Create core/edge.py
Browse files- core/edge.py +555 -0
core/edge.py
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Edge processing and symmetry correction for BackgroundFX Pro.
|
3 |
+
Fixes hair segmentation asymmetry and improves edge quality.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from typing import Dict, List, Optional, Tuple, Any
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from scipy import ndimage, signal
|
13 |
+
from scipy.spatial import distance
|
14 |
+
import logging
|
15 |
+
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class EdgeConfig:
|
21 |
+
"""Configuration for edge processing."""
|
22 |
+
edge_thickness: int = 3
|
23 |
+
smoothing_iterations: int = 2
|
24 |
+
symmetry_threshold: float = 0.3
|
25 |
+
hair_detection_sensitivity: float = 0.7
|
26 |
+
refinement_radius: int = 5
|
27 |
+
use_guided_filter: bool = True
|
28 |
+
bilateral_d: int = 9
|
29 |
+
bilateral_sigma_color: float = 75
|
30 |
+
bilateral_sigma_space: float = 75
|
31 |
+
morphology_kernel_size: int = 5
|
32 |
+
edge_preservation_weight: float = 0.8
|
33 |
+
|
34 |
+
|
35 |
+
class EdgeProcessor:
|
36 |
+
"""Main edge processing and refinement system."""
|
37 |
+
|
38 |
+
def __init__(self, config: Optional[EdgeConfig] = None):
|
39 |
+
self.config = config or EdgeConfig()
|
40 |
+
self.hair_segmentation = HairSegmentation(config)
|
41 |
+
self.edge_refinement = EdgeRefinement(config)
|
42 |
+
self.symmetry_corrector = SymmetryCorrector(config)
|
43 |
+
|
44 |
+
def process(self, image: np.ndarray, mask: np.ndarray,
|
45 |
+
detect_hair: bool = True) -> np.ndarray:
|
46 |
+
"""Process edges with full pipeline."""
|
47 |
+
# 1. Initial edge detection
|
48 |
+
edges = self._detect_edges(mask)
|
49 |
+
|
50 |
+
# 2. Hair-specific processing
|
51 |
+
if detect_hair:
|
52 |
+
hair_mask = self.hair_segmentation.segment(image, mask)
|
53 |
+
mask = self._blend_hair_mask(mask, hair_mask)
|
54 |
+
|
55 |
+
# 3. Symmetry correction
|
56 |
+
mask = self.symmetry_corrector.correct(mask, image)
|
57 |
+
|
58 |
+
# 4. Edge refinement
|
59 |
+
mask = self.edge_refinement.refine(image, mask, edges)
|
60 |
+
|
61 |
+
# 5. Final smoothing
|
62 |
+
mask = self._final_smoothing(mask)
|
63 |
+
|
64 |
+
return mask
|
65 |
+
|
66 |
+
def _detect_edges(self, mask: np.ndarray) -> np.ndarray:
|
67 |
+
"""Detect edges in mask."""
|
68 |
+
# Convert to uint8
|
69 |
+
mask_uint8 = (mask * 255).astype(np.uint8)
|
70 |
+
|
71 |
+
# Multi-scale edge detection
|
72 |
+
edges1 = cv2.Canny(mask_uint8, 50, 150)
|
73 |
+
edges2 = cv2.Canny(mask_uint8, 30, 100)
|
74 |
+
edges3 = cv2.Canny(mask_uint8, 70, 200)
|
75 |
+
|
76 |
+
# Combine edges
|
77 |
+
edges = np.maximum(edges1, np.maximum(edges2, edges3))
|
78 |
+
|
79 |
+
return edges / 255.0
|
80 |
+
|
81 |
+
def _blend_hair_mask(self, original_mask: np.ndarray,
|
82 |
+
hair_mask: np.ndarray) -> np.ndarray:
|
83 |
+
"""Blend hair mask with original mask."""
|
84 |
+
# Find hair regions
|
85 |
+
hair_regions = hair_mask > 0.5
|
86 |
+
|
87 |
+
# Smooth blending
|
88 |
+
alpha = 0.7 # Hair mask weight
|
89 |
+
blended = original_mask.copy()
|
90 |
+
blended[hair_regions] = (
|
91 |
+
alpha * hair_mask[hair_regions] +
|
92 |
+
(1 - alpha) * original_mask[hair_regions]
|
93 |
+
)
|
94 |
+
|
95 |
+
return blended
|
96 |
+
|
97 |
+
def _final_smoothing(self, mask: np.ndarray) -> np.ndarray:
|
98 |
+
"""Apply final smoothing pass."""
|
99 |
+
# Guided filter for edge-preserving smoothing
|
100 |
+
if self.config.use_guided_filter:
|
101 |
+
mask = self._guided_filter(mask, mask)
|
102 |
+
|
103 |
+
# Morphological smoothing
|
104 |
+
kernel = cv2.getStructuringElement(
|
105 |
+
cv2.MORPH_ELLIPSE,
|
106 |
+
(self.config.morphology_kernel_size, self.config.morphology_kernel_size)
|
107 |
+
)
|
108 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
|
109 |
+
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
|
110 |
+
|
111 |
+
return mask
|
112 |
+
|
113 |
+
def _guided_filter(self, input_img: np.ndarray,
|
114 |
+
guidance: np.ndarray,
|
115 |
+
radius: int = 4,
|
116 |
+
epsilon: float = 0.2**2) -> np.ndarray:
|
117 |
+
"""Apply guided filter for edge-preserving smoothing."""
|
118 |
+
# Implementation of guided filter
|
119 |
+
mean_I = cv2.boxFilter(guidance, cv2.CV_64F, (radius, radius))
|
120 |
+
mean_p = cv2.boxFilter(input_img, cv2.CV_64F, (radius, radius))
|
121 |
+
mean_Ip = cv2.boxFilter(guidance * input_img, cv2.CV_64F, (radius, radius))
|
122 |
+
cov_Ip = mean_Ip - mean_I * mean_p
|
123 |
+
|
124 |
+
mean_II = cv2.boxFilter(guidance * guidance, cv2.CV_64F, (radius, radius))
|
125 |
+
var_I = mean_II - mean_I * mean_I
|
126 |
+
|
127 |
+
a = cov_Ip / (var_I + epsilon)
|
128 |
+
b = mean_p - a * mean_I
|
129 |
+
|
130 |
+
mean_a = cv2.boxFilter(a, cv2.CV_64F, (radius, radius))
|
131 |
+
mean_b = cv2.boxFilter(b, cv2.CV_64F, (radius, radius))
|
132 |
+
|
133 |
+
q = mean_a * guidance + mean_b
|
134 |
+
|
135 |
+
return q
|
136 |
+
|
137 |
+
|
138 |
+
class HairSegmentation:
|
139 |
+
"""Specialized hair segmentation module."""
|
140 |
+
|
141 |
+
def __init__(self, config: EdgeConfig):
|
142 |
+
self.config = config
|
143 |
+
self.hair_detector = HairDetector()
|
144 |
+
|
145 |
+
def segment(self, image: np.ndarray, initial_mask: np.ndarray) -> np.ndarray:
|
146 |
+
"""Segment hair regions with improved accuracy."""
|
147 |
+
# 1. Detect hair regions
|
148 |
+
hair_probability = self.hair_detector.detect(image)
|
149 |
+
|
150 |
+
# 2. Refine with initial mask
|
151 |
+
hair_mask = self._refine_with_mask(hair_probability, initial_mask)
|
152 |
+
|
153 |
+
# 3. Fix asymmetry specific to hair
|
154 |
+
hair_mask = self._fix_hair_asymmetry(hair_mask, image)
|
155 |
+
|
156 |
+
# 4. Enhance hair strands
|
157 |
+
hair_mask = self._enhance_hair_strands(hair_mask, image)
|
158 |
+
|
159 |
+
return hair_mask
|
160 |
+
|
161 |
+
def _refine_with_mask(self, hair_prob: np.ndarray,
|
162 |
+
initial_mask: np.ndarray) -> np.ndarray:
|
163 |
+
"""Refine hair probability with initial mask."""
|
164 |
+
# Only keep hair within or near initial mask
|
165 |
+
kernel = np.ones((15, 15), np.uint8)
|
166 |
+
dilated_mask = cv2.dilate(initial_mask, kernel, iterations=2)
|
167 |
+
|
168 |
+
# Combine probabilities
|
169 |
+
refined = hair_prob * dilated_mask
|
170 |
+
|
171 |
+
# Threshold
|
172 |
+
threshold = self.config.hair_detection_sensitivity
|
173 |
+
hair_mask = (refined > threshold).astype(np.float32)
|
174 |
+
|
175 |
+
# Smooth
|
176 |
+
hair_mask = cv2.GaussianBlur(hair_mask, (5, 5), 1.0)
|
177 |
+
|
178 |
+
return hair_mask
|
179 |
+
|
180 |
+
def _fix_hair_asymmetry(self, mask: np.ndarray,
|
181 |
+
image: np.ndarray) -> np.ndarray:
|
182 |
+
"""Fix asymmetry in hair segmentation."""
|
183 |
+
h, w = mask.shape[:2]
|
184 |
+
center_x = w // 2
|
185 |
+
|
186 |
+
# Split mask into left and right
|
187 |
+
left_mask = mask[:, :center_x]
|
188 |
+
right_mask = mask[:, center_x:]
|
189 |
+
|
190 |
+
# Flip right for comparison
|
191 |
+
right_flipped = np.fliplr(right_mask)
|
192 |
+
|
193 |
+
# Compute difference
|
194 |
+
if left_mask.shape[1] == right_flipped.shape[1]:
|
195 |
+
diff = np.abs(left_mask - right_flipped)
|
196 |
+
asymmetry_score = np.mean(diff)
|
197 |
+
|
198 |
+
if asymmetry_score > self.config.symmetry_threshold:
|
199 |
+
logger.info(f"Detected hair asymmetry: {asymmetry_score:.3f}")
|
200 |
+
|
201 |
+
# Balance the masks
|
202 |
+
balanced_left = 0.5 * left_mask + 0.5 * right_flipped
|
203 |
+
balanced_right = np.fliplr(0.5 * right_mask + 0.5 * np.fliplr(left_mask))
|
204 |
+
|
205 |
+
# Reconstruct
|
206 |
+
mask[:, :center_x] = balanced_left
|
207 |
+
mask[:, center_x:center_x + balanced_right.shape[1]] = balanced_right
|
208 |
+
|
209 |
+
return mask
|
210 |
+
|
211 |
+
def _enhance_hair_strands(self, mask: np.ndarray,
|
212 |
+
image: np.ndarray) -> np.ndarray:
|
213 |
+
"""Enhance fine hair strands."""
|
214 |
+
# Convert image to grayscale
|
215 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
216 |
+
|
217 |
+
# Detect fine structures using Gabor filters
|
218 |
+
enhanced_mask = mask.copy()
|
219 |
+
|
220 |
+
# Multiple orientations for Gabor filters
|
221 |
+
orientations = [0, 45, 90, 135]
|
222 |
+
gabor_responses = []
|
223 |
+
|
224 |
+
for angle in orientations:
|
225 |
+
theta = np.deg2rad(angle)
|
226 |
+
kernel = cv2.getGaborKernel(
|
227 |
+
(21, 21), 4.0, theta, 10.0, 0.5, 0, ktype=cv2.CV_32F
|
228 |
+
)
|
229 |
+
filtered = cv2.filter2D(gray, cv2.CV_32F, kernel)
|
230 |
+
gabor_responses.append(np.abs(filtered))
|
231 |
+
|
232 |
+
# Combine Gabor responses
|
233 |
+
gabor_max = np.max(gabor_responses, axis=0)
|
234 |
+
gabor_normalized = gabor_max / (np.max(gabor_max) + 1e-6)
|
235 |
+
|
236 |
+
# Enhance mask in high-response areas
|
237 |
+
hair_enhancement = gabor_normalized * (1 - mask)
|
238 |
+
enhanced_mask = np.clip(mask + 0.3 * hair_enhancement, 0, 1)
|
239 |
+
|
240 |
+
return enhanced_mask
|
241 |
+
|
242 |
+
|
243 |
+
class HairDetector:
|
244 |
+
"""Detects hair regions in images."""
|
245 |
+
|
246 |
+
def detect(self, image: np.ndarray) -> np.ndarray:
|
247 |
+
"""Detect hair probability map."""
|
248 |
+
# Convert to appropriate color spaces
|
249 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
250 |
+
lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
|
251 |
+
|
252 |
+
# Hair color detection in HSV
|
253 |
+
hair_colors = [
|
254 |
+
# Black hair
|
255 |
+
((0, 0, 0), (180, 255, 30)),
|
256 |
+
# Brown hair
|
257 |
+
((10, 20, 20), (20, 255, 100)),
|
258 |
+
# Blonde hair
|
259 |
+
((15, 30, 50), (25, 255, 200)),
|
260 |
+
# Red hair
|
261 |
+
((0, 50, 50), (10, 255, 150)),
|
262 |
+
]
|
263 |
+
|
264 |
+
hair_masks = []
|
265 |
+
for (lower, upper) in hair_colors:
|
266 |
+
mask = cv2.inRange(hsv, np.array(lower), np.array(upper))
|
267 |
+
hair_masks.append(mask)
|
268 |
+
|
269 |
+
# Combine color masks
|
270 |
+
color_mask = np.max(hair_masks, axis=0) / 255.0
|
271 |
+
|
272 |
+
# Texture analysis for hair-like patterns
|
273 |
+
texture_mask = self._detect_hair_texture(image)
|
274 |
+
|
275 |
+
# Combine color and texture
|
276 |
+
hair_probability = 0.6 * color_mask + 0.4 * texture_mask
|
277 |
+
|
278 |
+
# Smooth the probability map
|
279 |
+
hair_probability = cv2.GaussianBlur(hair_probability, (7, 7), 2.0)
|
280 |
+
|
281 |
+
return hair_probability
|
282 |
+
|
283 |
+
def _detect_hair_texture(self, image: np.ndarray) -> np.ndarray:
|
284 |
+
"""Detect hair-like texture patterns."""
|
285 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
286 |
+
|
287 |
+
# Compute texture features using LBP-like approach
|
288 |
+
texture_score = np.zeros_like(gray, dtype=np.float32)
|
289 |
+
|
290 |
+
# Directional derivatives
|
291 |
+
dx = cv2.Sobel(gray, cv2.CV_32F, 1, 0, ksize=3)
|
292 |
+
dy = cv2.Sobel(gray, cv2.CV_32F, 0, 1, ksize=3)
|
293 |
+
|
294 |
+
# Gradient magnitude and orientation
|
295 |
+
magnitude = np.sqrt(dx**2 + dy**2)
|
296 |
+
orientation = np.arctan2(dy, dx)
|
297 |
+
|
298 |
+
# Hair tends to have consistent local orientation
|
299 |
+
# Compute local orientation consistency
|
300 |
+
window_size = 9
|
301 |
+
kernel = np.ones((window_size, window_size)) / (window_size**2)
|
302 |
+
|
303 |
+
# Local orientation variance (low variance = consistent = hair-like)
|
304 |
+
orient_mean = cv2.filter2D(orientation, -1, kernel)
|
305 |
+
orient_sq_mean = cv2.filter2D(orientation**2, -1, kernel)
|
306 |
+
orient_var = orient_sq_mean - orient_mean**2
|
307 |
+
|
308 |
+
# Low variance and high magnitude indicates hair
|
309 |
+
texture_score = magnitude * np.exp(-orient_var)
|
310 |
+
|
311 |
+
# Normalize
|
312 |
+
texture_score = texture_score / (np.max(texture_score) + 1e-6)
|
313 |
+
|
314 |
+
return texture_score
|
315 |
+
|
316 |
+
|
317 |
+
class EdgeRefinement:
|
318 |
+
"""Refines edges for better quality."""
|
319 |
+
|
320 |
+
def __init__(self, config: EdgeConfig):
|
321 |
+
self.config = config
|
322 |
+
|
323 |
+
def refine(self, image: np.ndarray, mask: np.ndarray,
|
324 |
+
edges: np.ndarray) -> np.ndarray:
|
325 |
+
"""Refine mask edges."""
|
326 |
+
# 1. Bilateral filtering for edge-aware smoothing
|
327 |
+
refined = self._bilateral_smooth(mask, image)
|
328 |
+
|
329 |
+
# 2. Snap to image edges
|
330 |
+
refined = self._snap_to_edges(refined, image, edges)
|
331 |
+
|
332 |
+
# 3. Subpixel refinement
|
333 |
+
refined = self._subpixel_refinement(refined, image)
|
334 |
+
|
335 |
+
# 4. Feathering
|
336 |
+
refined = self._apply_feathering(refined)
|
337 |
+
|
338 |
+
return refined
|
339 |
+
|
340 |
+
def _bilateral_smooth(self, mask: np.ndarray,
|
341 |
+
image: np.ndarray) -> np.ndarray:
|
342 |
+
"""Apply bilateral filtering for edge-aware smoothing."""
|
343 |
+
# Convert mask to uint8 for bilateral filter
|
344 |
+
mask_uint8 = (mask * 255).astype(np.uint8)
|
345 |
+
|
346 |
+
# Apply bilateral filter
|
347 |
+
smoothed = cv2.bilateralFilter(
|
348 |
+
mask_uint8,
|
349 |
+
self.config.bilateral_d,
|
350 |
+
self.config.bilateral_sigma_color,
|
351 |
+
self.config.bilateral_sigma_space
|
352 |
+
)
|
353 |
+
|
354 |
+
return smoothed / 255.0
|
355 |
+
|
356 |
+
def _snap_to_edges(self, mask: np.ndarray, image: np.ndarray,
|
357 |
+
detected_edges: np.ndarray) -> np.ndarray:
|
358 |
+
"""Snap mask boundaries to image edges."""
|
359 |
+
# Detect strong edges in image
|
360 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
361 |
+
image_edges = cv2.Canny(gray, 50, 150) / 255.0
|
362 |
+
|
363 |
+
# Find mask edges
|
364 |
+
mask_edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150) / 255.0
|
365 |
+
|
366 |
+
# Distance transform from image edges
|
367 |
+
dist_transform = cv2.distanceTransform(
|
368 |
+
(1 - image_edges).astype(np.uint8),
|
369 |
+
cv2.DIST_L2, 5
|
370 |
+
)
|
371 |
+
|
372 |
+
# Snap mask edges to nearby image edges
|
373 |
+
snap_radius = self.config.refinement_radius
|
374 |
+
refined = mask.copy()
|
375 |
+
|
376 |
+
# For pixels near mask edges
|
377 |
+
edge_region = cv2.dilate(mask_edges, np.ones((5, 5))) > 0
|
378 |
+
|
379 |
+
# If close to image edge, strengthen the mask edge
|
380 |
+
close_to_image_edge = (dist_transform < snap_radius) & edge_region
|
381 |
+
refined[close_to_image_edge] = np.where(
|
382 |
+
mask[close_to_image_edge] > 0.5, 1.0, 0.0
|
383 |
+
)
|
384 |
+
|
385 |
+
return refined
|
386 |
+
|
387 |
+
def _subpixel_refinement(self, mask: np.ndarray,
|
388 |
+
image: np.ndarray) -> np.ndarray:
|
389 |
+
"""Apply subpixel refinement to edges."""
|
390 |
+
# Use image gradient for subpixel accuracy
|
391 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if len(image.shape) == 3 else image
|
392 |
+
|
393 |
+
# Compute gradients
|
394 |
+
grad_x = cv2.Sobel(gray, cv2.CV_32F, 1, 0, ksize=3)
|
395 |
+
grad_y = cv2.Sobel(gray, cv2.CV_32F, 0, 1, ksize=3)
|
396 |
+
grad_mag = np.sqrt(grad_x**2 + grad_y**2)
|
397 |
+
|
398 |
+
# Normalize gradient
|
399 |
+
grad_mag = grad_mag / (np.max(grad_mag) + 1e-6)
|
400 |
+
|
401 |
+
# Refine mask edges based on gradient
|
402 |
+
# Strong gradients push toward binary values
|
403 |
+
refined = mask.copy()
|
404 |
+
strong_gradient = grad_mag > 0.3
|
405 |
+
|
406 |
+
refined[strong_gradient] = np.where(
|
407 |
+
mask[strong_gradient] > 0.5,
|
408 |
+
np.minimum(mask[strong_gradient] + 0.1, 1.0),
|
409 |
+
np.maximum(mask[strong_gradient] - 0.1, 0.0)
|
410 |
+
)
|
411 |
+
|
412 |
+
return refined
|
413 |
+
|
414 |
+
def _apply_feathering(self, mask: np.ndarray,
|
415 |
+
radius: int = 3) -> np.ndarray:
|
416 |
+
"""Apply feathering to edges."""
|
417 |
+
# Distance transform from edges
|
418 |
+
mask_binary = (mask > 0.5).astype(np.uint8)
|
419 |
+
|
420 |
+
# Distance from outside
|
421 |
+
dist_outside = cv2.distanceTransform(
|
422 |
+
mask_binary, cv2.DIST_L2, 5
|
423 |
+
)
|
424 |
+
|
425 |
+
# Distance from inside
|
426 |
+
dist_inside = cv2.distanceTransform(
|
427 |
+
1 - mask_binary, cv2.DIST_L2, 5
|
428 |
+
)
|
429 |
+
|
430 |
+
# Create feathering
|
431 |
+
feather_region = (dist_outside <= radius) | (dist_inside <= radius)
|
432 |
+
|
433 |
+
if np.any(feather_region):
|
434 |
+
# Smooth transition in feather region
|
435 |
+
alpha = np.zeros_like(mask)
|
436 |
+
alpha[dist_outside > radius] = 1.0
|
437 |
+
alpha[feather_region] = dist_outside[feather_region] / radius
|
438 |
+
|
439 |
+
# Blend
|
440 |
+
mask = mask * (1 - feather_region) + alpha * feather_region
|
441 |
+
|
442 |
+
return mask
|
443 |
+
|
444 |
+
|
445 |
+
class SymmetryCorrector:
|
446 |
+
"""Corrects asymmetry in masks."""
|
447 |
+
|
448 |
+
def __init__(self, config: EdgeConfig):
|
449 |
+
self.config = config
|
450 |
+
|
451 |
+
def correct(self, mask: np.ndarray, image: np.ndarray) -> np.ndarray:
|
452 |
+
"""Correct asymmetry in mask."""
|
453 |
+
# Detect face/object center
|
454 |
+
center = self._find_center(mask)
|
455 |
+
|
456 |
+
# Check asymmetry
|
457 |
+
asymmetry_score = self._compute_asymmetry(mask, center)
|
458 |
+
|
459 |
+
if asymmetry_score > self.config.symmetry_threshold:
|
460 |
+
logger.info(f"Correcting asymmetry: {asymmetry_score:.3f}")
|
461 |
+
mask = self._balance_mask(mask, center)
|
462 |
+
|
463 |
+
return mask
|
464 |
+
|
465 |
+
def _find_center(self, mask: np.ndarray) -> int:
|
466 |
+
"""Find vertical center of object."""
|
467 |
+
# Use center of mass
|
468 |
+
mask_binary = (mask > 0.5).astype(np.uint8)
|
469 |
+
|
470 |
+
moments = cv2.moments(mask_binary)
|
471 |
+
if moments['m00'] > 0:
|
472 |
+
cx = int(moments['m10'] / moments['m00'])
|
473 |
+
return cx
|
474 |
+
else:
|
475 |
+
return mask.shape[1] // 2
|
476 |
+
|
477 |
+
def _compute_asymmetry(self, mask: np.ndarray, center: int) -> float:
|
478 |
+
"""Compute asymmetry score."""
|
479 |
+
h, w = mask.shape[:2]
|
480 |
+
|
481 |
+
# Split at center
|
482 |
+
left_width = center
|
483 |
+
right_width = w - center
|
484 |
+
min_width = min(left_width, right_width)
|
485 |
+
|
486 |
+
if min_width <= 0:
|
487 |
+
return 0.0
|
488 |
+
|
489 |
+
# Compare left and right
|
490 |
+
left = mask[:, center-min_width:center]
|
491 |
+
right = mask[:, center:center+min_width]
|
492 |
+
|
493 |
+
# Flip right for comparison
|
494 |
+
right_flipped = np.fliplr(right)
|
495 |
+
|
496 |
+
# Compute difference
|
497 |
+
diff = np.abs(left - right_flipped)
|
498 |
+
asymmetry = np.mean(diff)
|
499 |
+
|
500 |
+
return asymmetry
|
501 |
+
|
502 |
+
def _balance_mask(self, mask: np.ndarray, center: int) -> np.ndarray:
|
503 |
+
"""Balance mask to reduce asymmetry."""
|
504 |
+
h, w = mask.shape[:2]
|
505 |
+
balanced = mask.copy()
|
506 |
+
|
507 |
+
# Split at center
|
508 |
+
left_width = center
|
509 |
+
right_width = w - center
|
510 |
+
min_width = min(left_width, right_width)
|
511 |
+
|
512 |
+
if min_width <= 0:
|
513 |
+
return mask
|
514 |
+
|
515 |
+
# Get regions
|
516 |
+
left = mask[:, center-min_width:center]
|
517 |
+
right = mask[:, center:center+min_width]
|
518 |
+
|
519 |
+
# Weight based on confidence (higher values = more confident)
|
520 |
+
left_confidence = np.mean(np.abs(left - 0.5))
|
521 |
+
right_confidence = np.mean(np.abs(right - 0.5))
|
522 |
+
|
523 |
+
# Weighted average favoring more confident side
|
524 |
+
total_conf = left_confidence + right_confidence + 1e-6
|
525 |
+
left_weight = left_confidence / total_conf
|
526 |
+
right_weight = right_confidence / total_conf
|
527 |
+
|
528 |
+
# Balance
|
529 |
+
balanced_left = left_weight * left + right_weight * np.fliplr(right)
|
530 |
+
balanced_right = right_weight * right + left_weight * np.fliplr(left)
|
531 |
+
|
532 |
+
# Apply balanced versions
|
533 |
+
balanced[:, center-min_width:center] = balanced_left
|
534 |
+
balanced[:, center:center+min_width] = balanced_right
|
535 |
+
|
536 |
+
# Smooth the center seam
|
537 |
+
seam_width = 5
|
538 |
+
seam_start = max(0, center - seam_width)
|
539 |
+
seam_end = min(w, center + seam_width)
|
540 |
+
balanced[:, seam_start:seam_end] = cv2.GaussianBlur(
|
541 |
+
balanced[:, seam_start:seam_end], (5, 1), 1.0
|
542 |
+
)
|
543 |
+
|
544 |
+
return balanced
|
545 |
+
|
546 |
+
|
547 |
+
# Export classes
|
548 |
+
__all__ = [
|
549 |
+
'EdgeProcessor',
|
550 |
+
'EdgeConfig',
|
551 |
+
'HairSegmentation',
|
552 |
+
'EdgeRefinement',
|
553 |
+
'SymmetryCorrector',
|
554 |
+
'HairDetector'
|
555 |
+
]
|