Spaces:
Sleeping
Sleeping
File size: 12,639 Bytes
f72165d c1bc301 bc36691 f72165d bc36691 7981698 4b1000b f72165d 9476a0f f72165d bc36691 f72165d bc36691 c1bc301 bc36691 f72165d c1bc301 bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 269ecdc bc36691 269ecdc bc36691 269ecdc f72165d bc36691 f72165d bc36691 f72165d 269ecdc bc36691 269ecdc bc36691 269ecdc bc36691 269ecdc bc36691 269ecdc bc36691 269ecdc bc36691 269ecdc 9476a0f bc36691 9476a0f bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d 3a9ed7c bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d bc36691 f72165d 3a9ed7c f72165d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# app.py (Part 1 of 2)
import os
import json
import time
import datetime
import logging
import gradio as gr
from transformers import (
AutoTokenizer, AutoModelForSequenceClassification,
Trainer, TrainingArguments
)
from datasets import load_dataset
import torch
# =========================
# Ensure directories exist
# =========================
os.makedirs("trained_models", exist_ok=True)
os.makedirs("logs", exist_ok=True)
os.makedirs("memory", exist_ok=True)
# =========================
# Logging Setup
# =========================
logging.basicConfig(
filename=os.path.join("logs", "app.log"),
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s"
)
log = logging.getLogger(__name__)
def log_event(event: str):
"""Append event to logs/events.log and console."""
log_file = os.path.join("logs", "events.log")
with open(log_file, "a") as f:
f.write(f"[{datetime.datetime.now()}] {event}\n")
print(event)
# =========================
# Memory System
# =========================
def get_memory_file(model_run: str):
return os.path.join("memory", f"memory_{model_run}.json")
def load_memory(model_run: str):
file = get_memory_file(model_run)
if os.path.exists(file):
with open(file, "r") as f:
return json.load(f)
return []
def save_memory(model_run: str, conversation: dict):
file = get_memory_file(model_run)
memory = load_memory(model_run)
memory.append(conversation)
with open(file, "w") as f:
json.dump(memory, f, indent=2)
# =========================
# Helper: List Trained Models
# =========================
def list_trained_models():
"""Scan trained_models/ and return available model runs."""
models = []
for d in os.listdir("trained_models"):
full_path = os.path.join("trained_models", d)
if os.path.isdir(full_path):
models.append(d)
return models if models else ["โ No trained models yet"]
# =========================
# Training Pipeline
# =========================
def train_model(base_model, dataset_name, custom_name, epochs):
"""Train Hugging Face model with progress + logging."""
try:
# -------------------------
# Prepare run identifiers
# -------------------------
run_id = f"{base_model.replace('/', '_')}__{custom_name.strip()}"
save_dir = os.path.join("trained_models", run_id)
os.makedirs(save_dir, exist_ok=True)
progress = {"status": "starting", "loss": [], "accuracy": [], "time": 0}
log_event(f"๐ Starting training run: {run_id} on dataset {dataset_name}")
# -------------------------
# Load dataset
# -------------------------
parts = dataset_name.split(" ")
if len(parts) == 2:
dataset_repo, dataset_config = parts
dataset = load_dataset(dataset_repo, dataset_config, split="train[:200]") # CPU-friendly
else:
dataset = load_dataset(dataset_name, split="train[:200]")
log_event("๐ Dataset loaded successfully")
# -------------------------
# Tokenizer + Model
# -------------------------
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForSequenceClassification.from_pretrained(base_model, num_labels=2)
def tokenize_fn(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=128)
dataset = dataset.map(tokenize_fn, batched=True)
dataset.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
# -------------------------
# Training Args
# -------------------------
training_args = TrainingArguments(
output_dir=save_dir,
overwrite_output_dir=True,
evaluation_strategy="epoch",
save_strategy="epoch",
num_train_epochs=int(epochs),
per_device_train_batch_size=4,
logging_dir="./logs",
logging_steps=10,
report_to="none",
no_cuda=True # force CPU
)
# -------------------------
# Metrics
# -------------------------
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = logits.argmax(-1)
acc = (preds == labels).astype(float).mean().item()
return {"accuracy": acc}
# -------------------------
# Custom Progress Callback
# -------------------------
start_time = time.time()
def log_callback(trainer, state, control, **kwargs):
if state.is_local_process_zero and state.log_history:
last_log = state.log_history[-1]
if "loss" in last_log:
progress["status"] = "running"
progress["loss"].append(last_log["loss"])
progress["time"] = round(time.time() - start_time, 2)
log_event(f"๐ Epoch {state.epoch} - Loss: {last_log['loss']}")
# -------------------------
# Trainer
# -------------------------
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
callbacks=[log_callback]
)
trainer.train()
# Save artifacts
model.save_pretrained(save_dir)
tokenizer.save_pretrained(save_dir)
progress["status"] = "done"
log_event(f"โ
Training finished: model saved at {save_dir}")
return f"โ
Training complete: {run_id}", progress
except Exception as e:
log_event(f"โ Training failed: {e}")
return f"Error during training: {e}", {"status": "error"}
# app.py (Part 2 of 2)
# =========================
# Inference (Testing / Chat)
# =========================
def chat_with_model(model_run, user_input):
"""Run inference on a trained model run."""
model_dir = os.path.join("trained_models", model_run)
if not os.path.exists(model_dir):
return "โ Model not trained yet. Train it first."
try:
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits, dim=-1).item()
# Save memory
conversation = {"input": user_input, "prediction": prediction}
save_memory(model_run, conversation)
return f"๐ฎ Prediction: {prediction}"
except Exception as e:
log_event(f"โ Inference failed: {e}")
return f"Error during inference: {e}"
# =========================
# View Memory
# =========================
def view_memory(model_run):
memory = load_memory(model_run)
if not memory:
return "๐ญ No memory yet for this model."
return json.dumps(memory, indent=2)
# =========================
# View Logs
# =========================
def view_logs():
log_file = os.path.join("logs", "events.log")
if not os.path.exists(log_file):
return "๐ญ No logs yet."
with open(log_file, "r") as f:
return f.read()
# =========================
# User Guide / Manual
# =========================
USER_GUIDE = """
# ๐ AI Model Builder Guide
Welcome to your **all-in-one AI Model Builder**.
This app allows you to **train, fine-tune, test, and manage AI models** directly in a Hugging Face Space.
---
## ๐น Step 1: Training a Model
1. Go to the **Training Tab**.
2. Select a **base model** (from dropdown or enter manually).
3. Select a **dataset** (from dropdown or enter manually).
4. Enter a **custom run name** (to keep multiple versions without overwriting).
5. Choose the number of **epochs**.
6. Click **Start Training**.
7. Training progress will appear, and the model will be saved under `trained_models/{run_id}`.
---
## ๐น Step 2: Testing Your Model
1. Switch to the **Testing Tab**.
2. Select a trained model run.
3. Enter any input text.
4. The app will return a **prediction**.
5. Each chat is saved in per-model **memory**.
---
## ๐น Step 3: Viewing Memory
- Go to the **Memory Tab**.
- Select a trained model run.
- View past chats + predictions.
---
## ๐น Step 4: Viewing Logs
- All activity is logged.
- Open the **Logs Tab** to see training sessions, progress, and errors.
---
## ๐น Technical Notes
- Training runs on **CPU** (slower but free).
- Uses Hugging Face **Transformers + Datasets**.
- Stores:
- Models โ `trained_models/{run_id}`
- Logs โ `logs/events.log`
- Memory โ `memory/memory_{run_id}.json`
"""
# =========================
# UI Defaults
# =========================
TOP_MODELS = [
"distilbert-base-uncased", "bert-base-uncased", "roberta-base",
"google/electra-base-discriminator", "albert-base-v2",
"facebook/bart-base", "gpt2", "t5-small",
"microsoft/deberta-base", "xlnet-base-cased"
]
TOP_DATASETS = [
"imdb", "ag_news", "yelp_polarity",
"dbpedia_14", "amazon_polarity",
"tweet_eval", "glue", "sst2",
"cnn_dailymail", "emotion"
]
# =========================
# Gradio UI
# =========================
with gr.Blocks() as demo:
gr.Markdown("# ๐ง AI Model Builder\nTrain, Fine-tune, Test, and Manage Your Own AI Models")
# ---- Training Tab ----
with gr.Tab("๐ ๏ธ Training"):
with gr.Row():
model_dropdown = gr.Dropdown(choices=TOP_MODELS, label="Select Base Model", interactive=True)
model_textbox = gr.Textbox(label="Or enter custom model ID")
with gr.Row():
dataset_dropdown = gr.Dropdown(choices=TOP_DATASETS, label="Select Dataset", interactive=True)
dataset_textbox = gr.Textbox(label="Or enter custom dataset ID")
run_name = gr.Textbox(label="Custom Run Name (required)")
epochs = gr.Slider(1, 5, value=1, step=1, label="Epochs (Training Cycles)")
train_button = gr.Button("๐ Start Training")
train_output = gr.Textbox(label="Training Status")
progress_output = gr.JSON(label="Progress Details")
def run_training(model_dropdown, model_textbox, dataset_dropdown, dataset_textbox, run_name, epochs):
base_model = model_textbox if model_textbox else model_dropdown
dataset_name = dataset_textbox if dataset_textbox else dataset_dropdown
if not base_model or not dataset_name or not run_name:
return "โ Please provide base model, dataset, and run name", {"status": "error"}
return train_model(base_model, dataset_name, run_name, epochs)
train_button.click(
run_training,
inputs=[model_dropdown, model_textbox, dataset_dropdown, dataset_textbox, run_name, epochs],
outputs=[train_output, progress_output]
)
# ---- Testing Tab ----
with gr.Tab("๐ฌ Testing"):
test_model_dropdown = gr.Dropdown(choices=list_trained_models(), label="Select Trained Model Run", interactive=True)
refresh_button = gr.Button("๐ Refresh Model List")
test_input = gr.Textbox(label="Your Message")
test_button = gr.Button("๐ก Predict")
test_output = gr.Textbox(label="Model Response")
refresh_button.click(lambda: gr.update(choices=list_trained_models()), None, test_model_dropdown)
test_button.click(chat_with_model, inputs=[test_model_dropdown, test_input], outputs=test_output)
# ---- Memory Tab ----
with gr.Tab("๐งพ Memory"):
mem_model_dropdown = gr.Dropdown(choices=list_trained_models(), label="Select Trained Model Run", interactive=True)
mem_refresh = gr.Button("๐ Refresh Model List")
mem_button = gr.Button("๐ Load Memory")
mem_output = gr.Textbox(label="Conversation Memory", lines=15)
mem_refresh.click(lambda: gr.update(choices=list_trained_models()), None, mem_model_dropdown)
mem_button.click(view_memory, inputs=mem_model_dropdown, outputs=mem_output)
# ---- Logs Tab ----
with gr.Tab("๐ Logs"):
log_button = gr.Button("๐ Show Logs")
log_output = gr.Textbox(label="Logs", lines=20)
log_button.click(view_logs, outputs=log_output)
# ---- Guide Tab ----
with gr.Tab("๐ Guide"):
gr.Markdown(USER_GUIDE)
# =========================
# Launch App
# =========================
if __name__ == "__main__":
demo.launch() |