Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, Request | |
from pydantic import BaseModel | |
from model_loader import load_model | |
import torch | |
import logging | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
app = FastAPI() | |
# Global variables for model and tokenizer | |
tokenizer = None | |
model = None | |
async def startup_event(): | |
global tokenizer, model | |
logger.info("Loading model and tokenizer...") | |
try: | |
tokenizer, model = load_model() | |
model.eval() | |
logger.info("Model and tokenizer loaded successfully!") | |
logger.info("FastAPI application is ready to serve requests") | |
except Exception as e: | |
logger.error(f"Failed to load model: {e}") | |
raise e | |
class PromptRequest(BaseModel): | |
prompt: str | |
async def root(): | |
return {"message": "Qwen Finetuned Model API is running!"} | |
async def health_check(): | |
if model is None or tokenizer is None: | |
return {"status": "unhealthy", "message": "Model not loaded"} | |
return {"status": "healthy", "message": "Model is ready"} | |
async def generate_text(request: PromptRequest): | |
if model is None or tokenizer is None: | |
return {"error": "Model not loaded yet"} | |
prompt = request.prompt | |
if not prompt: | |
return {"error": "Prompt is missing"} | |
try: | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_new_tokens=400,repetition_penalty=1.1,temperature=0.3) | |
full_response = tokenizer.decode(output[0], skip_special_tokens=True) | |
generated_text = full_response[len(prompt):].strip() | |
return {"response": generated_text} | |
except Exception as e: | |
logger.error(f"Error during text generation: {e}") | |
return {"error": f"Generation failed: {str(e)}"} | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |