
|
485 |
+
def __init__(self):
|
486 |
+
super(Net, self).__init__()
|
487 |
+
self.msk = U2NETP(3, 1)
|
488 |
+
self.bm = DocScanner()
|
489 |
+
def forward(self, x):
|
490 |
+
msk, _, _, _, _, _, _ = self.msk(x)
|
491 |
+
msk = (msk > 0.5).float()
|
492 |
+
x = msk * x
|
493 |
+
bm = self.bm(x, iters=12, test_mode=True)
|
494 |
+
bm = (2 * (bm / 286.8) - 1) * 0.99
|
495 |
+
return bm
|
496 |
+
|
497 |
+
def reload_seg_model(model, path=""):
|
498 |
+
if not bool(path) or not os.path.exists(path):
|
499 |
+
print("Warning: Segmentation model path not found. Using initial weights.")
|
500 |
+
return model
|
501 |
+
model_dict = model.state_dict()
|
502 |
+
pretrained_dict = torch.load(path, map_location='cuda:0' if torch.cuda.is_available() else 'cpu')
|
503 |
+
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
|
504 |
+
model_dict.update(pretrained_dict)
|
505 |
+
model.load_state_dict(model_dict)
|
506 |
+
return model
|
507 |
+
|
508 |
+
def reload_rec_model(model, path=""):
|
509 |
+
if not bool(path) or not os.path.exists(path):
|
510 |
+
print("Warning: Rectification model path not found. Using initial weights.")
|
511 |
+
return model
|
512 |
+
model_dict = model.state_dict()
|
513 |
+
pretrained_dict = torch.load(path, map_location='cuda:0' if torch.cuda.is_available() else 'cpu')
|
514 |
+
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
|
515 |
+
model_dict.update(pretrained_dict)
|
516 |
+
model.load_state_dict(model_dict)
|
517 |
+
return model
|
518 |
+
|
519 |
+
# --- Gradio App Logic ---
|
520 |
+
|
521 |
+
# Configuration
|
522 |
+
SEG_MODEL_PATH = resource_path('model_pretrained/seg.pth')
|
523 |
+
REC_MODEL_PATH = resource_path('model_pretrained/DocScanner-L.pth')
|
524 |
+
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
525 |
+
|
526 |
+
# Load models once
|
527 |
+
print("Initializing and loading models...")
|
528 |
+
net = Net().to(DEVICE)
|
529 |
+
reload_seg_model(net.msk, SEG_MODEL_PATH)
|
530 |
+
reload_rec_model(net.bm, REC_MODEL_PATH)
|
531 |
+
net.eval()
|
532 |
+
print("Models loaded successfully.")
|
533 |
+
|
534 |
+
def rectify_image(distorted_image):
|
535 |
+
"""
|
536 |
+
Takes a distorted image as a numpy array, rectifies it using the DocScanner model,
|
537 |
+
and returns the rectified image as a numpy array.
|
538 |
+
"""
|
539 |
+
if distorted_image is None:
|
540 |
+
return None
|
541 |
+
|
542 |
+
im_ori = distorted_image.astype(np.float32) / 255.
|
543 |
+
h, w, _ = im_ori.shape
|
544 |
+
|
545 |
+
# Pre-process
|
546 |
+
im = cv2.resize(im_ori, (288, 288))
|
547 |
+
im = im.transpose(2, 0, 1)
|
548 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
549 |
+
|
550 |
+
with torch.no_grad():
|
551 |
+
# Inference
|
552 |
+
bm = net(im.to(DEVICE))
|
553 |
+
bm = bm.cpu()
|
554 |
+
|
555 |
+
# Post-process
|
556 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
557 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
558 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
559 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
560 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
561 |
+
|
562 |
+
# Warp the original image
|
563 |
+
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
564 |
+
|
565 |
+
# Convert to displayable format
|
566 |
+
rectified_image = (out[0].permute(1, 2, 0).numpy() * 255).astype(np.uint8)
|
567 |
+
|
568 |
+
return rectified_image
|
569 |
+
|
570 |
+
# --- Gradio Interface ---
|
571 |
+
|
572 |
+
DESCRIPTION = """
|
573 |
+
# DocScanner: Robust Document Image Rectification with Progressive Learning
|
574 |
+
This is a Gradio demo for the DocScanner model.
|
575 |
+
1. Upload a distorted document image.
|
576 |
+
2. The model will process it and display the rectified (unwarped) image.
|
577 |
+
This demo uses the **DocScanner-L** model as described in the paper. Make sure the pretrained models (`seg.pth`, `DocScanner-L.pth`) are located in the `./model_pretrained/` directory.
|
578 |
+
"""
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
iface = gr.Interface(
|
582 |
+
fn=rectify_image,
|
583 |
+
inputs=gr.Image(type="numpy", label="Upload Distorted Document"),
|
584 |
+
outputs=gr.Image(type="numpy", label="Rectified Document"),
|
585 |
+
title="DocScanner Document Rectification",
|
586 |
+
description=DESCRIPTION,
|
587 |
+
examples=[
|
588 |
+
['distorted/27_2 copy.png'],
|
589 |
+
['distorted/42_2 copy.png'],
|
590 |
+
['distorted/48_1 copy.png']
|
591 |
+
]
|
592 |
+
)
|
593 |
+
iface.launch()
|
distorted/27_2 copy.png
ADDED
![]() |
Git LFS Details
|
distorted/42_2 copy.png
ADDED
![]() |
Git LFS Details
|
distorted/48_1 copy.png
ADDED
![]() |
Git LFS Details
|
hf_requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
opencv-python
|
5 |
+
Pillow
|
6 |
+
scikit-image
|
model_pretrained/DocScanner-L.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d907965aa5d8e99ea8d0891fb66d13bc4f23838547bac6f568d01d480ff8c8a
|
3 |
+
size 29328510
|
model_pretrained/seg.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb79fdec55a5ed435dc74d8112aa9285d8213bae475022f711c709744fb19dd4
|
3 |
+
size 4715923
|